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e General idea: compute distribution on query
variable by fixing evidence variables and
summing over hidden variables
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Conditional independence

e Write out full joint distribution using chain rule:

P(Headache;Flu;Virus;DrinkBeer)

—_—
= P(Headache | FIu;Virus;D@ P(Flu;Virus;DrinkBeer
= firt )@u DTN Beep P(Virus | DrinkBeer)

P(DrinkBeer)

Assume independence and conditional independence

= @(W(Virus) P(DrinkBeer)

I.e.,q- _\ . indekendent paran@ters / /

e In mosteasesthe’use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

e Conditional independence is our most basic and robust form of knowledge
about uncertain environments.
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Rules of Independence sels
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Marginal and Conditional
Independence

|
e Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional

probability of E given H, written as P(E|H), is

P(E and H)/P(H)
(= the probability of both E and H are true, given H is true)

e E and H are (statistically) independent if

P(E) = P(E|H)
(i.e., prob. E is true doesn't depend on whether H is true); or equivalently
P(E and H)=P(E)P(H).
e E and F are conditionally independent given H if
P(E|H,F) = P(E|H)
or equivalently

P(E,FIH) = P(EIH)P(F|H)

Why knowledge of Independence
Is useful

e Lower complexity (tim ce, se 7..)
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e Motivates efficient inference for all kinds of queries
Stay tuned !!

e Structured knowledge about the domain
e easy to learning (both from expert and from data)
e easyto grow




Where do probability
distributions come from?

e |dea One: Human, Domain Experts
e |dea Two: Simpler probability facts and some algebra

e'g'1 P(F)
“F |-B |-H |04
P(B) -F |- [0 o1
P(H-2) N O R
P(H|F,-B) 8 [-H [oos J
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e |dea Three: Learn them from data!

e A good chunk of this course is essentially about various ways of learning
various forms of them!

Density Estimation

e A Density Estimator learns a mapping from a set of attributes

to a Probability

Input
Attributes

Density

Estimator » Probability
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e Often known as parameter estimation if the distribution form is
specified
e Binomial, Gaussian ...

e Three important issues:

e Nature of the data (iid, correlated, ...)

e Objective function (MLE, MAP, ...)

e Algorithm (simple algebra, gradient methods, EM, ...)

e Evaluation scheme (likelihood on test data, predictability, consistency, ...)




Parameter Learning from iid data

!
e Goal: estimate distribution parameters 6 from a dataset of N

independent, identicallydistrsyted (iid), fully observed,
mg Tases w

e Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumptions, write L(#) as the likelihood of the data:

L(6) = P(x, x,,..., x,00)
=P(x;0)P(x,;0),...,P(x,;0)

3. pick the setting of parameters mostlikely to have generated the data we saw:

0" =arg mglw argma(log (6)

Example 1: Bernoulli model

e Data:
e We observed Niid coin tossing: O={1, 0, 1, ..., 0}

e Representation:
Binary r.v: X :{0,1}

e Model: 1-p forx=0
P(x):{ P =  PKX)=6"'(1-6)

p forx=1

e How to write the likelihood of a single observation x; ?

P(x)=0"(1-0)""

e The likelihood of datasetD={x;, ..., x\}:

) X, Z\“ Z\Zl K #head #tails
Py ity 10)= [ [ P 10) Vo= q-07  —o™-0)
i=1 i




e \We need to maximize this w.r.t. 8

e Take derivatives wrt 6

o¢ |n, N-n) ) 9 !
e = e ain)
S =

Frequency as
sample mean

e Sufficient statistics
e Thecounts, n,, where n, = Z-xi’ are sufficient statistics of data O

MLE for discrete (joint)
distributions ot

e More generally, it is easy to show that

#records in which event. is true
P(event,) :
\ total number of records

e This is an important (but sometimes e
not so effective) learning algorithm! F {8 |-H low

-B -H 0.05

|
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Example 2: univariate normal 5
e Data:
e We observed Niid real samples:
0={-0.1,10,1,-5.2, ..., 3}
o Model:  p(x) = 270 )" expl- (x - w)? 1257)
e Log likelihood:
N _ 2
£(0;D) =log P(D| 0) :—/;/Iog(Zﬁoz)—;Z(X”Zy)
n=1
e MLE: take derivative and set to zero:
ot ) 1
a:(l/a )Z,,(Xn*,“) = IUMLE*NZ,,(Xn)
2 1 2
a(Zz :72/;_/2 +%._42,,(Xn 7#)2 Ome :NZ”(XN 7#ML)
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Overfitting :

e Recall that for Bernoulli Distribution, we have

head
) head n
I h

- nhead Jrﬂfa//

e What if we tossed oo few times so that we saw zero head?

We have ¢/ =0, and we will predict that the probability of
seeing a head next is zero!!!

e The rescue;

e Where n'is know as the @udo-M) count

— head T
éhead — n"e +H
Q ”head +”fa// +MI

e But can we make this more formal?
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The Bayesian Theory 5
e The Bayesian Theory: (e.g., for date D and model M)
P(M|D) = P(D|M)P(M)/P(D)
e the posterior equals to the likelihood times the prior, up to a constant.
e This allows us to capture uncertainty about the model in a
principled way
[ X X ]
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Hierarchical Bayesian Models o

e 0 are the parameters for the likelihood p(x| 6)
e « are the parameters for the prior p(0| @) .
e We can have hyper-hyper-parameters, etc.

e We stop when the choice of hyper-parameters makes no
difference to the marginal likelihood; typically make hyper-
parameters constants.

e Where do we get the prior?
e Intelligent guesses
e Empirical Bayes (Type-Il maximum likelihood)
- computing point estimates of « :

Gye =argmax = p(i | a)




Bayesian estimation for Bernoulli

e Beta distribution: N 2

. _ Lo+ ) o1 A1 w179 pyp-1
P(@,a,ﬂ)—ir(a)r(ﬂ)ﬁ 1-60)"" =B(a,p)0° " (1-0)

e Posterior distribution of 4:

P(9| Xpyes xN) — p(xl """ Xy | 0)]7(0) o 0;1,, (1_0);1, x 0(171 (1_ e)ﬂfl — 0;1,,+{1—1 (1_0)r1/+/}71
PO xy)

e Notice the isomorphism of the posterior to the prior,
e such a prior is called a conjugate prior

Bayesian estimation for sels
Bernoulli, con'd o

e Posterior distribution of 4:

P(9| X11---1X,x): p(.\’l,...,.\"\« | 9)17(9) oc 9/1,, (179)/1, Xeafl(lie)/ffl _ 9/1,,»(1 1(179)/1”/{ 1
p(xp,y xy)

e Maximum a posteriori (MAP) estimation:

0, =2arg mglxlog PO xqy...,xy)

Bata parameters

. . . . can be understood
e Posterior mean estimation: as pseudo-counts

Oy = | B0(61 D)0 = C[Ox ™ (1-6)""d6 = 7]\[’2;%

e Prior strength: A=a+/

e A can be interoperated as the size of an imaginary data set from which we obtain
the pseudo-counts




Effect of Prior Strength

e Suppose we have a uniform prior (a=£=1/2xA),
and we observe /1 = (1, =2,n, =8)
e Weak prior A = 2. Posterior prediction:

L, 1+2
p(X:/'I|ﬂ,,:2,ﬂ,:8,a:ax2):2+10:0.25
e Strong prior A = 20. Posterior prediction:
10+2
- —2.n =8, =a'x20) = -0.
px=h|n,=2,n =8,a=ax20) 0+10 0.40

e However, if we have enough data, it washes away the prior.
e.g., 71 =(n,=200,n, =800). Then the estimates under
weak and strong prior are 57220~ and 43529 respectively,

both of which are close to 0.2

Bayesian estimation for normal
distribution o

e Normal Prior:
Plu) = (2r) " expl- (- 121°)
e Joint probability:
-N/2 N )
'D(Xnu):(ZHGZ)N exp{_;ZZ(Xn_ﬂ)}
O pa
o) oxpl- (- 126

e Posterior:

Homework!!!

10
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Machine learning for apartment sels
hunting HH

e Now you've moved to
Pittsburgh!!

satisfying your needs:

And you want to find the most
reasonably priced apartment

(gguare—ft., #,df tgedroom,, di\s_tirEe_to

campus ...
Living area (ft?) # bedroom Rent ($)
150 1 ?
270 1.5 ?
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The learning problem

e Features:
e Living area, distance to campus, #
bedroom ...

e Denote asx=[x, x,, ... x

. i
' e Target: all
R — e Rent !
Living area

y e Denoted agy

e Training set:

Training
- set
Learning
algorithm
e
Location : E‘ecﬁctedy
T —y - sccted price)
Living areaX1 ! 4 u—
(X X ]
0000
0000
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Linear Regression :

e Assume that Y (target) is a linear function of X (features):

e eg. R
y=8 +0,x,+0,x,

e let's assume a vacuous "feature" X,=1 (this is the intercept term, why?), and
define the feature vector to be: ™~

- T
X’C, » X' . )(z ]
e then we have the following general representation of the linear function:
A
VAR
7}

e Our goal is to pick the optimal € *. How! A
e We seek @ that minimize the following cost function: X




The Least-Mean-Square (LMS)
method

e The Cost Function:

1 n
J(0)= EZ(><,»T6’—y,-)2
i=1

e Consider a gradien algorithm:

t+1 t
0" =0-a

-J/(0)

The Least-Mean-Square (LMS)
method o

e Now we have the following descent rule: v»’f

1+, t - T
:9_/ +a2(yi —X; el)xi,j
-1

e For a(sing I\\ﬁ:mmg pomt: )/e have

&\ by 6) */7(% % f)’(fy

e This is known as the LMS update rule, or the Widrow-Hoff learning rule
e Thisis actually a "stochastic", jcoordinate" descent algorithm
e This can be used as an on-line algyrithm

13



The Least-Mean-Square (LMS)

method

e Steepest descent
e Notethat

)

e Thisisas @Went descent algorithm

Some matrix derivatives

o Forv@:R’”*” — R, define:

o , 0 .
—f e —f
04y, 04,,
V. S(4)= :
0 £ 0 r
0y, 0A,,

lllll

e Trace:

i=1

e Some fact of matrix derivatives (without proof)

\V,t4B=B" )\ V,w4BA’CHCAB+C" 4B 1A@

14



The normal equations

e \Write the cost function in matrix form:

S
O 2003 x-| ==

Yn
e To minimize J(0), take derivative and set to zero:

vgJ:%thr TXTXON XD X0 i&i) . .
— =| X"X0=X"y
=%(VﬁtrHTXTXH—ZVHtrjoXH-%—VHtryTj)

The normal equations

1A L)Y ]

£XTX0-X"5=0 Q*Z(XTX)%XT?

A recap:

e LMS update rule
t+1 t _ T Nt
9_/ _3/ +a(yi Xi ‘9 )xi,/
e Pros: on-line, low per-step cost
e Cons: coordinate, maybe slow-converging
e Steepest descent
n
1 T
0 =6"+a) (y,—x, 0,
i=1
e Pros: fast-converging, easy to implement
e Cons: a batch,
e Normal equations )
* T B T =
o =(x"x]'x"y
e Pros: a single-shot algorithm! Easiest to implement.

e Cons: need to compute pseudo-inverse (XTX)1, expensive, numerical issues
(e.g., matrix is singular ..)

15



Geometric Interpretation of LMS

e The predictions on the training data are:

¢ Note that X{jx]
) Kl x) -t -
and

X" (5-5)=x"(x(xrx) x7 - 1)y
=W x(x7x) x" —Xf)y
!

):; is the orthogonal projection of )7
into the space spanned by the column
of X

Probabilistic Interpretation of
LMS s

e Let us assume that the target variable and the inputs are
related by the equation: ;

Vi @i‘tf{

where ¢ is an error term of unmodeled effects or random noise

~

e Now assume that ¢ follows a Gaussian N(0,0), then we have:

1 —0"x )?
p(yilx,;H)—\/Zaexp[ 62 = )

e By independence assum

16



Probabilistic Interpretation of
LMS, cont.

e Hence the log-likelihood is:

1 11w r
mg_?gzl’zl(y"_glxl)z

[(6) =nlog
e Do you recognize the last term?
Yes itis: J(6) = ;Z(X/Tg_y/)z
i=1

e Thus under independence assumption, LMS is equivalent to
MLE of 6!

Beyond basic LR

e LR with non-linear basis functions

e Locally weighted linear regression

e Regression trees and Multilinear Interpolation

17



LR with non-linear basis
functions

\
e LR does not mean we can only deal with linear relationships

e We are free to design (non-linear) features under LR

v=0,+ 30409

where the ¢(x) are fixed basis functions (and we define ¢,(x) = 1).

e Example: polynomial regression:

¢(x) = [l,x, xz,x3]

e We will be concerned with estimating (distributions over) the
weights 8 and choosing the model order M.

Basis functions

e There are many basis functions, e.g.:

e Polynomial qﬁ/. (x) = x/

e Radial basis functions ¢, (x) = exp[—

()C B Iu/)z
2s°
e Sigmoidal ¢/_ (x) = G[X —H J

S

e Splines, Fourier, Wavelets, etc

18



1D and 2D RBFs oo
e 1D RBF
Yyt =pdx)+ + B ¢3(x)
o After fit:
yest = 20, (x) + + 0.5p5x)
Good and Bad RBFs ot

e A good 2D RBF prsiotibiss
input vectors 4 ce t
T nier

X3

e Two bad 2D RBFs

19



Locally weighted linear
regression

e Overfitting and underfitting

L

y=0,+0x y=c90+z91?c+492x2 y:Z/:OH/.x’

Locally weighted linear
regression '

e The algorithm:

Instead of minimizing

1 n
JO)=5 2 (0=
i=1

now we fit @ to minimize J(0) =3 E;w)xl'ﬁ—y,)z

Where do w,'s come from?

s &
s X

where x is the query point for ke to know its corresponding y

- Essentially we put higher weights on (errors on) training
examples that are close to the query point (than those that are
further away from the query)

e Do we also have a probabilistic interpretation here (as we did for LR)?

20



Parametric vs. non-parametric

\
e Locally weighted linear regression is the first example we are

running into of a non-parametric algorithm.

e The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm

e because it has a fixed, finite number of parameters (the 6), which are fit to the
data;

e Once we've fit the 6 and stored them away, we no longer need to keep the
training data around to make future predictions.
e In contrast, to make predictions using locally weighted linear
regression, we need to keep the entire training set around.

e The term "non-parametric” (roughly) refers to the fact that the
amount of stuff we need to keep in order to represent the
hypothesis grows linearly with the size of the training set.

Robust Regression

e The best fit from a quadratic e But this is probably better ...
regression

How can we do this?




LOESS-based Robust Regression

\
e Remember what we do in "locally weighted linear regression"?

> we @aeh point for i@
e Now we score each point according to i(s "fitness™)

‘fou are a very good |
datapaint.

ou are not too
shabby,

(Courtesy to Andrew Moor)

eoo
0000
0000
. i
Robust regression :
e Fork=1toR...
e Let (x,.y,) be the kth datapoint P st .
e Let)®s be predicted value of y, /_\

e Letw, be aweight for data point 4 that is large if /

the data point fits well and small if it fits badly: 1
W, = ¢(()’A @2

e Then redo the regression using weighted data points.

e Repeat whole thing until converged!




Robust regression—probabilistic
interpretation

e What regular regression does:
Assume y, was originally generated using the following recipe:

Y =0"%, +¥(0,6%)

Computational task is to find the Maximum Likelihood
estimation of 6

Robust regression—probabilistic
Interpretation o

e What LOESS robust regression does:

Assume y, was originally generated using the following recipe:

with probability»3” . =#"x, + ¥(0,5?)
T~———
but otherwise Vi ~ Nt Gruge)
Computational task is to find the Maximum Likelihood

estimates of 6, p, u and oy,,4e.

e The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an
instance of the famous E.M. algorithm

23
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Regression Tree .
e Decision tree for regression
Gender | Rich? | Num. # travel | Age
Children | per yr. Gender?
No 2 5 38
Female Male
No 0 2 25
M Yes 1 0 72
Predicted age=39‘ ’ Predicted age=36
(XX
o000
o000
eo00
A tual pict o2
conceptual picture :

e Assuming regular regression trees, can you sketch a graph of
the fitted function y*(x) over this diagram?
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How about this one?

e Multilinear Interpolation

e We wanted to create a continuous and piecewise linear fit to
the data

Take home message

e Gradient descent
e On-line
e Batch

e Normal equations
e Equivalence of LMS and MLE

e LR does not mean fitting linear relations, but linear
combination or basis functions (that can be non-linear)

e Weighting points by importance versus by fithess
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