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Machine LearningMachine Learning

1010--701/15701/15--781, Fall 2006781, Fall 2006

Practical Issues in LearningPractical Issues in Learning
---- OverfittingOverfitting and Model Selectionand Model Selection

Eric XingEric Xing

Lecture 7, October 3, 2006

Reading: Chap. 1&2, CB & Chap 5,6, TM

Outline
Overfitting

Instance-based learning
Regression

Bias-variance decomposition

The battle against overfitting: 
each learning algorithm has some "free knobs" that one can "tune" 
(i.e., heck) to make the algorithm generalizes better to test data. 

But is there a more principled way?
Cross validation
Regularization
Model selection --- Occam's razor
Model averaging 

The Bayesian-frequentist debate
Bayesian learning (weight models by their posterior probabilities)
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Recall: Vector Space 
Representation

Each document is a vector, one component for each term (= 
word).

Normalize to unit length.
High-dimensional vector space:

Terms are axes, 10,000+ dimensions, or even 100,000+
Docs are vectors in this space

...10112Word 3

...000...

...310...

...180Word 2

...003Word 1

...Doc 3Doc 2Doc 1

Classes in a Vector Space

Sports

Science

Arts
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Test Document = ?

Sports

Science

Arts

K-Nearest Neighbor (kNN) 
classifier 

Sports

Science

Arts
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kNN is an instance of 
Instance-Based Learning

What makes an Instance-Based Learner?

A distance metric

How many nearby neighbors to look at?

A weighting function (optional)

How to relate to the local points?

Euclidean Distance Metric

Or equivalently,

Other metrics:
L1 norm: |x-x'|
L∞ norm: max |x-x'|  (elementwise …)
Mahalanobis: where Σ is full, and symmetric 
Correlation
Angle
Hamming distance, Manhattan distance
…
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1-Nearest Neighbor (kNN) 
classifier 

Sports

Science

Arts

2-Nearest Neighbor (kNN) 
classifier 

Sports

Science

Arts



6

3-Nearest Neighbor (kNN) 
classifier 

Sports

Science

Arts

5-Nearest Neighbor (kNN) 
classifier 

Sports

Science

Arts
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Nearest-Neighbor Learning 
Algorithm

Learning is just storing the representations of the training 
examples in D.

Testing instance x:
Compute similarity between x and all examples in D.
Assign x the category of the most similar example in D.

Does not explicitly compute a generalization or category 
prototypes.

Also called:
Case-based learning
Memory-based learning
Lazy learning

kNN Is Close to Optimal
Cover and Hart 1967
Asymptotically, the error rate of 1-nearest-neighbor 
classification is less than twice the Bayes rate [error rate of 
classifier knowing model that generated data]

In particular, asymptotic error rate is 0 if Bayes rate is 0.
Decision boundary:
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Overfitting

Another example:
Regression
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Overfitting, con'd
The models:

Test errors:

Bias-variance decomposition
Now let's look more closely into two sources of errors in an 
functional approximator:

In the following we show the Bias-variance decomposition 
using LR as an example.
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Loss functions for regression
Let t be the true (target) output and y(x) be our estimate. The 
expected squared loss is

Out goal is to choose y(x) that minimize E(L):
Calculus of variations:
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Expected loss
Let h(x) = E[t|x] be the optimal predictor, and y(x) our actual 
predictor, which will incur the following expected loss

is a noisy term, and we can do no better than this. 
Thus it is a lower bound of the expected loss.

The other part of the error come from                           , and let's 
take a close look of it.

We will assume y(x) = y(x|w) is a parametric model and the parameters w
are fit to a training set D. (thus we write y(x;D) ) 
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Bias-variance decomposition
For one data set D and one test point x

since the predictor y depend on the data training data D, write ED[y(x,D)] for the 
expected predictor over the ensemble of datasets, then (using the same trick) we 
have:

Surely this error term depends on the training data, so we take an expectation 
over them:

Putting things together:

expected loss = (bias)2 + variance + noise
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Bias-variance tradeoff
λ is a "regularization" 
terms in LR, the smaller 
the λ, is more complex the 
model (why?)

Simple (highly regularized) 
models have low variance but 
high bias.
Complex models have low bias 
but high variance.

You are inspecting an 
empirical average over 
100 training set. 

The actual ED can not be 
computed

Bias2+variance vs regularizer

Bias2+variance predicts (shape of) test error quite well.
However, bias and variance cannot be computed since it 
relies on knowing the true distribution of x and t (and hence 
h(x) = E[t|x]).
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The battle against overfitting

Model Selection
Suppose we are trying select among several different models 
for a learning problem.
Examples:

1. polynomial regression

Model selection: we wish to automatically and objectively decide if k should be, say, 0, 
1, . . . , or 10.

2. locally weighted regression,
Model selection: we want to automatically choose the bandwidth parameter τ. 

3. Mixture models and hidden Markov model,
Model selection: we want to decide the number of hidden states

The Problem:
Given model family                                    ,  find   s.t. 

)();( k
k xxxgxh θθθθθ ++++= K2

210

{ }IMMM ,,, K21=F F∈iM
),(maxarg MDJM

Mi F∈
=



14

Cross Validation
We are given training data D and test data Dtest, and we would 
like to fit this data with a model pi(x;θ) from the family F  (e.g, 
an LR), which is indexed by i and parameterized by θ.
K-fold cross-validation (CV)

Set aside αN samples of D (where N = |D|). This is known as the held-out data
and will be used to evaluate different values of i.
For each candidate model i, fit the optimal hypothesis pi(x;θ∗) to the remaining 
(1−α)N samples in D (i.e., hold i fixed and find the best θ).
Evaluate each model pi(x|θ∗) on the held-out data using some pre-specified risk 
function.
Repeat the above K times, choosing a different held-out data set each time, and 
the scores are averaged for each model pi(.) over all held-out data set. This gives 
an estimate of the risk curve of models over different i.
For the model with the lowest rish, say pi*(.),  we use all of D to find the 
parameter values for pi*(x;θ∗).

Example:
When α=1/N, the algorithm is known as Leave-One-Out-
Cross-Validation (LOOCV)

MSELOOCV(M2)=0.962MSELOOCV(M1)=2.12
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Practical issues for CV
How to decide the values for K and α

Commonly used K = 10 and  α = 0.1.
when data sets are small relative to the number of models that are being 
evaluated, we need to decrease α and increase K
K needs to be large for the variance to be small enough, but this makes it time-
consuming.

Bias-variance trade-off
Small α usually lead to low bias. In principle, LOOCV provides an almost 
unbiased estimate of the generalization ability of a classifier, especially when the 
number of the available training samples is severely limited; but it can also have 
high variance.
Large α can reduce variance, but will lead to under-use of data, and causing high-
bias.

One important point is that the test data Dtest is never used in 
CV, because doing so would result in overly (indeed 
dishonest) optimistic accuracy rates during the testing phase.
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Regularization
Maximum-likelihood estimates are not always the best (James 
and Stein showed a counter example in the early 60's)
Alternative: we "regularize" the likelihood objective (also 
known as penalized likelihood, shrinkage, smoothing, etc.), by 
adding to it a penalty term:

where λ>0 and ||θ|| might be the L1 or L2 norm.

The choice of norm has an effect
using the L2 norm pulls  directly towards the origin, 
while using the L1 norm pulls towards the coordinate axes, i.e it tries to set some 
of the coordinates to 0. 
This second approach can be useful in a feature-selection setting.
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Bayesian and Frequentist
Frequentist interpretation of probability

Probabilities are objective properties of the real world, and refer to limiting relative 
frequencies (e.g., number of times I have observed heads). Hence one cannot 
write P(Katrina could have been prevented|D), since the event will never repeat.
Parameters of models are fixed, unknown constants. Hence one cannot write 
P(θ|D) since θ does not have a probability distribution. Instead one can only write 
P(D|θ).
One computes point estimates of parameters using various estimators, θ*= f(D), 
which are designed to have various desirable qualities when averaged over future 
data D (assumed to be drawn from the “true” distribution).

Bayesian interpretation of probability
Probability describes degrees of belief, not limiting frequencies.
Parameters of models are hidden variables, so one can compute P(θ|D) or 
P(f(θ)|D) for some function f.
One estimates parameters by computing P(θ|D) using Bayes rule:
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Bayesian interpretation of 
regulation

Regularized Linear Regression 
Recall that using squared error as the cost function results in the LMS estimate
And assume iid data and Gaussian noise, LMS is equivalent to MLE of θ

Now assume that vector θ follows a normal prior with 0-mean and a diagonal 
covariance matrix

What is the posterior distribution of θ?
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Bayesian interpretation of 
regulation, con'd

The posterior distribution of θ

This leads to a now objective

This is L2 regularized LR! --- a MAP estimation of θ
What about L1 regularized LR! (homework)

How to choose λ. 
cross-validation!
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Feature Selection
Imagine that you have a supervised learning problem where 
the number of features n is very large (perhaps n 
>>#samples), but you suspect that there is only a small 
number of features that are "relevant" to the learning task. 

Later lecture on VC-theory will tell you that this scenario is 
likely to lead to high generalization error – the learned model 
will potentially overfit unless the training set is fairly large.

So lets get rid of useless parameters!

How to score features
How do you know which features can be pruned?

Given labeled data, we can compute some simple score S(i) that 
measures how informative each feature xi is about the class labels y.

Ranking criteria:
Mutual Information: score each feature by its mutual information with respect 
to the class labels

Bayes error:

Redundancy (Markov-blank score) …

We need estimate the relevant p()'s from data, e.g., using MLE
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Feature Ranking 

Bayes error of each gene

information gain for each 
genes with respect to the 
given partition

KL of each removal gene 
w.r.t. to its MB

Feature selection schemes
Given n features, there are 2n possible feature subsets (why?)

Thus feature selection can be posed as a model selection 
problem over 2n possible models.

For large values of n, it's usually too expensive to explicitly 
enumerate over and compare all 2n models. Some heuristic 
search procedure is used to find a good feature subset.

Three general approaches:
Filter: i.e., direct feature ranking, but taking no consideration of the subsequent 
learning algorithm

add (from empty set) or remove (from the full set) features one by one based on S(i)
Cheap, but is subject to local optimality and may be unrobust under different classifiers 

Wrapper: determine the (inclusion or removal of) features based on performance 
under the learning algorithms to be used.  See next slide
Simultaneous learning and feature selection.

E.x. L1 regularized LR, Bayesian feature selection (will not cover in this class), etc.
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Wrapper
Forward:

1. Initialize F = Ø
2. Repeat

For i = 1, … , n 
if          , let                    , and use some version of cross validation to evaluate 
features F i. (I.e., train your learning algorithm using only the features in F i, 
and estimate its generalization error.)
Set F to be the best feature subset found on the last step step.

3. Select and output the best feature subset that was evaluated during the 
entire search procedure.

Backward search
1. Initialize F = full set 
2. …

F∉i }{ii ∪= FF

Case study   [Xing et al, 2001]

The case: 
7130 genes from a microarray dataset
72 samples
47 type I Leukemias (called ALL) 
and 25 type II Leukemias (called AML)

Three classifier:
kNN
Gaussian classifier
Logistic regression
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Regularization vs. Feature 
Selection

Explicit feature selection often outperform regularization
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Model Selection via Information 
Criteria

How can we compare the closeness of a learned hypothesis 
and the true model?
The relative entropy (also known as the Kullback-Leibler
divergence) is a measure of how different two probability 
distributions (over the same event space) are.

For 2 pdfs, p(x) and q(x), their KL-devergence is:

The KL divergence between p and q can also be seen as the 
average number of bits that are wasted by encoding events 
from a distribution p with a code based on a not-quite-right 
distribution q .
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An information criterion
Let f(x) denote the truth, the underlying distribution of the data
Let g(x,θ) denote the model family we are evaluating

f(x) does not necessarily reside in the model family
θML(y) denote the MLE of model parameter from data y

Among early attempts to move beyond Fisher's Maliximum
Likelihood framework, Akaike proposed the following 
information criterion:

which is, of course, intractable (because f(x) is unknown)
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AIC and TIC
AIC (A information criterion, not Akaike information criterion)

where k is the number of parameters in the model

TIC (Takeuchi information criterion)

where

We can approximate these terms in various ways (e.g., using the bootstrap) 
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Bayesian Model Selection
Recall the Bayesian Theory: (e.g., for date D and model M) 

P(M|D) = P(D|M)P(M)/P(D)

the posterior equals to the likelihood times the prior, up to a constant. 

Assume that P(M) is uniform and notice that P(D) is constant, 
we have the following criteria:

A few steps of approximations (you will see this in advanced ML 
class in later semesters) give you this:

where N is the number of data points in D.
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