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Machine LearningMachine Learning

1010--701/15701/15--781, Fall 2006781, Fall 2006

Dimensionality Reduction IIDimensionality Reduction II
Factor Analysis and Metric Factor Analysis and Metric 

LearningLearning

Eric XingEric Xing

Lecture 20, November 22, 2006
Reading: Chap. ??, C.B book
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Outline
Probabilistic PCA (breif)

Factor Analysis (somewhat detail)

ICA (will skip)

Distance metric learning from very little side info (a very cool
method)



2

Eric Xing 3

Popular dimensionality reduction technique
Project data onto directions of greatest variation

Consequence:
xi are uncorrelated such that the covariance matrix                is 

Truncation error

Recap of PCA
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Popular dimensionality reduction technique
Project data onto directions of greatest variation

Useful tool for visualising patterns and clusters 
within the data set, but …

Need centering

Does not explicitly model data noise

Recap of PCA
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Probabilistic Interpretation?

AY

Xcontinuous

continuous

regression

AY

Xcontinuous

continuous

?
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Probabilistic PCA
PCA can be cast as a probabilistic model

with q-dimensional latent variables 

The resulting data distribution is 

Maximum likelihood solution is equivalent to PCA

Diagonal Γq contains the top q sample covariance eigen-values and Uq
contains associated eigenvectors

Tipping and Bishop, J. Royal Stat. Soc. 6, 611 (1999).
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Factor analysis
An unsupervised linear regression model

Geometric interpretation

To generate data, first generate a point within the manifold then add noise. 
Coordinates of point are components of latent variable.

AY

X

where Λ is called a factor loading matrix, and Ψ is diagonal. 
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Relationship between PCA and 
FA

Probabilistic PCA is equivalent to factor analysis with equal
noise for every dimension, i.e., εn~ isotropic Gaussian

In factor analysis                        for a diagonal covariance 
matrix 

An iterative algorithm (eg. EM) is required to find parameters 
if precisions are not known in advance
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Factor analysis
An unsupervised linear regression model

Geometric interpretation

To generate data, first generate a point within the manifold then add noise. 
Coordinates of point are components of latent variable.

AY

X

where Λ is called a factor loading matrix, and Ψ is diagonal. 
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Marginal data distribution 
A marginal Gaussian (e.g., p(x)) times a conditional Gaussian 
(e.g., p(y|x)) is a joint Gaussian
Any marginal (e.g., p(y) of a joint Gaussian (e.g., p(x,y)) is 
also a Gaussian

Since the marginal is Gaussian, we can determine it by just computing its mean 
and variance. (Assume noise uncorrelated with data.)
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FA = Constrained-Covariance 
Gaussian

Marginal density for factor analysis (y is p-dim, x is k-dim):

So the effective covariance is the low-rank outer product of 
two long skinny matrices plus a diagonal matrix:

In other words, factor analysis is just a constrained Gaussian 
model. (If  were not diagonal then we could model any 
Gaussian and it would be pointless.)
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Review:
A primer to multivariate Gaussian

Multivariate Gaussian density:

A joint Gaussian: 

How to write down p(x1), p(x1|x2) or p(x2|x1) using the block 
elements in µ and Σ?

Formulas to remember:
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Review:
Some matrix algebra

Trace and derivatives
Cyclical permutations

Derivatives

Determinants and derivatives
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FA joint distribution
Model

Covariance between x and y

Hence the joint distribution of x and y:

Assume noise is uncorrelated with data or latent variables.
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Inference in Factor Analysis
Apply the Gaussian conditioning formulas to the joint 
distribution we derived above, where

we can now derive the posterior of the latent variable x given 
observation y,                                    , where

Applying the matrix inversion lemma

Here we only need to invert a matrix of size |x|×|x|, instead of |y|×|y|.

( ) )(

)(|

µ

µµ

−Ψ+ΛΛΛ=

−ΣΣ+=
−

−

y

ym
1

2
1

2212121

TT

( )Ψ+ΛΛ=Σ

Λ=Σ=Σ

=Σ

T

TT

I

22

1212

11

),|()( || 2121 Vmxyx N=p

⇒⇒
( ) ( ) 1111 −−−−

+= FG

( ) ΛΨ+ΛΛΛ−=

ΣΣΣ−Σ=
−

−

1

21
1

22121121

TTI

|V

( ) 11
21

−− ΛΨΛ+= TI|V )(|| µ−ΨΛ= − yVm 1
2121

T

Eric Xing 16

Geometric interpretation: 
inference is linear projection

The posterior is:

Posterior covariance does not depend on observed data y!
Computing the posterior mean is just a linear operation:
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EM for Factor Analysis
Incomplete data log likelihood function (marginal density of y)

Estimating m is trivial: 
Parameters Λ and Ψ are coupled nonlinearly in log-likelihood

Complete log likelihood 
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E-step for Factor Analysis 
Compute

Recall that we have derived: 
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M-step for Factor Analysis 
Take the derivates of the expected complete log likelihood 
wrt. parameters.

Using the trace and determinant derivative rules:
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Comparison of PCA and FA
FA
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Comparison of PCA and FA
FA

Invert a q×q matrix 

Covariant under rescaling: diag(α)y

Neither of the factors found by a two-
factor model is necessarily the same as 
that found by a single factor model, and 
…
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PCA

SVD on a K×K matrix

Covariant under rotation: Ay

Principle axis can be found 
incrementally

S=Ψ +1t
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Original data matrix Correlation matrix Factor matrix

Obs

Observational
data

Variables
v1 v2 .    .   . v10

o1
o2
.

.

.

on

Factor 
loadings

Factors
F1 F2 F3

Spd  Str   End

100m
Long
High
110m
400m
Discus
Shot
Javelin
Pole
1500m

.87

.77

.51

.63

.74

.22

.31

.02

.24

.02

.07

.34

.27

.32

.06

.79

.82

.70

.40

.12

.14

.13

.34

.05

.38

.06

.10

.15

.50

.89

Correlation
coefficients

Variables
v1 v2 .    .   . v10

v1
v2

. 

.

.
v10

Decisions 
•Factoring method
• # of factors to retain
• Factor rotation

Example:
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100 Meters

400 Meters

Javelin

High Jump

100m Hurdles

Shot Put

Long Jump

Discus

Pole Vault

1500 Meters

“SPEED”

“STRENGTH”

“ENDURANCE”

Decathlon example

Eric Xing 24

Model Invariance and 
Identifiability

There is degeneracy in the FA model.
Since Λ only appears as outer product ΛΛΤ, the model is 
invariant to rotation and axis flips of the latent space.
We can replace Λ with ΛQ for any orthonormal matrix Q and 
the model remains the same: (ΛQ)(ΛQ)Τ=Λ(QQΤ)ΛΤ=ΛΛΤ.
This means that there is no “one best” setting of the 
parameters. An infinite number of parameters all give the ML 
score!
Such models are called un-identifiable since two people both 
fitting ML parameters to the identical data will not be 
guaranteed to identify the same parameters.
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Why FA
Latent trajectories

A AA Ax2 x3x1 xN

y2 y3y1 yN... 

... A AA Ax2 x3x1 xN

y2 y3y1 yN... 

... A AA Ax2 x3x1 xN

y2 y3y1 yN... 

... A AA Ax2 x3x1 xN

y2 y3y1 yN... 

... A AA Ax2 x3x1 xN

y2 y3y1 yN... 

... A AA Ax2 x3x1 xN

y2 y3y1 yN... 

... 

HMM 
(for discrete sequential data, e.g., text)

HMM
(for continuous sequential data, 
e.g., speech signal)

State space model

AX

Y

AX

Y

AX

Ydiscrete

discrete

discrete

continuous

continuous

continuous

Mixture model
e.g., mixture of multinomials

Mixture model
e.g., mixture of Gaussians

Factor analysis

Eric Xing 26

Independent Components 
Analysis (ICA)

ICA is similar to FA, except it assumes the latent source has non-
Gaussian density.
Hence ICA can extract higher order moments (not just second 
order).
It is commonly used to solve blind source separation (cocktail party 
problem).

AY

X

AY2

X1 X2

Y1 YK
……

⇒⇒

FAFA ICAICA
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Sources
Observations

s1

s2

x1

x2

Mixing matrix A

x = As

n sources, m=n observations

The simple “Cocktail Party”
Problem

We skip more details and next introduce a more interesting new algorithm!

Eric Xing 28

Semi-supervised Metric Learning

⇒⇒

Xing et al, NIPS 2003
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What is a good metric?
What is a good metric over the input space for learning and 
data-mining

How to convey metrics sensible to a human user (e.g., dividing traffic along 
highway lanes rather than between overpasses, categorizing documents 
according to writing style rather than topic) to a computer data-miner using a 
systematic mechanism?

Eric Xing 30

Issues in learning a metric
Data distribution is self-informing (E.g., lies in a sub-manifold)

Learning metric by finding an embedding of data in some space. 
Con: does not reflect (changing) human subjectiveness. 

Explicitly labeled dataset offers clue for critical features
Supervised learning

Con: needs sizable homogeneous training sets.

What about side information? (E.g., x and y look (or read) 
similar ...)

Providing small amount of qualitative and less structured side information is often 
much easier than stating explicitly a metric (what should be the metric for writing 
style?) or labeling a large set of training data.

Can we learn a distance metric more informative than 
Euclidean distance using a small amount of side information? 



16

Eric Xing 31

Distance Metric Learning

Eric Xing 32

Optimal Distance Metric
Learning an optimal distance metric with respect to the side-
information leads to the following optimization problem:

This optimization problem is convex. Local-minima-free algorithms exist.
Xing et al 2003 provided an efficient gradient descent + iterative constraint-
projection method
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Examples of learned distance 
metrics

Distance metrics learned on three-cluster artificial data:

Eric Xing 34

Application to Clustering
Artificial Data I: a difficult two-class dataset
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Application to Clustering
Artificial Data II: two-class data with strong irrelevant feature

Eric Xing 36

Application to Clustering
9 datasets from the UC Irvine repository



19

Eric Xing 37

Accuracy vs. amount of side-
information

Two typical examples of how the quality of the clusters found 
increases with the amount of side-information.

Eric Xing 38

Take home message
Distance metric learning is an important problem in machine 
learning and data mining.
A good distance metric can be learned from small amount of 
side-information in the form of similarity and dissimilarity 
constraints from data by solving a convex optimization 
problem.
The learned distance metric can identify the most significant 
direction(s) in feature space that separates data well, 
effectively doing implicit Feature Selection.
The learned distance metric can be used to improve 
clustering performance.
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Independent Components 
Analysis (ICA)

ICA is similar to FA, except it assumes the latent source has non-
Gaussian density.
Hence ICA can extract higher order moments (not just second 
order).
It is commonly used to solve blind source separation (cocktail party 
problem).

AY

X

AY2

X1 X2

Y1 YK
……

⇒⇒

FAFA ICAICA
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Sources
Observations

s1

s2

x1

x2

Mixing matrix A

x = As

n sources, m=n observations

The simple “Cocktail Party”
Problem
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MotivationMotivation

Two Independent 
Sources

Mixture at two Mics

aij ... Depend on the distances of the microphones from the speakers

)()()(
)()()(
tsatsatx
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2221212

2121111

+=
+=
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MotivationMotivation

Get the Independent Signals out of the Mixture
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Blind Source Separation
Suppose that there are k unknown independent sources

A data vector x(t) is observed at each time point t, such that

where A is a n ´ k full rank scalar matrix

[ ] [ ] 11 == )(th             wi)(,),()(  tEtstst T
k ss K

)()( tt Asx =
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Blind source separation

Mixing
process

A

Independent
components

…

Blind
Source

De-mixing
process

W

…

Observed
sequences

Recovered 
independent 
components
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ICA versus PCA (and FA)

Similarity
Feature extraction
Dimension reduction

Difference
PCA uses up to second order moment of the data to produce 
uncorrelated components
ICA strives to generate components as independent as possible

Eric Xing 46

Problem formulation
The goal of ICA is to find a linear mapping W such that the unmixed 
sequences u

are maximally statistically 
independent

Find some

where C is a diagonal matrix and P is a permutation matrix.   

Mixing
process

A

Independent
components

…

Blind
Source

De-mixing
process

W

…

Observed
sequences

Recovered 
independent 
components

Mixing
process

A

Mixing
process

A

Independent
components

…

Independent
components

…

Blind
Source
Blind
Source

De-mixing
process

W

…

Observed
sequences

…

Observed
sequences

Recovered 
independent 
components

Recovered 
independent 
components)()()( ttt WAsWxu ==

PCWAV ==
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The fundamental restriction in ICA is that the independent 
components must be nongaussian for ICA to be possible.

This is because gaussianity is invariant under orthogonal 
transformation and hence make the matrix A not identifiable 
for gaussian independent components.

Principle of ICA: Nongaussianity

Eric Xing 48

Measures of nongaussianity (1)
Kurtosis

Kurtosis can be very sensitive to outliers, when its value has to be estimate from 
a measured sample.

Mutual information

Negative Entropy
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FastICA � Preprocessing
Centering:

Make the x-s mean 0 variables

Whitening
Transform the observed vector x linearly so that it has unit variance:

One can show that:

where   

Eric Xing 50

FastICA algorithm
Initialize the weight matrix W
Iteration:

where 

Repeat until convergence 

The ICAs are the components of



26

Eric Xing 51

Summary
There has been a wide discussion about the application of 
Independence Component Analysis (ICA) in Signal Processing, 
Neural Computation and Finance.

First introduced as a novel tool to separate blind sources in a mixed 
signal. 

The Basic idea of ICA is to reconstruct from observation sequences 
the hypothesized independent original sequences. 


