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e Now you've moved to
Pittsburgh!!
And you want to find the most
reasonably priced apartment
satisfying your needs:
square-ft., # of bedroom, distance to

campus ...
Living area (ft?) # bedroom Rent ($)
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The learning problem

e [eatures:
= e Living area, distance to campus, #
o . bedroom ...
| ' o Denote as x=[x, x,, ... x;]
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Linear Regression

e Assume that Y (target) is a linear function of X (features):

e e.0g. ~
V=0, +6,x; +6,x,

e let's assume a vacuous "feature" X,=1 (this is the intercept term, why?), and

define the feature vector to be:

e then we have the following general representation of the linear function:

e Our goal is to pick the optimal € . How!

e We seek @ that minimize the following cost function:
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The Least-Mean-Square (LMS) sels
method H
e The Cost Function:
JO) =33 /0=
e Consider a gradient descent algorithm:
0" =0 —a(fg/ J(0)
The Least-Mean-Square (LMS) sels
method o

e Now we have the following descent rule:

t+1 t - T Nt
0" =6"+a) (y—x, 0)x,,
i=1
e For a single training point, we have:
e This is known as the LMS update rule, or the Widrow-Hoff learning rule

e Thisis actually a "stochastic", "coordinate" descent algorithm
e This can be used as an on-line algorithm




The Least-Mean-Square (LMS)

method

e Steepest descent
e Note that:

0 0
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V,J = {JJ} ==> (- X, 0)x,
i=1

00, 00,

0 =0"+ad (y-x'0)%, 4/

i=1

e Thisis as a batch gradient descent algorithm

Some matrix derivatives

e For f:R"™ R, define:
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04y, 04,,
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e Trace:
trd=>"4, tra=a ,
i=1

trdBC =trCAB =trBCA4

e Some fact of matrix derivatives (without proof)

V trdB=B" ,

V trABA"C =CAB+C" 4AB" |

v =|4(t)




The normal equations

e \Write the cost function in matrix form:

O =530~ g
i=1 : :
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e To minimize J(0), take derivative and set to zero:
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The normal equations
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e LMS update rule
t+1 t _ T Nt
0, =0, +a(y,—x, 0)x,,
e Pros: on-line, low per-step cost
e Cons: coordinate, maybe slow-converging
e Steepest descent
n
1 T
0 =6"+a) (y,—x, 0,
i1
e Pros: fast-converging, easy to implement
e Cons: a batch,
e Normal equations )
* T B T =
o =(x"x]'x"y

e Pros: a single-shot algorithm! Easiest to implement.

e Cons: need to compute pseudo-inverse (XTX)1, expensive, numerical issues

(e.g., matrix is singular ..)




Geometric Interpretation of LMS

e The predictions on the training data are:

y=Xx0 =x(x"x]" X"y B
e Note that X{ xz ]
5=l x) xr - B

and

X" (5-5)=x"(x(xrx) x7 - 1)y
- XTX(XTX)’le—XT)y
=01
):; is the orthogonal projection of )7
into the space spanned by the column
of X

Probabilistic Interpretation of
LMS s

e Let us assume that the target variable and the inputs are
related by the equation: ;

;
yl':e X, té

where ¢ is an error term of unmodeled effects or random noise

~

e Now assume that ¢ follows a Gaussian N(0,0), then we have:

1 —0"x )?
PO 1%:0) = — exp[ ofx) j

e By independence assumption:

" n n o 9’1' ‘ 2
L) =TT p(r,15,:6) = [égj exp(—z”(yz‘gzx’)}
i=1




Probabilistic Interpretation of
LMS, cont.

e Hence the log-likelihood is:

1 11w r
mg_?gzl’zl(y"_glxl)z

[(6) =nlog
e Do you recognize the last term?
Yes itis: J(6) = ;Z(X/Tg_y/)z
i=1

e Thus under independence assumption, LMS is equivalent to
MLE of 6!

Beyond basic LR

e LR with non-linear basis functions

e Locally weighted linear regression

e Regression trees and Multilinear Interpolation




LR with non-linear basis
functions

!
e LR does not mean we can only deal with linear relationships

e We are free to design (non-linear) features under LR
y=0,+Y" 0,4(x)=0"4(x)

where the ¢(x) are fixed basis functions (and we define ¢,(x) = 1).

e Example: polynomial regression:

¢(x) = [l,x, xz,x3]

e We will be concerned with estimating (distributions over) the
weights 8 and choosing the model order M.

Basis functions

e There are many basis functions, e.g.:

e Polynomial qﬁ/. (x) = x/

e Radial basis functions ¢, (x) = exp[—

()C B Iu/)z
2s°
e Sigmoidal ¢/_ (x) = G[X —H J

S

e Splines, Fourier, Wavelets, etc




1D and 2D RBFs oo
e 1D RBF
Yyt =pdx)+ + B ¢3(x)
o After fit:
yest = 20, (x) + + 0.5p5x)
Good and Bad RBFs ot

e A good 2D RBF prsiotibiss
input vectors 4 ce t
T nier

X3

e Two bad 2D RBFs




Locally weighted linear
regression

e Overfitting and underfitting

a'a e

2

y=0,+0x Y =6y +0x +0,x° y:Z/:OH/.x’

Locally weighted linear
regression '

e The algorithm:
L 1 - 5
Instead of minimizing S To_ )2 2 S
J(6) 2;()(’ 6-y,) ! .

) L 1 ,
now we fit 8 to minimize J(6) :EZWI.(XIIH—):’)Z
i=1

2
Where do w/'s come from? , = exp(— (X’Z_f) ]
T

where x is the query point for which we'd like to know its corresponding y
- Essentially we put higher weights on (errors on) training

examples that are close to the query point (than those that are
further away from the query)

e Do we also have a probabilistic interpretation here (as we did for LR)?
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Parametric vs. non-parametric

\
e Locally weighted linear regression is the first example we are

running into of a non-parametric algorithm.

e The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm

e because it has a fixed, finite number of parameters (the 6), which are fit to the
data;

e Once we've fit the 6 and stored them away, we no longer need to keep the
training data around to make future predictions.
e In contrast, to make predictions using locally weighted linear
regression, we need to keep the entire training set around.

e The term "non-parametric” (roughly) refers to the fact that the
amount of stuff we need to keep in order to represent the
hypothesis grows linearly with the size of the training set.

Robust Regression

e The best fit from a quadratic e But this is probably better ...
regression

How can we do this?




LOESS-based Robust Regression

e Remember what we do in "locally weighted linear regression"?
- we "score" each point for its “impotence”

e Now we score each point according to its "fitness"

‘fou are a very good |
datapaint.
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Robust regression :
e Fork=1toR...

e Let (x;,,) be the kth datapoint i _'"_'""\‘

o Let st be predicted value of y, /

e Letw, be aweight for data point 4 that is large if i /

the data point fits well and small if it fits badly: 1

we = (v, - 2)?)

e Then redo the regression using weighted data points.

e Repeat whole thing until converged!
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Robust regression—probabilistic
interpretation

e What regular regression does:
Assume y, was originally generated using the following recipe:

Y =0"%, +¥(0,6%)

Computational task is to find the Maximum Likelihood
estimation of 6

Robust regression—probabilistic
Interpretation o

e What LOESS robust regression does:
Assume y, was originally generated using the following recipe:

with probability p: = 0"x, + (0, 5?)

but otherwise v, ~ Ny, Gfuge)

Computational task is to find the Maximum Likelihood
estimates of 6, p, u and oy,,4e.

e The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an
instance of the famous E.M. algorithm
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Regression Tree .
e Decision tree for regression
Gender | Rich? | Num. # travel | Age
Children | per yr. Gender?
No 2 5 38
Female Male
No 0 2 25
M Yes 1 0 72
Predicted age=39‘ ’ Predicted age=36
(XX
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o000
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A tual pict o2
conceptual picture :

e Assuming regular regression trees, can you sketch a graph of
the fitted function y*(x) over this diagram?
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How about this one?

e Multilinear Interpolation

e We wanted to create a continuous and piecewise linear fit to
the data

Take home message

e Gradient descent
e On-line
e Batch

e Normal equations
e Equivalence of LMS and MLE

e LR does not mean fitting linear relations, but linear
combination or basis functions (that can be non-linear)

e Weighting points by importance versus by fithess
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