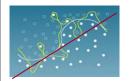
Machine Learning

10-701/15-781, Fall 2006

Practical Issues in LearningOverfitting and Model Selection

Eric Xing



Lecture 7, October 3, 2006

Reading: Chap. 1&2, CB & Chap 5,6, TM

Outline

- Overfitting
 - Instance-based learning
 - Regression
- Bias-variance decomposition
- The battle against overfitting:

each learning algorithm has some "free knobs" that one can "tune" (i.e., heck) to make the algorithm generalizes better to test data.

But is there a more principled way?

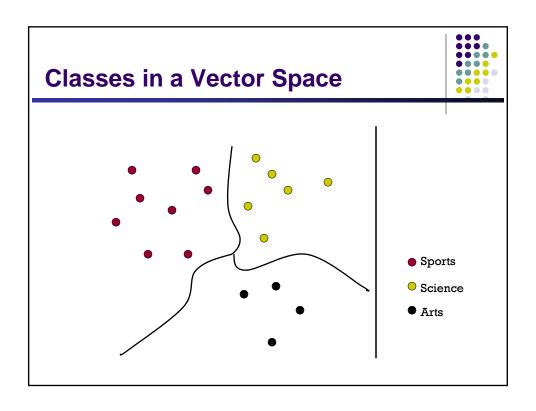
- Cross validation
- Regularization
- Model selection --- Occam's razor
- Model averaging
 - The Bayesian-frequentist debate
 - Bayesian learning (weight models by their posterior probabilities)

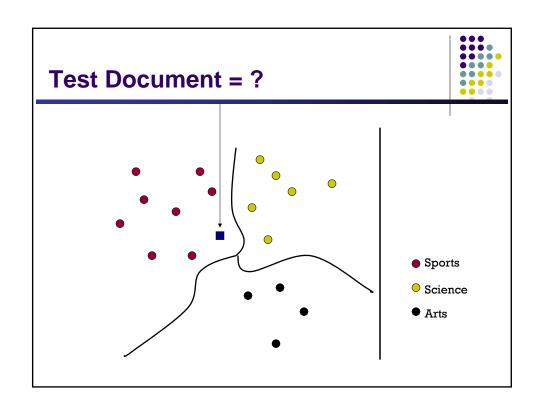
Recall: Vector Space Representation

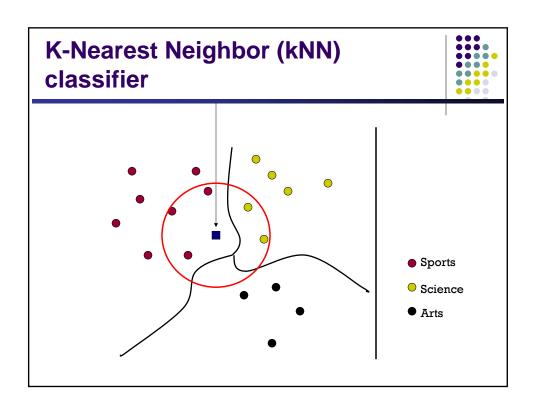
Each document is a vector, one component for each term (= word).

	Doc 1	Doc 2	Doc 3	
Word 1	3	0	0	
Word 2	0	8	1	
Word 3	12	1	10	
	0	1	3	
	0	0	0	

- Normalize to unit length.
- High-dimensional vector space:
 - Terms are axes, 10,000+ dimensions, or even 100,000+
 - Docs are vectors in this space







kNN is an instance of Instance-Based Learning

- What makes an Instance-Based Learner?
 - A distance metric
 - How many nearby neighbors to look at?
 - A weighting function (optional)
 - How to relate to the local points?

Euclidean Distance Metric

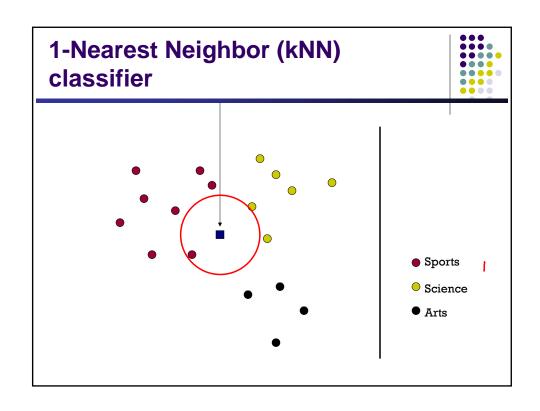
$$D(x, x') = \sqrt{\sum_{i} \sigma_{i}^{2} (x_{i} - x_{i}')^{2}}$$

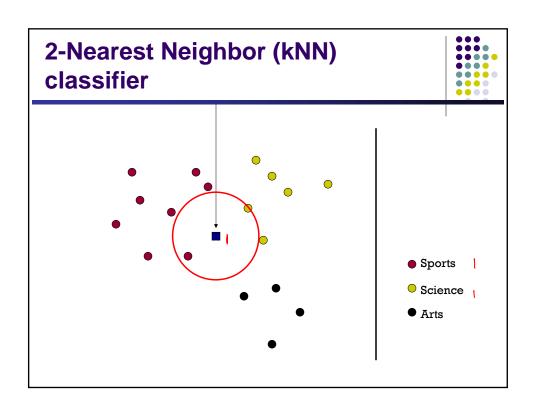
· Or equivalently,

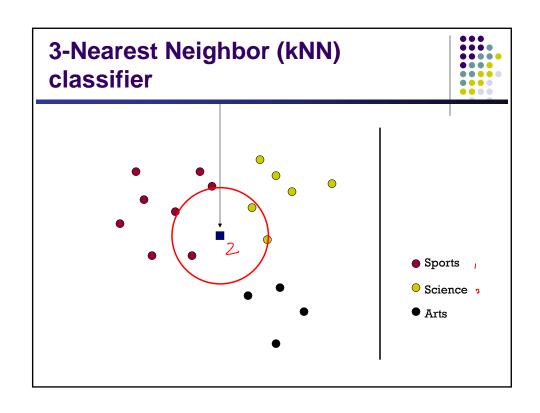
$$D(x,x') = \sqrt{(x-x')^T \Sigma(x-x')}$$

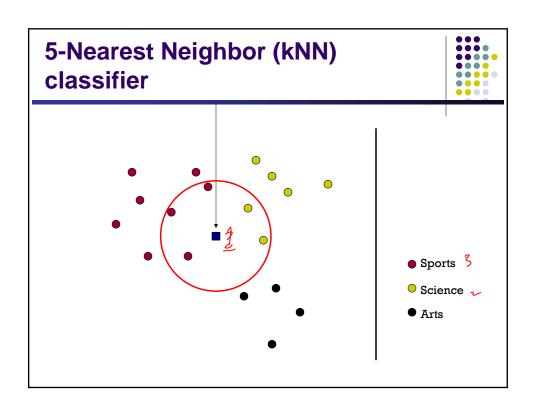
- Other metrics:
 - L₁ norm: |x-x'|
 - L_∞ norm: max |x-x'| (elementwise ...)
 - ullet Mahalanobis: where Σ is full, and symmetric
 - Correlation
 - Angle
 - Hamming distance, Manhattan distance
 - ..

AAAAA







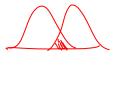


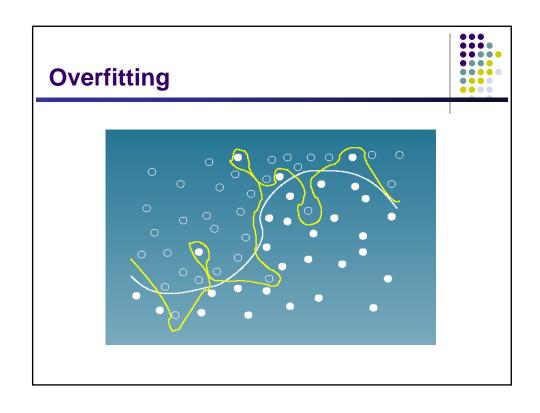
Nearest-Neighbor Learning Algorithm

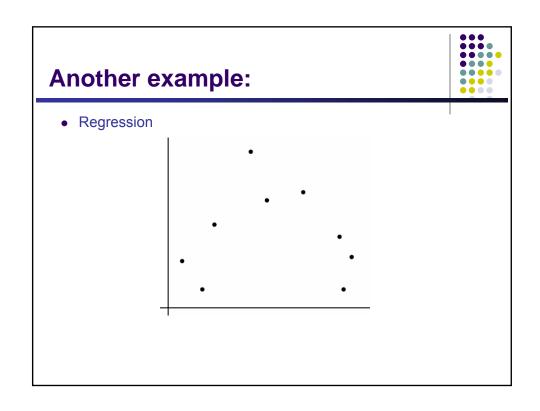
- Learning is just storing the representations of the training examples in *D*.
- Testing instance x:
 - Compute similarity between x and all examples in D.
 - Assign *x* the category of the most similar example in *D*.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning

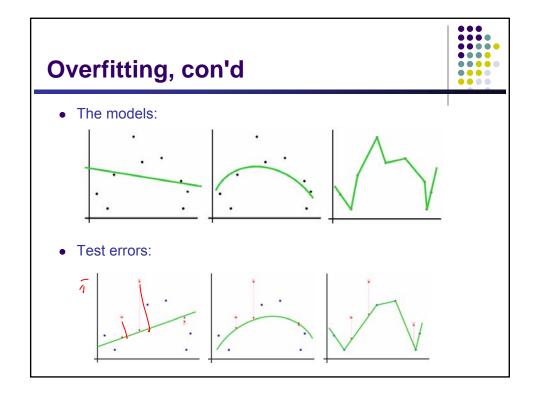
kNN Is Close to Optimal

- Cover and Hart 1967
- Asymptotically, the error rate of 1-nearest-neighbor classification is less than twice the Bayes rate [error rate of classifier knowing model that generated data]
- In particular, asymptotic error rate is 0 if Bayes rate is 0.
- Decision boundary:

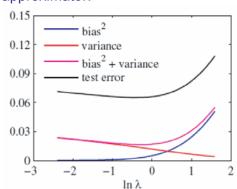








• Now let's look more closely into two sources of errors in an functional approximator:



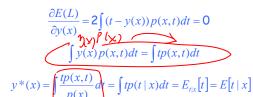
• In the following we show the Bias-variance decomposition using LR as an example.

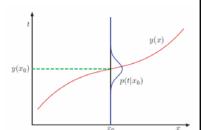
Loss functions for regression

• Let t be the true (target) output and $\overline{y(x)}$ be our estimate. The expected squared loss is

$$\underline{E(L) = \iint L(t, y(x)) p(x, t) dx dt}$$
$$= \iint (t - y(x))^2 p(x, t) dx dt$$

- Out goal is to choose y(x) that minimize E(L):
 - Calculus of variations:





Expected loss

• Let h(x) = E[t|x] be the **optimal** predictor, and y(x) our actual predictor, which will incur the following expected loss

$$E(y(x)-t)^{2} = \int (y(x)-h(x)+h(x)-t)^{2} p(x,t)dxdt$$

$$= \int (y(x)-h(x))^{2} + 2(y(x)-h(x))(h(x)-t) + (h(x)-t)^{2} p(x,t)dxdt$$

$$= \int (y(x)-h(x))^{2} p(x)dx + \int (h(x)-t)^{2} p(x,t)dxdt$$

There is an error on pp47

- $\int (h(x)-t)^2 p(x,t) dx dt$ is a noisy term, and we can do no better than this. Thus it is a lower bound of the expected loss.
- The other part of the error come from $\int (y(x) h(x))^2 p(x) dx$, and let's take a close look of it.
- We will assume y(x) = y(x|w) is a parametric model and the parameters w are fit to a training set D. (thus we write y(x;D))

Bias-variance decomposition

- For one data set D and one test point x
 - since the predictor y depend on the data training data D, write $E_D[y(x,D)]$ for the expected predictor over the ensemble of datasets, then (using the same trick) we have:

$$(y(x;D) - h(x))^{2} = (y(x;D) - (E_{D}[y(x;D)]) (E_{D}[y(x;D)] - h(x))^{2}$$

$$= (y(x;D) - E_{D}[y(x;D)]^{2} + (E_{D}[y(x;D)] - h(x))^{2}$$

$$+ 2(y(x;D) - E_{D}[y(x;D)] (E_{D}[y(x;D)] - h(x))$$

 Surely this error term depends on the training data, so we take an expectation over them:

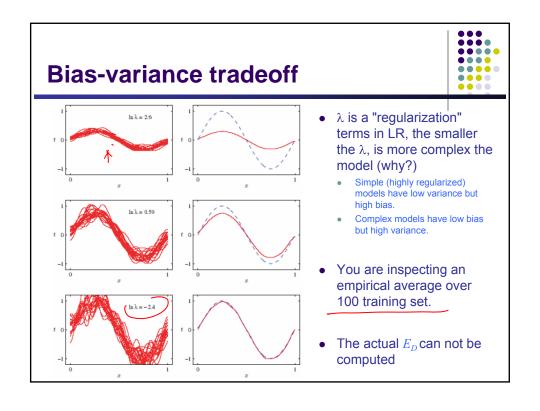
$$E_{D}[(y(x;D) - h(x))^{2}] = (E_{D}[y(x;D)] - h(x))^{2} + E_{D}[(y(x;D) - E_{D}[y(x;D)])^{2}]$$

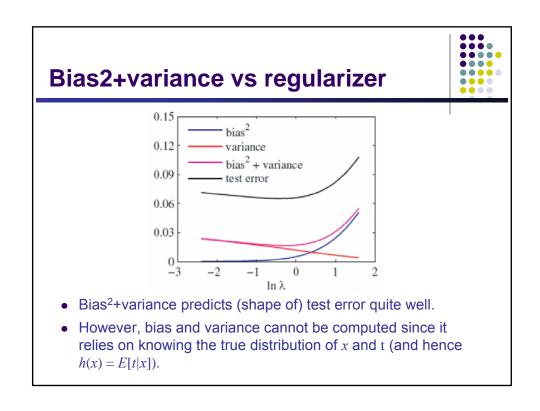
• Putting things together:

expected loss =
$$(bias)^2$$
 + variance + noise

Regularized Regression

$$J(6, x.v) = \pm \frac{1}{2} (x_1 - x_2)^2 + \pm \frac{1}{2} (101).$$





The battle against overfitting

Model Selection

- Suppose we are trying select among several different models for a learning problem.
- Examples:
 - 1. polynomial regression

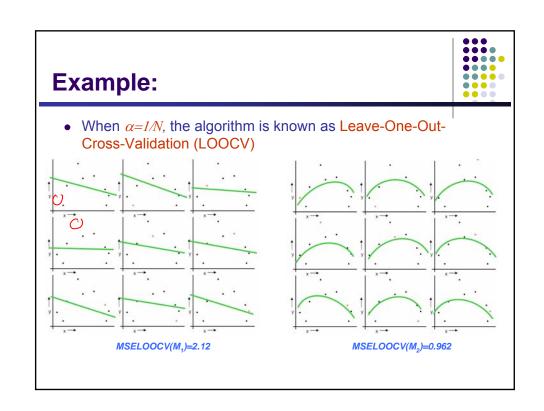
$$h(x;\theta) = g(\theta_0 + \theta_1 x + \theta_2 x^2 + \ldots + \theta_k x^k)$$

- Model selection: we wish to automatically and objectively decide if k should be, say, 0, 1, . . . , or 10.
- 2. locally weighted regression,

- Model selection: we want to automatically choose the bandwidth parameter τ .
- 3. Mixture models and hidden Markov model,
- Model selection: we want to decide the number of hidden states
- The Problem:
 - Given model family $\mathcal{F}=\left\{M_1,M_2,\ldots,M_I\right\}, \text{ find } M_i\in\mathcal{F}$ s.t. $M_i=\arg\max_{M\in\mathcal{F}}J(D,M)$

Cross Validation

- We are given training data D and test data D_{test} , and we would like to fit this data with a model $p_i(x;\theta)$ from the family \mathscr{F} (e.g, an LR), which is indexed by i and parameterized by θ .
- *K*-fold cross-validation (CV)
 - Set aside αN samples of D (where N = |D|). This is known as the held-out data and will be used to evaluate different values of i.
 - For each candidate model i, fit the optimal hypothesis $p_i(x; \theta^*)$ to the remaining $(1-\alpha)N$ samples in D (i.e., hold i fixed and find the best θ).
 - Evaluate each model $p_i(\mathbf{x}|\theta^*)$ on the held-out data using some pre-specified risk function.
 - Repeat the above K times, choosing a different held-out data set each time, and the scores are averaged for each model $p_i(.)$ over all held-out data set. This gives an estimate of the risk curve of models over different i.
 - For the model with the lowest rish, say $p_{j*}(.)$, we use all of D to find the parameter values for $p_{j*}(\mathbf{x};\theta'')$.



Practical issues for CV

- How to decide the values for K and α
 - Commonly used K = 10 and $\alpha = 0.1$.
 - when data sets are small relative to the number of models that are being evaluated, we need to decrease α and increase K
 - K needs to be large for the variance to be small enough, but this makes it timeconsuming.
- Bias-variance trade-off
 - Small α usually lead to low bias. In principle, LOOCV provides an almost unbiased estimate of the generalization ability of a classifier, especially when the number of the available training samples is severely limited; but it can also have
 - Large α can reduce variance, but will lead to under-use of data, and causing high-
- ullet One important point is that the test data D_{test} is never used in CV, because doing so would result in overly (indeed dishonest) optimistic accuracy rates during the testing phase.

1 CV
2. Regular Gyatin.
3 Feature Selection
4 Model Gelet

Regularization

- Maximum-likelihood estimates are not always the best (James and Stein showed a counter example in the early 60's)
- Alternative: we "regularize" the likelihood objective (also known as penalized likelihood, shrinkage, smoothing, etc.), by adding to it a penalty term:

$$\hat{\theta}_{\text{shrinkage}} = \arg \max_{\theta} \left[l(\theta; D) + \lambda \|\theta\| \right]$$

where λ >0 and $||\theta||$ might be the L_1 or L_2 norm.

- The choice of norm has an effect

 - while using the L1 norm pulls towards the coordinate axes, i.e it tries to set some
 of the coordinates to 0.
 - This second approach can be useful in a feature-selection setting.

Bayesian and Frequentist

- Frequentist interpretation of probability
 - Probabilities are objective properties of the real world, and refer to limiting relative frequencies (e.g., number of times I have observed heads). Hence one cannot write P(Katrina could have been prevented|D), since the event will never repeat.
 - Parameters of models are *fixed, unknown constants*. Hence one cannot write $P(\theta|D)$ since θ does not have a probability distribution. Instead one can only write $P(D|\theta)$.
 - One computes point estimates of parameters using various estimators, $\theta^* = f(D)$, which are designed to have various desirable qualities when averaged over future data D (assumed to be drawn from the "true" distribution).
- Bayesian interpretation of probability
 - Probability describes degrees of belief, not limiting frequencies.
 - Parameters of models are *hidden variables*, so one can compute $P(\theta|D)$ or $P(f(\theta)|D)$ for some function f.
 - One estimates parameters by computing $P(\theta|D)$ using Bayes rule:

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Bayesian interpretation of regulation

- Regularized Linear Regression
 - Recall that using squared error as the cost function results in the LMS estimate
 - And assume iid data and Gaussian noise, LMS is equivalent to MLE of θ

$$l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T \mathbf{x}_i)^2$$

 \bullet Now assume that vector θ follows a normal prior with 0-mean and a diagonal covariance matrix

$$\theta \sim N(\mathbf{0}, \tau^2 I)$$

• What is the posterior distribution of θ ?

$$p(\theta|D) \propto p(D,\theta)$$

$$= p(D|\theta)p(\theta) = \left(2\pi\sigma^2\right)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n \left(y_n - \theta^T x_i\right)^2\right\} \times C \exp\left\{-\left(\theta^T \theta / 2\tau^2\right)^2\right\}$$

Bayesian interpretation of regulation, con'd

• The posterior distribution of θ

$$p(\theta|D) \propto \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_n - \theta^T x_i\right)^2\right\} \times \exp\left\{-\frac{\theta^T \theta}{2\sigma^2}\right\}$$

This leads to a now objective

$$\begin{split} l_{MAP}(\theta; D) &= -\frac{1}{2\sigma^2} \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2 - \frac{1}{\tau^2} \frac{1}{2} \sum_{k=1}^{K} \theta_k^2 \\ &= l(\theta; D) + \lambda \|\theta\| \end{split}$$

- This is L_2 regularized LR! --- a MAP estimation of θ
- What about L_I regularized LR! (homework)
- How to choose λ.
 - cross-validation!

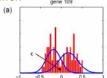
Feature Selection

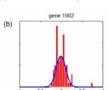
- Imagine that you have a supervised learning problem where
 the number of features n is very large (perhaps n
 >>#samples), but you suspect that there is only a small
 number of features that are "relevant" to the learning task.
- Later lecture on VC-theory will tell you that this scenario is likely to lead to high generalization error – the learned model will potentially overfit unless the training set is fairly large.
- So lets get rid of useless parameters!

How to score features

- How do you know which features can be pruned?
 - Given labeled data, we can compute some simple score S(i) that measures how informative each feature x_i is about the class labels y.
 - Ranking criteria:
 - Mutual Information: score each feature by its mutual information with respect to the class labels

MI(
$$x_i, y$$
) = $\sum_{x_i \in \{0,1\}} \sum_{y \in \{0,1\}} p(x_i, y) \log \frac{p(x_i, y)}{p(x_i)p(y)}$

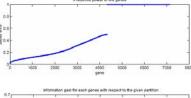




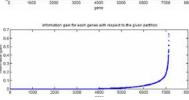
- Redundancy (Markov-blank score) ...
- We need estimate the relevant p()'s from data, e.g., using MLE

Feature Ranking

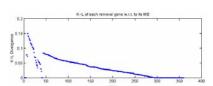
· Bayes error of each gene



 information gain for each genes with respect to the given partition



 KL of each removal gene w.r.t. to its MB



Feature selection schemes

- Given *n* features, there are 2ⁿ possible feature subsets (why?)
- Thus feature selection can be posed as a model selection problem over 2ⁿ possible models.
- For large values of n, it's usually too expensive to explicitly enumerate over and compare all 2^n models. Some heuristic search procedure is used to find a good feature subset.
- Three general approaches:
 - Filter: i.e., direct feature ranking, but taking no consideration of the subsequent learning algorithm
 - add (from empty set) or remove (from the full set) features one by one based on S(i)
 - Cheap, but is subject to local optimality and may be unrobust under different classifiers
 - Wrapper: determine the (inclusion or removal of) features based on performance under the learning algorithms to be used. See next slide
 - Simultaneous learning and feature selection.
 - E.x. L₁ regularized LR, Bayesian feature selection (will not cover in this class), etc.

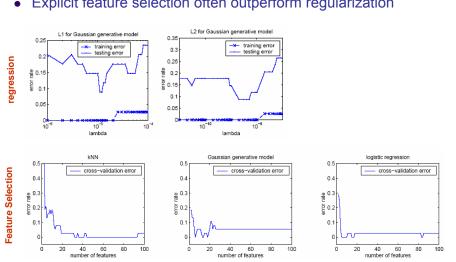
Wrapper

- Forward:
 - 1. Initialize $\mathcal{F} = \emptyset$
 - 2. Repeat
 - For $i=1,\ldots,n$ if $i\not\in\mathcal{F}$, let $\mathcal{F}_i=\mathcal{F}\cup\{i\}$, and use some version of cross validation to evaluate features \mathcal{F}_i , (l.e., train your learning algorithm using only the features in \mathcal{F}_i , and estimate its generalization error.)
 - Set ${\mathscr F}$ to be the best feature subset found on the last step step.
 - 3. Select and output the best feature subset that was evaluated during the entire search procedure.
- Backward search
 - 1. Initialize \mathcal{F} = full set
 - 2

Case study [Xing et al, 2001] • The case: • 7130 genes from a microarray dataset • 72 samples • 47 type I Leukemias (called ALL) and 25 type II Leukemias (called AML) • Three classifier: • kNN • Gaussian classifier • Logistic regression NNN (k-3) • Gaussian generative model • Training error • Logistic regression Output • Training error • Logistic regression Output • Training error • Logistic regression • Logistic regression

Regularization vs. Feature **Selection**

• Explicit feature selection often outperform regularization



Model Selection via Information Criteria

- How can we compare the closeness of a learned hypothesis and the true model?
- The relative entropy (also known as the Kullback-Leibler divergence) is a measure of how different two probability distributions (over the same event space) are.
 - For 2 pdfs, p(x) and q(x), their **KL-devergence** is:

$$D(p || q) = \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}$$

• The KL divergence between p and q can also be seen as the average number of bits that are wasted by encoding events from a distribution p with a code based on a not-quite-right distribution q.

An information criterion

- Let f(x) denote the truth, the underlying distribution of the data
- Let $g(x, \theta)$ denote the model family we are evaluating
 - f(x) does not necessarily reside in the model family
 - $\theta_{ML}(y)$ denote the MLE of model parameter from data y
- Among early attempts to move beyond Fisher's Maliximum Likelihood framework, Akaike proposed the following information criterion:

$$E_{v}[D(f \| g(x | \theta_{ML}(y))]$$

which is, of course, intractable (because f(x) is unknown)

AIC and TIC

• AIC (A information criterion, not **Akaike** information criterion)

$$A = \log g(x | \hat{\theta}(y)) - k$$

where k is the number of parameters in the model

• TIC (Takeuchi information criterion)

$$A = \log g(x \mid \hat{\theta}(y)) - \operatorname{tr}(I(\theta_0)\Sigma)$$

where

$$\theta_{0} = \arg\min D(f \parallel g(\cdot \mid \theta)) \qquad I(\theta_{0}) = -E_{x} \left[\frac{\partial^{2} \log g(x \mid \theta)}{\partial \theta \partial \theta^{T}} \right]_{\theta = \theta_{0}} \qquad \Sigma = E_{y} \left(\hat{\theta}(y) - \theta_{0} \right) \left(\hat{\theta}(y) - \theta_{0} \right)^{T}$$

- We can approximate these terms in various ways (e.g., using the bootstrap)
- $\operatorname{tr}(I(\theta_0)\Sigma) \approx k$

Bayesian Model Selection

• Recall the Bayesian Theory: (e.g., for date *D* and model *M*)

$$P(M|D) = P(D|M)P(M)/P(D)$$

- the **posterior** equals to the **likelihood** times the **prior**, up to a constant.
- Assume that P(M) is uniform and notice that P(D) is constant, we have the following criteria:

$$P(D \mid M) = \int_{\theta} P(D \mid \theta, M) P(\theta \mid M) d\theta$$

• A few steps of approximations (you will see this in advanced ML class in later semesters) give you this:

$$P(D|M) \approx \log P(D|\hat{\theta}_{ML}) - \frac{k}{2} \log N$$

where N is the number of data points in D.