

Conditional independence

- Write out full joint distribution using chain rule:
 - P(Headache;Flu;Virus;DrinkBeer)
- = P(Headache | Flu; Virus; DrinkBeer) P(Flu; Virus; DrinkBeer)
- = P(Headache | Flu; Virus; DrinkBeer) P(Virus | DrinkBeer) P(DrinkBeer) P(DrinkBeer)

Assume independence and conditional independence

- = (Headache Flu; DrinkBeer) (Flu|Virus) P(Virus) P(DrinkBeer)
- I.e.4 independent parameters
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Rules of Independence --- by examples

- P(Virus | DrinkBeer)
 P(Virus)
 iff Virus is independent of DrinkBeer
- (P(Flu | Virus; DrinkBee)) = P(Flu| (irus))

 iff Flu is independent of DrinkBeer, given Virus

• (P(Headache | Flu;Virus;DrinkBeer) = P(Headache|Flu;DrinkBeer) iff Headache is independent of Virus, given Flu and DrinkBeer

Marginal and Conditional Independence

Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional probability of E given H, written as P(E|H), is

$$P(E \text{ and } H)/P(H)$$

(= the probability of both *E* and *H* are true, given H is true)

• E and H are (statistically) independent if

$$P(E) = P(E|H)$$

(i.e., prob. E is true doesn't depend on whether H is true); or equivalently P(E and H) = P(E)P(H).

• E and F are conditionally independent given H if

$$P(E|H,F) = P(E|H)$$

or equivalently

P(E,F|H) = P(E|H)P(F|H)

Why knowledge of Independence is useful

Lower complexity (time ace, sea ...

- Motivates efficient inference for all kinds of queries
 - Stay tuned !!
- Structured knowledge about the domain
 - easy to learning (both from expert and from data)
 - easy to grow

Where do probability distributions come from?

- Idea One: Human, Domain Experts
- Idea Two: Simpler probability facts and some algebra

e.g.,	P(F)	
	P(B)	
	$P(H \neg F,B)$	
	$P(H F, \neg B)$	
		,

¬F	¬В	¬H	0.4	
∍F	¬В	Н	0.1	
∍F	В	⊐H	0.17	
∍F	В	Н	0.2	
F	¬В	ъH	0.05	
F	¬В	Н	0.05	
F	В	⊐H	0.015	
F	В	Н	0.015	

- Idea Three: Learn them from data!
 - A good chunk of this course is essentially about various ways of learning various forms of them!

Density Estimation

 A Density Estimator learns a mapping from a set of attributes to a Probability

- Often known as parameter estimation if the distribution form is specified
 - Binomial, Gaussian ...
- Three important issues:
 - Nature of the data (iid, correlated, ...)
 - Objective function (MLE, MAP, ...)
 - Algorithm (simple algebra, gradient methods, EM, ...)
 - Evaluation scheme (likelihood on test data, predictability, consistency, ...)

Parameter Learning from iid data

Goal: estimate distribution parameters θ from a dataset of N independent, identically distributed (iid), fully observed, training cases

$$D = \{x_1, \ldots, x_N\}$$

- Maximum likelihood estimation (MLE)
 - 1. One of the most common estimators
 - 2. With iid and full-observability assumptions, write $L(\theta)$ as the likelihood of the data:

$$L(\theta) = P(x_1, x_2, ..., x_N, \theta)$$

$$= P(x_1, \theta) P(x_2; \theta), ..., P(x_N; \theta)$$

$$= \prod_{i=1}^{N} P(x_i; \theta)$$

3. pick the setting of parameters most likely to have generated the data we saw:

$$\theta^* = \arg\max_{\theta} L(\theta) = \arg\max_{\theta} \log L(\theta)$$

Example 1: Bernoulli model

5

- Data:
 - We observed *N* **iid** coin tossing: *D*={1, 0, 1, ..., 0}
- · Representation:

Binary r.v:
$$x_n = \{0,1\}$$

• Model:
$$P(x) = \begin{cases} 1 - p & \text{for } x = 0 \\ p & \text{for } x = 1 \end{cases} \Rightarrow P(x) = \theta^x (1 - \theta)^{1 - x}$$

• How to write the likelihood of a single observation x_i ?

$$P(x_i) = \theta^{x_i} (1 - \theta)^{1 - x_i}$$

• The likelihood of dataset $D=\{x_1, ..., x_N\}$:

$$P(x_{1}, x_{2}, ..., x_{N} \mid \theta) = \prod_{i=1}^{N} P(x_{i} \mid \theta) = \prod_{i=1}^{N} \left(\theta^{x_{i}} (1 - \theta)^{1 - x_{i}}\right) = \theta^{\sum_{i=1}^{N} x_{i}} (1 - \theta)^{\sum_{i=1}^{N} 1 - x_{i}} = \theta^{\text{\#head}} (1 - \theta)^{\text{\#tails}}$$

MLE

• Objective function:

$$\ell(\theta; D) = \log P(D \mid \theta) = \log \theta^{n_h} (1 - \theta)^{n_t} = (n_h \log \theta) + (N - n_h) \log (1 - \theta)$$

- We need to maximize this w.r.t. θ
- Take derivatives wrt θ

$$\frac{\partial \ell}{\partial \theta} = \frac{n_h}{\theta} - \frac{N - n_h}{1 - \theta} = 0$$

$$\widehat{\theta}_{MLE} = \frac{n_h}{N} \quad \text{or} \quad \widehat{\theta}_{MLE} = \frac{1}{N} \sum_{i} x_i$$
Frequency as sample mean

- Sufficient statistics
 - $\bullet \quad \text{The counts,} \quad n_h, \text{ where } n_k = \sum\nolimits_i x_i, \text{ are sufficient statistics of data } \mathcal{D}$

MLE for discrete (joint) distributions

• More generally, it is easy to show that

 This is an important (but sometimes not so effective) learning algorithm!

ΒF	¬В	¬Η	0.4	
٦F	¬В	Н	0.1	
¬F	В	¬Η	0.17	
ΒF	В	Н	0.2	
F	¬В	∃H	0.05	
F	¬В	Н	0.05	
F	В	∃H	0.015	
F	В	н	0.015	

Example 2: univariate normal

- Data:
 - We observed Niid real samples: D={-0.1, 10, 1, -5.2, ..., 3}
- $P(x) = (2\pi\sigma^2)^{-1/2} \exp\{-(x-\mu)^2/2\sigma^2\}$ Model:
- Log likelihood:

$$\ell(\theta; D) = \log P(D \mid \theta) = -\frac{N}{2} \log(2\pi\sigma^2) - \frac{1}{2} \sum_{n=1}^{N} \frac{\left(x_n - \mu\right)^2}{\sigma^2}$$

• MLE: take derivative and set to zero:

$$\frac{\partial \ell}{\partial \mu} = (1/\sigma^2) \sum_{n} (x_n - \mu)$$

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{n} (x_n - \mu)^2$$

$$\mu_{MLE} = \frac{1}{N} \sum_{n} (x_n)$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n - \mu)^2$$

$$\mu_{MLE} = \frac{1}{N} \sum_{n} (x_n)$$

$$\sigma_{MLE}^2 = \frac{1}{N} \sum_{n} (x_n - \mu_{ML})^2$$

Overfitting

· Recall that for Bernoulli Distribution, we have

$$\widehat{\theta}_{ML}^{head} = \frac{n^{head}}{n^{head} + n^{tail}}$$

- What if we tossed too few times so that we saw zero head? We have $\hat{\theta}_{ML}^{head} = 0$, and we will predict that the probability of seeing a head next is zero!!!
- The rescue:

• But can we make this more formal?

The Bayesian Theory

• The Bayesian Theory: (e.g., for date *D* and model *M*)

$$P(M|D) = P(D|M)P(M)/P(D)$$

- the posterior equals to the likelihood times the prior, up to a constant.
- This allows us to capture uncertainty about the model in a principled way

Hierarchical Bayesian Models

- θ are the parameters for the likelihood $p(x|\theta)$
- α are the parameters for the prior $p(\theta|\alpha)$.
- We can have hyper-hyper-parameters, etc.
- We stop when the choice of hyper-parameters makes no difference to the marginal likelihood; typically make hyperparameters constants.
- Where do we get the prior?
 - Intelligent guesses
 - Empirical Bayes (Type-II maximum likelihood)
 - \rightarrow computing point estimates of α :

$$\hat{\vec{\alpha}}_{\mathit{MLE}} = \arg\max_{\vec{\alpha}} = p(\vec{n} \mid \vec{\alpha})$$

Bayesian estimation for Bernoulli

• Beta distribution:

$$P(\theta; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} = B(\alpha, \beta) \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

• Posterior distribution of θ :

$$P(\theta \mid x_1,...,x_N) = \frac{p(x_1,...,x_N \mid \theta) p(\theta)}{p(x_1,...,x_N)} \propto \theta^{n_h} (1-\theta)^{n_t} \times \theta^{\alpha-1} (1-\theta)^{\beta-1} = \theta^{n_h+\alpha-1} (1-\theta)^{n_t+\beta-1}$$

- Notice the isomorphism of the posterior to the prior,
- such a prior is called a conjugate prior

Bayesian estimation for Bernoulli, con'd

• Posterior distribution of θ :

$$P(\theta \mid x_1,...,x_N) = \frac{p(x_1,...,x_N \mid \theta)p(\theta)}{p(x_1,...,x_N)} \propto \theta^{n_h} (1-\theta)^{n_t} \times \theta^{\alpha-1} (1-\theta)^{\beta-1} = \theta^{n_h+\alpha-1} (1-\theta)^{n_t+\beta-1}$$

Maximum a posteriori (MAP) estimation:

$$\theta_{MAP} = \arg\max_{\theta} \log P(\theta \mid x_1, ..., x_N)$$

• Posterior mean estimation:

$$\theta_{Bayes} = \int \theta p(\theta \mid D) d\theta = C \int \theta \times \theta^{n_h + \alpha - 1} (1 - \theta)^{n_t + \beta - 1} d\theta = \frac{n_h + \alpha}{N + \alpha + \beta}$$

- Prior strength: $A = \alpha + \beta$
 - A can be interoperated as the size of an imaginary data set from which we obtain the pseudo-counts

Effect of Prior Strength

- Suppose we have a uniform prior ($\alpha=\beta=1/2xA$), and we observe $\bar{n}=(n_h=2,n_r=8)$
- Weak prior A = 2. Posterior prediction:

$$p(x = h \mid n_h = 2, n_t = 8, \vec{\alpha} = \vec{\alpha} \times 2) = \frac{1+2}{2+10} = 0.25$$

• Strong prior A = 20. Posterior prediction:

$$p(x = h \mid n_h = 2, n_t = 8, \bar{\alpha} = \bar{\alpha} \times 20) = \frac{10 + 2}{20 + 10} = 0.40$$

• However, if we have enough data, it washes away the prior. e.g., $\bar{n}=(n_{\!{}_{\!\! /}}=200,n_{\!{}_{\!\! /}}=800)$. Then the estimates under weak and strong prior are $\frac{1+200}{2+1000}$ and $\frac{10+200}{20+1000}$, respectively, both of which are close to 0.2

Bayesian estimation for normal distribution

Normal Prior:

$$P(\mu) = (2\pi\tau^2)^{-1/2} \exp\{-(\mu - \mu_0)^2 / 2\tau^2\}$$

Joint probability:

$$P(x, \mu) = \left(2\pi\sigma^{2}\right)^{-N/2} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2}\right\}$$
$$\times \left(2\pi\tau^{2}\right)^{-1/2} \exp\left\{-(\mu - \mu_{0})^{2} / 2\tau^{2}\right\}$$

• Posterior:

Homework!!!

Linear Regression

- Assume that Y (target) is a linear function of X (features):
 - e.g.:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

let's assume a vacuous "feature" X₀=1 (this is the intercept term, why?), and define the feature vector to be:

then we have the following general representation of the linear function:

$$\dot{y} = x^T \theta$$

Our goal is to pick the optimal θ . How!

• We seek heta that minimize the following cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\hat{y}_{i}(\vec{x}_{i}) - y_{i})^{2}$$

The Least-Mean-Square (LMS) method

• The Cost Function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

• Consider a gradient descent algorithm:

$$\theta_{j}^{t+1} = \theta_{j}^{t} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta) \Big|_{t} = \sum_{i=1}^{n} Z(X_{i}^{T} \theta - Y_{i}) \frac{\partial}{\partial \theta_{j}} (X_{i}^{T} \theta - Y_{i}) = 0$$

$$= \theta_{j}^{t} + X_{i} \times \sum_{i=1}^{n} Z(X_{i}^{T} \theta - Y_{i}) + \sum_{i=1}^{n} Z(X_{i}^{T} \theta - Y_{i}) + \sum_{i=1}^{n} Z(X_{i}^{T} \theta - Y_{i}) + \sum_{i=1}^{n} Z(X_{i}^{T} \theta - Y_{i}) = 0$$

The Least-Mean-Square (LMS) method

Now we have the following descent rule:

For a single training point, we have:

- This is known as the LMS update rule, or the Widrow-Hoff learning rule
- This is actually a "stochastic", "coordinate" descent algorithm
- This can be used as an on-line algorithm

The Least-Mean-Square (LMS) method

Steepest descent

Some matrix derivatives

• For $f : \mathbb{R}^{m \times n} \mapsto \mathbb{R}$, define:

$$\nabla_{A}f(A) = \begin{bmatrix} \frac{\partial}{\partial A_{11}}f & \cdots & \frac{\partial}{\partial A_{1n}}f \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial A_{1m}}f & \cdots & \frac{\partial}{\partial A_{mn}}f \end{bmatrix}$$

Trace:

$$trA = \sum_{i=1}^{n} A_{ii} ,$$

Some fact of matrix derivatives (without proof)

$$\nabla_A \operatorname{tr} AB = \overline{B^T}$$
, $\nabla_A \operatorname{tr} ABA^T C = \overline{CAB + C^T AB^T}$

The normal equations

• Write the cost function in matrix form:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

$$= \frac{1}{2} (X\theta - \bar{y})^{T} (X\theta - \bar{y})$$

$$= \frac{1}{2} (\theta^{T} X^{T} X \theta) \theta^{T} X^{T} \bar{y} - \bar{y}^{T} X \theta + \bar{y}^{T} \bar{y})$$

• To minimize $J(\theta)$, take derivative and set to zero:

$$\nabla_{\theta} J = \frac{1}{2} \nabla_{\theta} \operatorname{tr} \left(\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \bar{y} \right) \left(\bar{y}^{T} X \theta + \bar{y}^{X} \bar{y} \right)$$

$$= \frac{1}{2} \left(\nabla_{\theta} \operatorname{tr} \theta^{T} X^{T} X \theta - 2 \nabla_{\theta} \operatorname{tr} \bar{y}^{T} X \theta + \nabla_{\theta} \operatorname{tr} \bar{y}^{T} \bar{y} \right)$$

$$= \frac{1}{2} \left(X^{T} X \theta + X^{T} X \theta - 2 X^{T} \bar{y} \right)$$

$$= X^{T} X \theta - X^{T} \bar{y} = 0$$

$$\Rightarrow X^T X \theta = X^T \vec{y}$$
The normal equations

$$\theta^* = (X^T X)^{-1} X^T \bar{y}$$

A recap:

• LMS update rule

$$\theta_j^{t+1} = \theta_j^t + \alpha (y_i - \mathbf{x}_i^T \theta^t) x_{i,j}$$

- Pros: on-line, low per-step cost
- Cons: coordinate, maybe slow-converging
- Steepest descent

$$\theta^{t+1} = \theta^t + \alpha \sum_{i=1}^n (y_i - \mathbf{x}_i^T \theta^t) \mathbf{x}_i$$

- Pros: fast-converging, easy to implement
- Cons: a batch,
- Normal equations

$$\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \vec{\boldsymbol{y}}$$

- Pros: a single-shot algorithm! Easiest to implement.
- Cons: need to compute pseudo-inverse (X^TX)⁻¹, expensive, numerical issues (e.g., matrix is singular ..)

Geometric Interpretation of LMS

• The predictions on the training data are:

$$(\hat{\vec{y}}) = X\theta^* = X(X^T X)^{-1} X^T \vec{y}$$

Note that

$$\vec{y} - \vec{y} = \left(X (X^T X)^{-1} X^T - I \right) \vec{y}$$

and

$$X^{T}(\hat{\vec{y}} - \vec{y}) = X^{T}(X(X^{T}X)^{-1}X^{T} - I)\vec{y}$$

$$= (X^{T}X(X^{T}X)^{-1}X^{T} - X^{T})\vec{y}$$

$$= 0$$

 $\hat{\vec{y}}$ is the orthogonal projection of \vec{y} into the space spanned by the column of X

Probabilistic Interpretation of LMS

 Let us assume that the target variable and the inputs are related by the equation:

$$y_i = (\theta^T \mathbf{x}_i) \pm \mathcal{E}_i$$

where $\pmb{\epsilon}$ is an error term of unmodeled effects or random noise

• Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i \mid x_i; \theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right]$$

• By independence assumption:

$$L(\theta) = \prod_{i=1}^{n} p(y_i \mid x_i; \theta) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \exp\left(\frac{\sum_{i=1}^{n} (y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}\right)$$

Probabilistic Interpretation of LMS, cont.

• Hence the log-likelihood is:

$$l(\theta) = n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^n (y_i - \theta^T \mathbf{x}_i)^2$$

• Do you recognize the last term?

Yes it is:
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

 Thus under independence assumption, LMS is equivalent to MLE of θ!

Beyond basic LR

- LR with non-linear basis functions
- Locally weighted linear regression
- Regression trees and Multilinear Interpolation

LR with non-linear basis functions

- LR does not mean we can only deal with linear relationships
- We are free to design (non-linear) features under LR

$$y = \theta_0 + \sum_{j=1}^m \theta_j \phi(x) = \theta^T \phi(x)$$

where the $\phi_i(x)$ are fixed basis functions (and we define $\phi_0(x) = 1$).

• Example: polynomial regression:

$$\phi(x) \coloneqq \left[1, x, x^2, x^3\right]$$

• We will be concerned with estimating (distributions over) the weights θ and choosing the model order M.

Basis functions

- There are many basis functions, e.g.:
 - Polynomial $\phi_i(x) = x^{j-1}$
 - Radial basis functions $\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$
 - Sigmoidal $\phi_j(x) = \sigma \left(\frac{x \mu_j}{s} \right)$
 - Splines, Fourier, Wavelets, etc

Locally weighted linear regression

Overfitting and underfitting

Locally weighted linear regression

• The algorithm:

Instead of minimizing

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2}$$

now we fit θ to minimize $J(\theta) =$

Where do w_i 's come from? $w_i = \exp\left(-\frac{y_i}{y_i}\right)$

- $\bullet \ \ \, \text{where } x \text{ is the query point for } \overrightarrow{\text{which we'd like to know its corresponding } y}$
- → Essentially we put higher weights on (errors on) training examples that are close to the query point (than those that are further away from the query)
 - Do we also have a probabilistic interpretation here (as we did for LR)?

Parametric vs. non-parametric

- Locally weighted linear regression is the first example we are running into of a **non-parametric** algorithm.
- The (unweighted) linear regression algorithm that we saw earlier is known as a **parametric** learning algorithm
 - because it has a fixed, finite number of parameters (the θ), which are fit to the data;
 - Once we've fit the *θ* and stored them away, we no longer need to keep the training data around to make future predictions.
- In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.
- The term "non-parametric" (roughly) refers to the fact that the amount of stuff we need to keep in order to represent the hypothesis grows linearly with the size of the training set.

Robust Regression

- The best fit from a quadratic regression
- But this is probably better ...

How can we do this?

LOESS-based Robust Regression

- Remember what we do in "locally weighted linear regression"?
 → we "score" each point for its "impotence"
- Now we score each point according to its "fitness"

(Courtesy to Andrew Moor)

Robust regression

- For k = 1 to R...
 - Let (x_k, y_k) be the kth datapoint
 - Let y^{est}_k be predicted value of y_k
 - Let w_k be a weight for data point k that is large if the data point fits well and small if it fits badly:

$$(y_k = \phi((y_k - (y_k^{\text{est}})^2))$$

- Then redo the regression using weighted data points.
- Repeat whole thing until converged!

Robust regression—probabilistic interpretation

• What regular regression does:

Assume y_k was originally generated using the following recipe:

$$y_k = \theta^T \mathbf{x}_k + \mathcal{N}(\mathbf{0}, \sigma^2)$$

Computational task is to find the Maximum Likelihood estimation of θ

Robust regression—probabilistic interpretation

What LOESS robust regression does:

Assume y_k was originally generated using the following recipe:

with probability
$$y_k = \mathbf{y}^T \mathbf{x}_k + \mathcal{N}(\mathbf{0}, \sigma^2)$$
 but otherwise $y_k \sim \mathcal{N}(\mu, \sigma_{\text{huge}}^2)$

Computational task is to find the Maximum Likelihood estimates of θ , p, μ and σ_{huge} .

 The algorithm you saw with iterative reweighting/refitting does this computation for us. Later you will find that it is an instance of the famous E.M. algorithm

How about this one?

• Multilinear Interpolation

 We wanted to create a continuous and piecewise linear fit to the data

Take home message

- Gradient descent
 - On-line
 - Batch
- Normal equations
- Equivalence of LMS and MLE
- LR does not mean fitting linear relations, but linear combination or basis functions (that can be non-linear)
- Weighting points by importance versus by fitness