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Machine LearningMachine Learning

1010--701/15701/15--781, Fall 2006781, Fall 2006

Introduction to RegressionIntroduction to Regression

Eric XingEric Xing

Lecture 3, September 19, 2006

Reading: Chap. 3, CB

Inference with the Joint
Compute Conditionals

General idea: compute distribution on query 
variable by fixing evidence variablesevidence variables and 
summing over hidden variableshidden variables
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Conditional independence
Write out full joint distribution using chain rule:
P(Headache;Flu;Virus;DrinkBeer)

= P(Headache | Flu;Virus;DrinkBeer) P(Flu;Virus;DrinkBeer)
= P(Headache | Flu;Virus;DrinkBeer) P(Flu | Virus;DrinkBeer) P(Virus | DrinkBeer)

P(DrinkBeer)

Assume independence and conditional independence

= P(Headache|Flu;DrinkBeer) P(Flu|Virus) P(Virus) P(DrinkBeer)

I.e.,       ?            independent parameters

In most cases, the use of conditional independence reduces the size of the 
representation of the joint distribution from exponential in n to linear in n.
Conditional independence is our most basic and robust form of knowledge 
about uncertain environments.

Rules of Independence 
--- by examples

P(Virus | DrinkBeer) = P(Virus)
iff Virus is independent of DrinkBeer

P(Flu | Virus;DrinkBeer) = P(Flu|Virus) 
iff Flu is independent of DrinkBeer, given Virus

P(Headache | Flu;Virus;DrinkBeer) = P(Headache|Flu;DrinkBeer)
iff Headache is independent of Virus, given Flu and DrinkBeer
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Marginal and Conditional 
Independence

Recall that for events E (i.e. X=x) and H (say, Y=y), the conditional 
probability of E given H, written as P(E|H), is

P(E and H)/P(H)
(= the probability of both E and H are true, given H is true)

E and H are (statistically) independent if 

P(E) = P(E|H)
(i.e., prob. E is true doesn't depend on whether H is true); or equivalently

P(E and H)=P(E)P(H). 

E and F are conditionally independent given H if 
P(E|H,F) = P(E|H)

or equivalently

P(E,F|H) = P(E|H)P(F|H)

Why knowledge of Independence 
is useful

Lower complexity (time, space, search …)

Motivates efficient inference for all kinds of queries 
Stay tuned !!
Structured knowledge about the domain

easy to learning (both from expert and from data)
easy to grow

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F

0.015HBF

0.015¬HBF

0.05H¬BF

0.05¬H¬BF

0.2HB¬F

0.17¬HB¬F

0.1H¬B¬F

0.4¬H¬B¬F



4

Where do probability 
distributions come from?

Idea One: Human, Domain Experts 
Idea Two: Simpler probability facts and some algebra
e.g., P(F)

P(B)
P(H|¬F,B)
P(H|F,¬B)
…

Idea Three: Learn them from data!

A good chunk of this course is essentially about various ways of learning 
various forms of them! 
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Density Estimation
A Density Estimator learns a mapping from a set of attributes 
to a Probability

Often known as parameter estimation if the distribution form is 
specified

Binomial, Gaussian …

Three important issues:

Nature of the data (iid, correlated, …)
Objective function (MLE, MAP, …)
Algorithm (simple algebra, gradient methods, EM, …)
Evaluation scheme (likelihood on test data, predictability, consistency, …)
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Parameter Learning from iid data
Goal: estimate distribution parameters θ from a dataset of N
independent, identically distributed (iid), fully observed, 
training cases

D = {x1, . . . , xN}

Maximum likelihood estimation (MLE)
1. One of the most common estimators
2. With iid and full-observability assumptions, write L(θ) as the likelihood of the data:

3. pick the setting of parameters most likely to have generated the data we saw:
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Example 1: Bernoulli model
Data: 

We observed N iid coin tossing: D={1, 0, 1, …, 0}

Representation:
Binary r.v:

Model: 

How to write the likelihood of a single observation xi ? 

The likelihood of datasetD={x1, …,xN}:
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MLE
Objective function: 

We need to maximize this w.r.t. θ

Take derivatives wrt θ

Sufficient statistics
The counts,                                          are sufficient statistics of data D

)log()(log)(log)|(log);( θθθθθθ −−+=−== 11 hh
nn nNnDPD thl

0
1

=
−
−

−=
∂
∂

θθθ
hh nNnl

N
nh

MLE =θ
)

∑=
i

iMLE x
N
1θ

)
or

Frequency as 
sample mean 

,  where, ∑= i ikh xnn

MLE for discrete (joint) 
distributions

More generally, it is easy to show that

This is an important (but sometimes 
not so effective) learning algorithm!  
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Example 2: univariate normal
Data: 

We observed N iid real samples: 
D={-0.1, 10, 1, -5.2, …, 3}

Model: 

Log likelihood:

MLE: take derivative and set to zero:
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Overfitting
Recall that for Bernoulli Distribution, we have

What if we tossed too few times so that we saw zero head?
We have                   and we will predict that the probability of 
seeing a head next is zero!!! 

The rescue: 
Where n' is know as the pseudo- (imaginary) count

But can we make this more formal?
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The Bayesian Theory
The Bayesian Theory: (e.g., for date D and model M) 

P(M|D) = P(D|M)P(M)/P(D)

the posterior equals to the likelihood times the prior, up to a constant. 

This allows us to capture uncertainty about the model in a 
principled way

Hierarchical Bayesian Models
θ are the parameters for the likelihood p(x|θ)
α are the parameters for the prior p(θ|α) .
We can have hyper-hyper-parameters, etc.
We stop when the choice of hyper-parameters makes no 
difference to the marginal likelihood; typically make hyper-
parameters constants.
Where do we get the prior? 

Intelligent guesses
Empirical Bayes (Type-II maximum likelihood) 

computing point estimates of α :
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Bayesian estimation for Bernoulli 
Beta distribution:  

Posterior distribution of θ : 

Notice the isomorphism of the posterior to the prior, 
such a prior is called a conjugate prior
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Bayesian estimation for 
Bernoulli, con'd

Posterior distribution of θ :

Maximum a posteriori (MAP) estimation: 

Posterior mean estimation:

Prior strength: A=α+β
A can be interoperated as the size of an imaginary data set from which we obtain 
the pseudo-counts
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Effect of Prior Strength
Suppose we have a uniform prior (α=β=1/2xA), 
and we observe
Weak prior A = 2. Posterior prediction:

Strong prior A = 20. Posterior prediction:

However, if we have enough data, it washes away the prior. 
e.g.,                                         .  Then the estimates under 
weak and strong prior are            and            ,  respectively, 
both of which are close to 0.2
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Bayesian estimation for normal 
distribution 

Normal Prior:  

Joint probability: 

Posterior:

Homework!!!
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Machine LearningMachine Learning

1010--701/15701/15--781, Fall 2006781, Fall 2006

Introduction to RegressionIntroduction to Regression

Eric XingEric Xing

Lecture 3, September 19, 2006

Reading: Chap. 3, CB

Machine learning for apartment 
hunting 

Now you've moved to 
Pittsburgh!! 
And you want to find the most 
reasonably priced apartment 
satisfying your needs:

square-ft., # of bedroom, distance to 
campus …

?1.5270

…
?1150

5001109
11002433
10002506
6001230

Rent ($)# bedroomLiving area (ft2)
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The learning problem

Features: 
Living area, distance to campus, # 
bedroom …
Denote as x=[x1, x2, … xk]

Target: 
Rent
Denoted as y

Training set:
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Linear Regression
Assume that Y (target) is a linear function of X (features):

e.g.:

let's assume a vacuous "feature" X0=1 (this is the intercept term, why?), and 
define the feature vector to be:

then we have the following general representation of the linear function:

Our goal is to pick the optimal       . How!
We seek      that minimize the following cost function:
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The Least-Mean-Square (LMS) 
method

The Cost Function:

Consider a gradient descent algorithm:
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The Least-Mean-Square (LMS) 
method

Now we have the following descent rule: 

For a single training point, we have: 

This is known as the LMS update rule, or the Widrow-Hoff learning rule
This is actually a "stochastic", "coordinate" descent algorithm
This can be used as an on-line algorithm
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The Least-Mean-Square (LMS) 
method

Steepest descent
Note that:

This is as a batch gradient descent algorithm
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For                       , define:

Trace:

Some fact of matrix derivatives (without proof)
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The normal equations
Write the cost function in matrix form:

To minimize J(θ), take derivative and set to zero:
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A recap:
LMS update rule

Pros: on-line, low per-step cost
Cons: coordinate, maybe slow-converging

Steepest descent

Pros: fast-converging, easy to implement
Cons: a batch, 

Normal equations

Pros: a single-shot algorithm! Easiest to implement.
Cons: need to compute pseudo-inverse (XTX)-1, expensive, numerical issues 
(e.g., matrix is singular ..)
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Geometric Interpretation of LMS
The predictions on the training data are:

Note that

and 

is the orthogonal projection of
into the space spanned by the columns 
of X
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Probabilistic Interpretation of 
LMS

Let us assume that the target variable and the inputs are 
related by the equation:

where ε is an error term of unmodeled effects or random noise

Now assume that ε follows a Gaussian N(0,σ), then we have:

By independence assumption:
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Probabilistic Interpretation of 
LMS, cont.

Hence the log-likelihood is:

Do you recognize the last term?

Yes it is: 

Thus under independence assumption, LMS is equivalent to 
MLE of θ !
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Beyond basic LR
LR with non-linear basis functions

Locally weighted linear regression

Regression trees and Multilinear Interpolation
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LR with non-linear basis 
functions

LR does not mean we can only deal with linear relationships

We are free to design (non-linear) features under LR

where the φj(x) are fixed basis functions (and we define φ0(x) = 1).

Example: polynomial regression:

We will be concerned with estimating (distributions over) the 
weights θ and choosing the model order M.
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Basis functions
There are many basis functions, e.g.:

Polynomial

Radial basis functions

Sigmoidal

Splines, Fourier, Wavelets, etc
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1D and 2D RBFs
1D RBF

After fit:

Good and Bad RBFs
A good 2D RBF

Two bad 2D RBFs
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Locally weighted linear 
regression

Overfitting and underfitting

xy 10 θθ += 2
210 xxy θθθ ++= ∑ =
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Locally weighted linear 
regression

The algorithm:
Instead of minimizing

now we fit θ to minimize

Where do wi's come from?                                              

where x is the query point for which we'd like to know its corresponding y

Essentially we put higher weights on (errors on) training 
examples that are close to the query point (than those that are 
further away from the query)

Do we also have a probabilistic interpretation here (as we did for LR)?
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Parametric vs. non-parametric
Locally weighted linear regression is the first example we are 
running into of a non-parametric algorithm.

The (unweighted) linear regression algorithm that we saw 
earlier is known as a parametric learning algorithm 

because it has a fixed, finite number of parameters (the θ), which are fit to the 
data;
Once we've fit the θ and stored them away, we no longer need to keep the 
training data around to make future predictions.

In contrast, to make predictions using locally weighted linear 
regression, we need to keep the entire training set around. 

The term "non-parametric" (roughly) refers to the fact that the 
amount of stuff we need to keep in order to represent the 
hypothesis grows linearly with the size of the training set.

Robust Regression

The best fit from a quadratic 
regression

But this is probably better …

How can we do this?
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LOESS-based Robust Regression
Remember what we do in "locally weighted linear regression"?

we "score" each point for its “impotence”

Now we score each point according to its "fitness"

(Courtesy to Andrew Moor) 

Robust regression
For k = 1 to R…

Let (xk ,yk) be the kth datapoint
Let yest

k be predicted value of yk

Let wk be a weight for data point k that is large if 
the data point fits well and small if it fits badly:

Then redo the regression using weighted data points.

Repeat whole thing until converged!

( )2)( est
kkk yyw −=φ
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Robust regression—probabilistic 
interpretation

What regular regression does:

Assume yk was originally generated using the following recipe:

Computational task is to find the Maximum Likelihood 
estimation of θ

),( 20 σθ N+= k
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Robust regression—probabilistic 
interpretation

What LOESS robust regression does:

Assume yk was originally generated using the following recipe:

with probability p:

but otherwise

Computational task is to find the Maximum Likelihood 
estimates of θ, p, µ and σhuge. 

The algorithm you saw with iterative reweighting/refitting
does this computation for us. Later you will find that it is an 
instance of the famous E.M. algorithm
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Regression Tree
Decision tree for regression

:::::

7201YesM

2520NoM

3852NoF

Age# travel 
per yr.

Num. 
Children

Rich?Gender
Gender?

Predicted age=39 Predicted age=36

Female Male

A conceptual picture
Assuming regular regression trees, can you sketch a graph of 
the fitted function y*(x) over this diagram?
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How about this one?
Multilinear Interpolation

We wanted to create a continuous and piecewise linear fit to 
the data

Take home message
Gradient descent

On-line
Batch

Normal equations
Equivalence of LMS and MLE
LR does not mean fitting linear relations, but linear 
combination or basis functions (that can be non-linear)
Weighting points by importance versus by fitness


