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Hidden Markov Models

The underlying source: e @ @ e
genomic entities,
dice, @ a

The sequence:

Ploy NT,
sequence of rolls,
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Example: The Dishonest Casino

A casino has two dice:

e Fair die

P@1) =P(2) =P(3) =P(5) = P(6) = 1/6
e Loaded die

P(1) =P(2) =P(3) = P(5) = 1/10

P(6) = 1/2

Casino player switches back-&-forth
between fair and loaded die once every
20 turns

Game:
1.You bet $1
2.You roll (always with a fair die)

3. Casino player rolls (maybe with fair die,
maybe with loaded die)

4. Highest number wins $2
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Puzzles Regarding the Dishonest
Casino s

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616366163661636165156 612356
QUESTION
e How likely is this sequence, given our model of how the casino
works?

e This is the EVALUATION problem in HMMs

e What portion of the sequence was generated with the fair die, and

what portion with the loaded die?
e This is the DECODING question in HMMs

e How “loaded” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e This is the LEARNING question in HMMs
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A Stochastic Generative Model

e Observed sequence:

OO

B

e Hidden sequence (a parse or segmentation):

O—O—O—D—O—

Eric Xing

Definition (of HMM)

%ﬁ. Observation space

Alphabetic set: C:{Clvczf"vcl(}
Euclidean space: Rd

e Index set of hidden states
K 1={1,2,---, M}

e Transition probabilities between any two States
Py =1yl =D=a,

Graphical model

or  py, |y, =1~ Multinomial(a,.‘l,cz,v2 ..... a,vM),V/' el. 1 p 2/)
e Start probabilities N
p(y;) ~ Multinomial(z,, 7, .., 7,4 ) %
e Emission probabilities associated with each state
p(x, |y; =1) ~ Multinomial(8,,,5,,.....b, ) Vi€, K)
or in general: Vct L/._(

p(x, |}’,/ -1~ f(. 6. ),V/' cl State automata
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Probability of a Parse P v, .

|
. Givenasequence@ @ @ @ G

and aparsey =y, ...... s Vs
e To find how likely is the parse:

(given our HMM and the sequence) @ @ @ @

...... ) R (Joint probability)
=PV PXTY) P L) P | o) o Py | ) PO | )
=P PO [ ya) - PO |y X P | ) PG | ) - pOxr | )
=PV s Yo PXp X e ¥

def M i def M oz _det M
Let Ty = 1,_1[[7[/] v Ay, T H[au]y , and bym(:—i H
i= =

i /=1

—

- 7[)’1 a}’l v a}’rfx YT b)ﬂ x b)/r XT

T T
e Marginal probability:  p(x) = Z, px,y) = Zh Zyz ...ZM [ 1a,., 11,1y
e Posterior probability: py|x) = p(x,y)/ p(x) =2 £

The Dishonest Casino Model st

0.95 0.95

LOADED

P(1|F) = 1/6 P(1|L) = 1/10
P(2|F) = 1/6 P(2|L) = 1/10
P(3|F) = 1/6 0.05 P(3|L) = 1/10
P(4|F) = 1/6 P(4|L) = 1/10
P(5|F) = 1/6 P(5|L) = 1/10
P(6|F) = 1/6 P(6|L) = 1/2
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Example: the Dishonest Casino

e Letthe sequence

e

e Then, what is the likelihood of
e y=Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(Say initial prObS QoFair = 1/Zv QoLoaded = 1/2)
Plxly\ply) =
Y2 x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

Y5 x (1/6)*° x (0.95)° = .00000000521158647211 = 5.21 x 10°°
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Example: the Dishonest Casino

e S0, the likelihood the die is fair in all this run
is just 5.21 x 10°

=

e OK, but what is the likelihood of

e 7 =Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

% x P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

12 % (1/10)8 x (1/2)2 (0.95)° = .00000000078781176215 = 0.79 x 10°°

e Therefore, it is after all 6.59 times more likely that the die is fair
all the way, than that it is loaded all the way
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Example: the Dishonest Casino

s be:

e Let the sequence
~6,6,5,6,2,6,6,3,6

——

® X=

e

e Now, what is the likelihood n = F, F, ..., F?
o 5 x (1/6)10 x (0.95)° = 0.5 x 10, same as before

e What is the likelihood y=1L, L, ..., L?
Vs x (1/10)* x (1/2)6 (0.95)° = .00000049238235134735 = 5 x 107

e S0, itis 100 times more likely the die is loaded

Three Main Questions on HMMs $t3

1. Evaluation
GIVEN an HMM M) @

FIND Pw
ALGO. Forward

- /_/
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y | x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 0 = (7, g;, n) that maximize P(x| 0)
ALGO. Baum-Welch (EM)
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Applications of HMMs

e Some early applications of HMMs

° finance, but we never saw them
° speech recognition
° modelling ion channels

e In the mid-late 1980s HMMs entered genetics and molecular
biology, and they are now firmly entrenched.

e Some current applications of HMMs to biology

° mapping chromosomes
° aligning biological sequences
° predicting sequence structure
° inferring evolutionary relationships
° finding genes in DNA sequence
Eric Xing 15

Typical structure of a gene

Startcodon  codons  ponor site

Transcription
start

Promoter

Acceptor site

Stop codon

GATCCCCATGCCTGAGGGCCCCTC
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GENSCAN (Burge & Karlin)

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC

? CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT

pPATACACAGCGCACACAT

ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC

‘ ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC
GGTATG

CCCTGCTGCGCCTC
GCGTGCACAATTTGCGCCAATTTCCCCCCTTTT(
TTTCAACCCAGCACCGCTCGTCTCTT

AGCATTCGTACGAGGAACAGTGCTGTCATTC
GTGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC |
TTTCGGATATTATTGTCATTTGCC AATCTTGTGTAT |
TATATGGATGAAACGTGCTATAATAACAATGCAGAATGA

[AGAACTGAAGAGTTTCAAMACCTAAMAATAATTGGAATAT |
AAAGTTTGGTTTTACAATTTGATAAAACTCTATTGTAAGT.
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA
|CCTAAATGGAATACAAATTTTAGTTGTACAATTGAGTAAA |
ATGAGCAAAGCGCCTATTTTGGATAATATTTGCTGTTTAC
AAGGGGAACATATTCATAATTTTCAGGTTTAGGTTACGCA
| TATGTAGGCGTAAAGAAATAGCTATATTTGTAGAAGTGCA
| TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTA(

/
i
N
e}
=
=
1
R
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GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

The HMM Algorithms e

Questions:

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd roll
is loaded, given the observed sequence? Forward-
Backward

e Decoding: What is the most likely die sequence? Viterbi

e Learning: Under what parameterization are the observed
sequences most probable? Baum-Welch (EM)

Eric Xing 18
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The Forward Algorithm -
|
e We want to calculate Ax), the likelihood of x, given the HMM
e Sum over all possible ways of generating x:
plx) =
° y, define
a(y,k =1)= af dif P(x;y - yr{‘ =1) (the forward probability)
e The recursion:
= p(x; | yf = I)Za;—la/,k
%’(X) = Za;—‘
k
. (XY
The Forward Algorithm — sess
derivation o2

,

e Compute the forward probability: P
{ 4(Y %L @ @
2 ]
i) 86 @) @
- Z}/H P(X1 Xffl Xf ' yf71v Yfk = 1)

.....

—

=2, P Xy Y P =1 g X X, =1, X Xy 1 Y1)
P(X Xo 1 Ve P =1y, DP(X, | yf =1)

=P Y =D P Xy =DPY =1yl =1)

=P Lyt =1 e 1a,,

Chainrule: P(A,B,C)=P(AP(B|IC)P(C|A B)

Eric Xing 20
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Recall the Elimination and
Message Passing Algorithm

e Elimination = message passing on a clique tree

m,(a,c,d)

=" p(elc,d)m,(e)m, (a,e)

k k i
a, = p(xt | Yi :l)zatlflai,k
Eric Xing i 21

The Forward Algorithm

e We can compute af for all 4, #, using dynamic programming!

Initialization: 011/( :P(Xp}ﬁk =1)
\ B =Px Iy =DP(yf =1)
af =P(x|yf =D, =P(x |yt =Dx,
af =P |y =Y, aria,
P(x)=>af
k
Eric Xing 22
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The Backward Algorithm

\
e We want to computd A(y/ =1|x) , ()G ()
the posterior probability distribution on the
#t position, given x @ @ G

e We start by computing
Pyl =1x)=P(X;, X0 v =1, X, 100 X7 )
=P(Xpyor X, Y = DP(Xy s X | Xeoo X,y =1)
= P(xp.. X Y = DP (X oy |y =1)
B

Forward, a/ Backward, B =P(X,1,. X | yf =1)

e The recursion:
K : .
B = Zak,i P(Xea | yg+1 :1)ﬂtl+l
i

Eric Xing 23

The Backward Algorithm — §§:
derivation HH

©

e Define the backward probability: @.@
ﬂrk =P( Xy Xr |/Vrk =1) @ @

:ZYr+1P(Xr+1 ----- XT3 Vi |)’rk =1

~

- Z"P(y’{*l :1|y’k =1)p()(m |yf/+1 zl’yrk :1)P(X7+2 ----- Xr |Xr+1r)’r/+1 :lr)’rk =1)
- Z/P(y’i*l =1 | yfk :1)/0(Xf+1 |/Vf/+1 :1)P(Xr+2 ''''' X7 |yrl+1 :1)
=2 @ PXes | Y =D B

Chainrule: P(A,B,C|a)=P(Aa)P(B|C,a)P(C|A B,a)

Eric Xing 24
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The Backward Algorithm

e We can compute ﬂrk for all &, #, using dynamic programming!

Initialization:

BE=1Vk

Iteration:

ﬂfk = Z/ a/(,,'P(XrA |yr/+1 = l)ﬂ;ﬂ

Termination:

Px)=D o B
k

Eric Xing
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Posterior decoding

e \We can now calculate

Aot~ 2% =10 Gl
P(x) P(x)
e Then, we can ask -

e What is the most likely state at position t of sequence x:

k" =argmax, P(yf =1|x)

e Note that this is an MPA of a single hidden state,
what if we want to a MPA of a whole hidden state sequence?

e Posterior Decoding: {yrkf* =1:¥=1...T }

e This is different from MPA of a whole sequence
states

e This can be understood as bit error rate
vs. word error rate Example:
MPA of X ?

MPA of (X, Y) ?

Eric Xing
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Viterbi decoding 5
\
e GIVENX =X, .., x5 we wantto findy = y,, ..., y4, such that
Ay|x) is maximized:
y' = argmax, Ay|x) = argmax, Ay,x)
o Let
k k
V5 =max,, . sP(Xe Xt Yives Vet X Y =1)
= Probability of most likely sequence of states ending at state y; = &
e The recursion: Xg Xp Xg oveosiisinssnisinn s Xy
Vk _ /( _1 V/‘ Sbale; x
T p(Xf |y7' - )maX/ a/',/( -1 i e 77
v 52

e Underflows are a significant problem N
p(/\/l""'Xf’yl""’yf) = ”}ﬁa)ﬁv}/z ”'a}/rfi‘}’rb)/i‘)ﬁ .”b}’rv\’r

These numbers become extremely small — underflow
Solution: Take the logs of all values:  V/* =log p(x, |y} =1) + max, (Iog(a,_k)+ l/,il)

The Viterbi Algorithm — derivation e

e Define the viterbi probability:

=8y P Yo Yo Ky Vs =)
=maxy, 3 P Vi =1 X X Yo V)P Koo X Vi ¥
=X,y POy Y =1 Xy Yo V1 %2012
=max, P(x, .y =11y =maxy, 3 P(Xy X Vi Ve X ¥ =1)
=max, P(X,,, | yf =Da. W'

=P(x,, |Yfk+1 =1)max;, a/,k'/ri

Eric Xing 28
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The Viterbi Algorithm o

e Input: x = X, ..., Xp,
Initialization:
W =Plx |y =Dz,
Iteration:
V=P, |yt ~Dmax, a1,
Ptr(k,#) =argmax; a, V',
Termination:
P(x,y") = max, K"
TraceBack:
i =argmax, ¥
Vi1 =Ptr(y; 1)
. . oo
Computational Complexity and sels
iImplementation details o

e What is the running time, and space required, for Forward,
and Backward?

o =p(x |y =1)Zilat11ai,k

Bl =Y 8 p0%a | Vi =D

VAR r;(xt ly¢ =1)max; a, V.,
Time: O(KN); Space: O(KN).

e Useful implementation technique to avoid underflows
e Viterbi: sum of logs
e Forward/Backward: rescaling at each position by multiplying by a constant

Eric Xing 30
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Learning HMM: two scenarios

e Supervised learning: estimation when the “right answer” is
known

e Examples:

GIVEN:  agenomic region x = X;...X; g90,000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’'t see when he
changes dice

e QUESTION: Update the parameters 4 of the model to maximize
A X 6) --- Maximal likelihood (ML) estimation

Recall MLE for observed BN st

e Assume each CPD is represented as a table (multinomial)

where def .
Op = pX; =JI X, =k

e The log-likelihood is

£6;0)=log [ [0 = > 1y 1096,

i.J.k i.J.k

e Using a Lagrange multiplier to enforce so z Oy —1 we get
J 1

Eric Xing 32
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Supervised ML estimation

|
e Given x= x;...x), for which the true state path y = y,...yyis

known,

e Define:
A = # times state transition /- j occurs in'y ——
By, = # times state /in y emits kin x [} J é

e We can show that the maximum likelihood parameters fare:

e S G 4 P del)
M>2CD 459" S5y, 2.4

/V').Jv —x 7 pi — #(/—> k) ZHZ:M_ B, P("’) l X )

Tk _#( .)_ T / B/
(,10+Zcm I Zanzly"‘r Z/( k

e What if y is continuous? We can treat {(Xﬂf,ynvf): t=1:T,n :1;/\/} as AT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

(Homework!)
Eric Xing 33

Supervised ML estimation, ctd.

e Intuition:

e When we know the underlying states, the best estimate of @is the
average frequency of transitions & emissions that occur in the training
data

e Drawback:
e Given little data, there may be overfitting:
P(x|0) is maximized, but 0 is unreasonable
0 probabilities — VERY BAD

e Example:
e Given 10 casino rolls, we observe
x=2,1,5,6, 1,2, 3,6, 2,3
y=F, F, F, F, F, F, F, F, F, F
e Then: age=1, ag =0
Bry = bz = .2;
Bry = .3; by = 05 bps = beg = .1

Eric Xing 34
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Pseudocounts :
e Solution for small training sets:
e Add pseudocounts
A = # times state transition /—»joccursiny + R;;
By = # times state /in y emits Ainx+ 5,
° R,j, S;are pseudocounts representing our prior belief
e Total pseudocounts: R;=% R, 5;= %5,
--- "strength" of prior belief,
--- total number of imaginary instances in the prior
e Larger total pseudocounts = strong prior belief
e Small total pseudocounts: just to avoid O probabilities ---
smoothing
Eric Xing 35
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Unsupervised ML estimation :

e Given x= x;...xy for which the true state path y= y,...yy/is
unknown, o
["(=)

o EXPECTATION MAXIMIZATION QSLQ

o. Starting with our best guess of a model M, parameters &
1. Estimate A;;, B, in the training data

How? 4 :Zn‘,<y;‘r71)/n/t,> B, :zm<yn/f>)(nk¢, How? (homework)
2. Update ¢according to A, B,

Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set 8 each iteration

Eric Xing 36
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The Baum Welch algorithm

e The complete log likelihood
£0:x9) =108 (5.9 = 08 1| P[P0 1 ] T 5 1
e The expected complete ?og ikefi . -
(£O0:x,y)) = ;(@A&:@) log ﬂ/]+ Zé@{;/yﬁ)p(y g ] + ;_g[if&y;})mm) log b,‘kj

e EM
e The E step
an </Vnr> P(y;,r:l"‘ﬂ)
§/J:<an1ynr> p(y;y,ilzl,y,{,zﬂxﬂ)

e The M step ("symbolically" identical to MLE)

o Zn}/,’;l a’t = Z Zfrzlénf ;ML_Z H;—y;” "f
. = / : /
N DI 2, 2alns
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The Baum-Welch algorithm -- §§:
comments oo

Time Complexity:

# iterations x O(K2N)

e Guaranteed to increase the log likelihood of the model

e Not guaranteed to find globally best parameters

e Converges to local optimum, depending on initial conditions

e Too many parameters / too large model: Overt-fitting

19
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