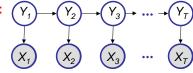


Hidden Markov Models

The underlying source:

genomic entities, dice,



The sequence:

Ploy NT,

sequence of rolls,

Eric Xing

Example: The Dishonest Casino

A casino has two dice:

Fair die

$$P(1) = P(2) = P(3) = P(5) = P(6) = 1/6$$

Loaded die

$$P(1) = P(2) = P(3) = P(5) = 1/10$$

P(6) = 1/2

Casino player switches back-&-forth between fair and loaded die once every 20 turns

Game:

- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. Casino player rolls (maybe with fair die, maybe with loaded die)
- 4. Highest number wins \$2

Eric Xing

Puzzles Regarding the Dishonest Casino

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

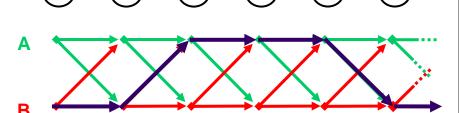
- How likely is this sequence, given our model of how the casino works?
 - This is the **EVALUATION** problem in HMMs
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** question in HMMs
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** question in HMMs

Fric Xino

5

A Stochastic Generative Model

• Observed sequence:



Hidden sequence (a parse or segmentation):

Eric Xino

Definition (of HMM)

Observation space

Alphabetic set: Euclidean space:

$$C = \{c_1, c_2, \dots, c_k\}$$

Index set of hidden states

$$I = \{1, 2, \cdots, M\}$$

Transition probabilities between any two states

$$p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},$$

 $\text{or} \qquad p(y_t \mid y_{t-1}^i = 1) \sim \text{Multinomial} \Big(a_{i,1}, a_{i,2}, \dots, a_{i,\mathcal{M}}\Big), \forall i \in \mathcal{I}.$

Start probabilities

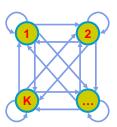
$$p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, ..., \pi_M)$$
.

Emission probabilities associated with each state

$$p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,2}, \dots, b_{i,K}), \forall i \in I.$$

or in general:

$$p(x_t | y_t^i = 1) \sim f(\cdot | \theta_i), \forall i \in I.$$



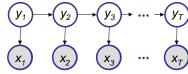
Graphical model

State automata

Fric Xino

Probability of a Parse

- Given a sequence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_T$ and a parse $\mathbf{y} = \mathbf{y}_1, \dots, \mathbf{y}_T$
- To find how likely is the parse: (given our HMM and the sequence)



$$p(\mathbf{x}, \mathbf{y}) = p(x_1, \dots, x_T, y_1, \dots, y_T)$$
 (Joint probability)

 $= p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \dots p(y_T | y_{T-1}) p(x_T | y_T)$

 $= p(y_1) P(y_2 \mid y_1) \dots p(y_T \mid y_{T-1}) \times p(x_1 \mid y_1) p(x_2 \mid y_2) \dots p(x_T \mid y_T)$

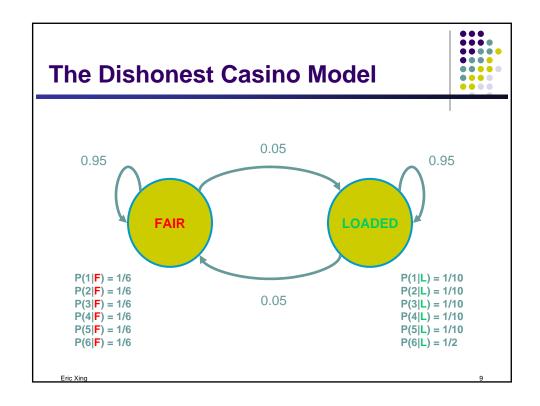
 $= p(y_1, \ldots, y_T) p(x_1, \ldots, x_T | y_1, \ldots, y_T)$

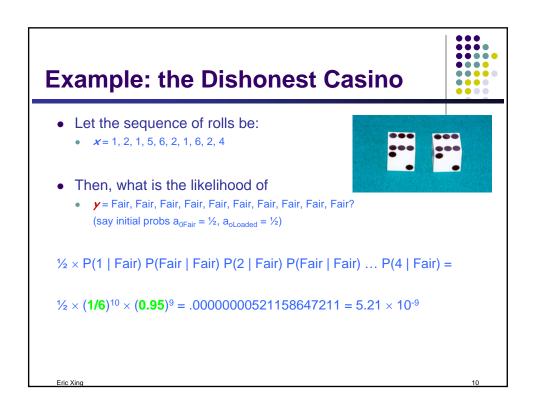
$$\text{Let} \quad \pi_{\gamma_1} \stackrel{\text{def}}{=} \prod_{i=1}^{M} \left[\pi_i\right]^{\gamma_i^i}, \qquad a_{\gamma_r, \gamma_{r+1}} \stackrel{\text{def}}{=} \prod_{i,j=1}^{M} \left[a_{ij}\right]^{\gamma_r' \gamma_{r+1}^i}, \qquad \text{and} \quad b_{\gamma_r, x_r} \stackrel{\text{def}}{=} \prod_{i=1}^{M} \prod_{K=1}^{K} \left[b_{j_k}\right]^{\gamma_r' x_r^K},$$

$$= \pi_{y_1} a_{y_1,y_2} \cdots a_{y_{\tau-1},y_{\tau}} b_{y_1,x_1} \cdots b_{y_{\tau},x_{\tau}}$$

- Marginal probability: $p(\mathbf{x}) = \sum_{\mathbf{y}_1} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y}_1} \sum_{\mathbf{y}_2} \cdots \sum_{\mathbf{y}_N} \pi_{\mathbf{y}_1} \prod_{t=2}^T a_{\mathbf{y}_{t-1}, \mathbf{y}_t} \prod_{t=1}^T p(\mathbf{x}_t \mid \mathbf{y}_t)$
- Posterior probability: p(y | x) = p(x, y) / p(x)

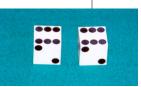
Eric Xing





Example: the Dishonest Casino

• So, the likelihood the die is fair in all this run is just 5.21×10^{-9}



- · OK, but what is the likelihood of
 - π = Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded?

½ × P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

 $\frac{1}{2} \times (\frac{1}{10})^8 \times (\frac{1}{2})^2 (0.95)^9 = .000000000078781176215 = 0.79 \times 10^{-9}$

• Therefore, it is after all 6.59 times more likely that the die is fair all the way, than that it is loaded all the way

Example: the Dishonest Casino

- Let the sequence of rolls be:
 - x = 1, 6, 6, 5, 6, 2, 6, 6, 3, 6

- Now, what is the likelihood π = F, F, ..., F?
 ½ × (1/6)¹⁰ × (0.95)⁹ = 0.5 × 10⁻⁹, same as before
- What is the likelihood y = L, L, ..., L?

 $\frac{1}{2} \times (\frac{1}{10})^4 \times (\frac{1}{2})^6 (0.95)^9 = .00000049238235134735 = 5 \times 10^{-7}$

So, it is 100 times more likely the die is loaded

ric Xing

Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM M, and a sequence x, FIND Prob (x | M)

ALGO. Forward

2. Decoding

GIVEN an HMM M, and a sequence x,

FIND the sequence y of states that maximizes, e.g., P(y | x, M),

or the most probable subsequence of states

ALGO. Viterbi, Forward-backward

Learning

GIVEN an HMM M, with unspecified transition/emission probs.,

and a sequence x,

FIND parameters $\theta = (\pi_i, a_{ii}, \eta_{ik})$ that maximize $P(x | \theta)$

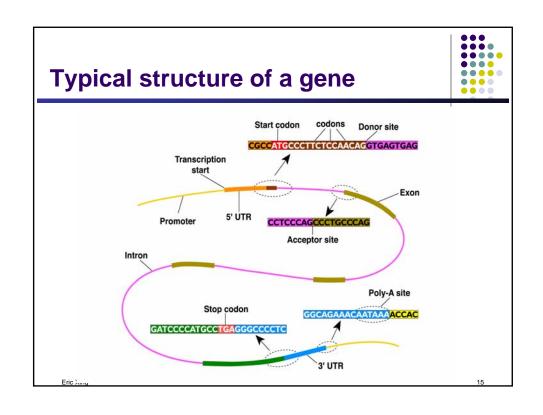
ALGO. Baum-Welch (EM)

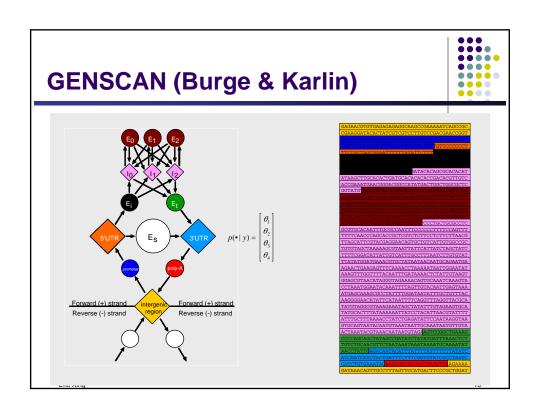
1

Applications of HMMs

- Some early applications of HMMs
 - finance, but we never saw them
 - speech recognition
 - modelling ion channels
- In the mid-late 1980s HMMs entered genetics and molecular biology, and they are now firmly entrenched.
- Some current applications of HMMs to biology
 - mapping chromosomes
 - aligning biological sequences
 - predicting sequence structure
 - inferring evolutionary relationships
 - finding genes in DNA sequence

Eric Xino





The HMM Algorithms

Questions:

- **Evaluation**: What is the probability of the observed sequence? Forward
- **Decoding:** What is the probability that the state of the 3rd position is Bk, given the observed sequence? Forward-**Backward**
- **Decoding:** What is the most likely die sequence? Viterbi
- Learning: Under what parameterization are the observed sequences most probable? Baum-Welch (EM)

The Forward Algorithm

- We want to calculate P(x), the likelihood of x, given the HMM
 - Sum over all possible ways of generating x:

$$p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y}_1} \sum_{\mathbf{y}_2} \cdots \sum_{\mathbf{y}_N} \pi_{\mathbf{y}_1} \prod_{t=2}^T a_{\mathbf{y}_{t-1}, \mathbf{y}_t} \prod_{t=1}^T p(\mathbf{x}_t \mid \mathbf{y}_t)$$
• To avoid summing over an exponential number of paths \mathbf{y} , define

$$\alpha(\boldsymbol{y}_{t}^{k}=1) = \alpha_{t}^{k} \stackrel{\text{def}}{=} P(\boldsymbol{x}_{1},...,\boldsymbol{x}_{t},\boldsymbol{y}_{t}^{k}=1)$$
 (the **forward** probability)

• The recursion:

$$\alpha_t^k = p(x_t \mid y_t^k = 1) \sum_i \alpha_{t-1}^i a_{i,k}$$

$$P(\mathbf{x}) = \sum_k \alpha_t^k$$

The Forward Algorithm – derivation

· Compute the forward probability:

$$\alpha_{t}^{k} = P(x_{1},...,x_{t-1},x_{t},y_{t}^{k} = 1)$$

$$= \sum_{y_{t-1}} P(x_{1},...,x_{t-1},x_{t},y_{t-1},y_{t}^{k} = 1)$$

$$= \sum_{y_{t-1}} P(x_{1},...,x_{t-1},y_{t-1})P(y_{t}^{k} = 1 | y_{t-1},x_{1},...,x_{t-1})P(x_{t} | y_{t}^{k} = 1,x_{1},...,x_{t-1},y_{t-1})$$

$$= \sum_{y_{t-1}} P(x_{1},...,x_{t-1},y_{t-1})P(y_{t}^{k} = 1 | y_{t-1},x_{1},...,x_{t-1})P(x_{t} | y_{t}^{k} = 1,x_{1},...,x_{t-1},y_{t-1})$$

$$= \sum_{y_{t-1}} P(x_{1},...,x_{t-1},y_{t-1})P(y_{t}^{k} = 1 | y_{t-1})P(x_{t} | y_{t}^{k} = 1)$$

$$= P(x_{t} | y_{t}^{k} = 1)\sum_{i} P(x_{1},...,x_{t-1},y_{t-1}^{i} = 1)P(y_{t}^{k} = 1 | y_{t-1}^{i} = 1)$$

$$= P(x_{t} | y_{t}^{k} = 1)\sum_{i} \alpha_{t-1}^{i} a_{i,k}$$

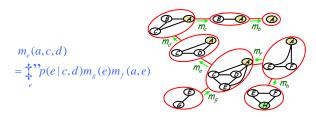
Chain rule: P(A,B,C) = P(A)P(B|C)P(C|A,B)

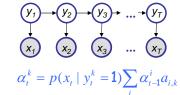
Eric Xing

10

Recall the Elimination and Message Passing Algorithm

• Elimination ≡ message passing on a clique tree





The Forward Algorithm

• We can compute α_t^k for all k, t, using dynamic programming!

Initialization:

ization:
$$\alpha_{1}^{k} = P(x_{1}, y_{1}^{k} = 1)$$

$$= P(x_{1} | y_{1}^{k} = 1)P(y_{1}^{k} = 1)$$

$$= P(x_{1} | y_{1}^{k} = 1)\pi_{k}$$

$$= P(x_{1} | y_{1}^{k} = 1)\pi_{k}$$

Iteration:

$$\alpha_t^k = P(\mathbf{x}_t \mid \mathbf{y}_t^k = 1) \sum_i \alpha_{t-1}^i \mathbf{a}_{i,k}$$

Termination:

$$P(\mathbf{x}) = \sum_{k} \alpha_{T}^{k}$$

The Backward Algorithm

- We want to compute $P(y_t^k = 1 | x)$, the posterior probability distribution on the tth position, given x
 - We start by computing

$$P(y_t^k = 1, \mathbf{x}) = P(x_1, ..., x_t, y_t^k = 1, x_{t+1}, ..., x_T)$$

$$= P(x_1, ..., x_t, y_t^k = 1) P(x_{t+1}, ..., x_T \mid x_1, ..., x_t, y_t^k = 1)$$

$$= P(x_1, ..., x_t, y_t^k = 1) P(x_{t+1}, ..., x_T \mid y_t^k = 1)$$

Forward,
$$\alpha_t^k$$
 Backward, $\beta_t^k = P(x_{t+1},...,x_T \mid y_t^k = 1)$

The recursion:

$$\beta_t^k = \mathcal{X}_i^i a_{k,i} p(x_{t+1} | y_{t+1}^i = 1) \beta_{t+1}^i$$

The Backward Algorithm derivation

• Define the backward probability:

$$\beta_{t}^{k} = P(x_{t+1}, ..., x_{T} | y_{t}^{k} = 1)$$

$$= \sum_{y_{t+1}} P(x_{t+1}, ..., x_{T}, y_{t+1} | y_{t}^{k} = 1)$$

$$= \sum_{i} P(y_{t+1}^{i} = 1 | y_{t}^{k} = 1) p(x_{t+1} | y_{t+1}^{i} = 1, y_{t}^{k} = 1) P(x_{t+2}, ..., x_{T} | x_{t+1}, y_{t+1}^{i} = 1, y_{t}^{k} = 1)$$

$$= \sum_{i} P(y_{t+1}^{i} = 1 | y_{t}^{k} = 1) p(x_{t+1} | y_{t+1}^{i} = 1) P(x_{t+2}, ..., x_{T} | y_{t+1}^{i} = 1)$$

$$= \sum_{i} a_{k,i} p(x_{t+1} | y_{t+1}^{i} = 1) \beta_{t+1}^{i}$$

Chain rule: $P(A, B, C \mid \alpha) = P(A, \alpha)P(B \mid C, \alpha)P(C \mid A, B, \alpha)$

The Backward Algorithm

• We can compute β_t^k for all k, t, using dynamic programming!

Initialization:

$$\beta_{\tau}^{k} = 1, \ \forall k$$

Iteration:

$$\beta_t^k = \sum_i a_{k,i} P(\mathbf{X}_{t+1} \mid \mathbf{y}_{t+1}^i = 1) \beta_{t+1}^i$$
 Termination:

$$P(\mathbf{x}) = \sum_{k} \alpha_1^k \beta_1^k$$

Posterior decoding

We can now calculate

$$P(\mathbf{y}_t^k = 1 \mid \mathbf{x}) = \frac{P(\mathbf{y}_t^k = 1, \mathbf{x})}{P(\mathbf{x})} = \frac{\alpha_t^k \beta_t^k}{P(\mathbf{x})}$$

- Then, we can ask
 - What is the most likely state at position t of sequence x:

$$\mathbf{k}_{t}^{*} = \operatorname{arg\,max}_{k} P(\mathbf{y}_{t}^{k} = 1 \mid \mathbf{x})$$

- Note that this is an MPA of a single hidden state, what if we want to a MPA of a whole hidden state sequence?
- Posterior Decoding: $\left\{ y_{t}^{k_{t}^{*}} = 1 : t = 1 \cdots T \right\}$
- This is different from MPA of a whole sequence states
- This can be understood as bit error rate vs. word error rate

of hidden

X	y	P(x,y)
0	0	0.35
0	1	0.05
1	0	0.3
1	1	0.3

Example: MPA of X? MPA of (X, Y)?

=

25

Viterbi decoding

GIVEN x = x₁, ..., x_T, we want to find y = y₁, ..., y_T, such that P(y|x) is maximized:

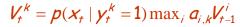
$$\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} P(\mathbf{y} | \mathbf{x}) = \operatorname{argmax}_{\pi} P(\mathbf{y}, \mathbf{x})$$

Let

$$V_t^k = \max_{\{y_1, \dots, y_{t-1}\}} P(x_1, \dots, x_{t-1}, y_1, \dots, y_{t-1}, x_t, y_t^k = 1)$$

= Probability of most likely **sequence of states** ending at state $y_t = k$

The recursion:



- Underflows are a significant problem $p(x_1,...,x_t,y_1,...,y_t) = \pi_{y_1}a_{y_1,y_2}\cdots a_{y_{t-1},y_t}b_{y_1,x_1}\cdots b_{y_t,x_t}$
 - These numbers become extremely small underflow
 - Solution: Take the logs of all values: $V_t^k = \log p(x_t | y_t^k = 1) + \max_i (\log(a_{i,k}) + V_{t-1}^i)$

Eric Xing

The Viterbi Algorithm - derivation

• Define the viterbi probability:

$$\begin{split} V_{t+1}^k &= \max_{\{y_1,\dots,y_t\}} P(x_1,\dots,x_t,y_1,\dots,y_t,x_{t+1},y_{t+1}^k = 1) \\ &= \max_{\{y_1,\dots,y_t\}} P(x_{t+1},y_{t+1}^k = 1 \mid x_1,\dots,x_t,y_1,\dots,y_t) P(x_1,\dots,x_t,y_1,\dots,y_t) \\ &= \max_{\{y_1,\dots,y_t\}} P(x_{t+1},y_{t+1}^k = 1 \mid y_t) P(x_1,\dots,x_{t-1},y_1,\dots,y_{t-1},x_t,y_t) \\ &= \max_i P(x_{t+1},y_{t+1}^k = 1 \mid y_t^i = 1) \max_{\{y_1,\dots,y_{t-1}\}} P(x_1,\dots,x_{t-1},y_1,\dots,y_{t-1},x_t,y_t^i = 1) \\ &= \max_i P(x_{t+1},y_{t+1}^k = 1) a_{i,k} V_t^i \\ &= P(x_{t+1},y_{t+1}^k = 1) \max_i a_{i,k} V_t^i \end{split}$$

ic Xing

The Viterbi Algorithm

• Input: $x = X_1, ..., X_{T}$

Initialization:

$$V_1^k = P(x_1 \mid y_1^k = 1)\pi_k$$

Iteration:

$$V_t^k = P(x_t, | y_t^k = 1) \max_i a_{i,k} V_{t-1}^i$$

$$Ptr(\mathbf{k}, \mathbf{t}) = \arg\max_{i} \mathbf{a}_{i,k} \mathbf{V}_{t-1}^{i}$$

Termination:

$$P(\mathbf{x}, \mathbf{y}^*) = \max_{k} V_{\tau}^{k}$$

TraceBack:

$$y_T^* = \operatorname{arg\,max}_k V_T^k$$
$$y_{t-1}^* = \operatorname{Ptr}(y_t^*, t)$$

Eric Xing

Computational Complexity and implementation details

 What is the running time, and space required, for Forward, and Backward?

$$\alpha_{t}^{k} = p(x_{t} | y_{t}^{k} = 1) \sum_{i} \alpha_{t-1}^{i} a_{i,k}$$

$$\beta_{t}^{k} = \sum_{i} a_{k,i} p(x_{t+1} | y_{t+1}^{i} = 1) \beta_{t+1}^{i}$$

$$V_{t}^{k} = p(x_{t} | y_{t}^{k} = 1) \max_{i} a_{i,k} V_{t-1}^{i}$$

Time: $O(K^2N)$; Space: O(KN).

- Useful implementation technique to avoid underflows
 - Viterbi: sum of logs
 - Forward/Backward: rescaling at each position by multiplying by a constant

ic Xing 29

Learning HMM: two scenarios

- Supervised learning: estimation when the "right answer" is known
 - Examples:

GIVEN: a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

(experimental) armotations of the opolisiands

GIVEN: the casino player allows us to observe him one evening,

as he changes dice and produces 10,000 rolls

- Unsupervised learning: estimation when the "right answer" is unknown
 - Examples:

GIVEN: the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don't see when he

changes dice

• **QUESTION:** Update the parameters θ of the model to maximize $P(x|\theta)$ --- Maximal likelihood (ML) estimation

Maxima intellineed (ME) communer

Supervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is known,
 - Define:

 A_{ij} = # times state transition $i \rightarrow j$ occurs in y B_{ik} = # times state i in y emits k in x

• We can show that the maximum likelihood parameters θ are:

$$a_{ij}^{ML} = \frac{\#(i \to j)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i} y_{n,t}^{j}}{\sum_{n} \sum_{t=2}^{T} y_{n,t-1}^{i}} = \frac{A_{ij}}{\sum_{j} A_{ij}}$$

 $b_{ik}^{ML} = \frac{\#(i \to k)}{\#(i \to \bullet)} = \frac{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i} x_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T} y_{n,t}^{i}} = \frac{B_{ik}}{\sum_{k'} B_{ik'}}$

(Homework!)

• What if y is continuous? We can treat $\{(x_{n,t},y_{n,t}): t=1:T, n=1:N\}$ as $\mathbb{N} \times T$ observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

Eric Xing

(Homework!)

Supervised ML estimation, ctd.

- Intuition:
 - When we know the underlying states, the best estimate of θ is the average frequency of transitions & emissions that occur in the training data
- Drawback:
 - Given little data, there may be overfitting:
 - $P(x|\theta)$ is maximized, but θ is unreasonable

0 probabilities - VERY BAD

- Example:
 - Given 10 casino rolls, we observe

• Then: $a_{FF} = 1$; $a_{FL} = 0$

 $b_{F1} = b_{F3} = .2;$

 $b_{F2} = .3$; $b_{F4} = 0$; $b_{F5} = b_{F6} = .1$

Eric Xing

Pseudocounts

- Solution for small training sets:
 - Add pseudocounts

```
A_{ij} = # times state transition i \rightarrow j occurs in \mathbf{y} + R_{ij}

B_{ik} = # times state i in \mathbf{y} emits k in \mathbf{x} + S_{ik}
```

- R_{ij} , S_{ij} are pseudocounts representing our prior belief
- Total pseudocounts: $R_i = \Sigma_j R_{ij}$, $S_i = \Sigma_k S_{ik}$,
 - --- "strength" of prior belief,
 - --- total number of imaginary instances in the prior
- Larger total pseudocounts ⇒ strong prior belief
- Small total pseudocounts: just to avoid 0 probabilities --smoothing

Xing

Unsupervised ML estimation

- Given $x = x_1...x_N$ for which the true state path $y = y_1...y_N$ is unknown,
 - EXPECTATION MAXIMIZATION
 - o. Starting with our best guess of a model M, parameters θ .
 - 1. Estimate A_{ij} , B_{ik} in the training data
 - How? $A_{ij} = \sum_{n,t} \langle y_{n,t-1}^i y_{n,t}^j \rangle$ $B_{ik} = \sum_{n,t} \langle y_{n,t}^i \rangle x_{n,t}^k$, How? (homework)
 - 2. Update θ according to A_{ij} , B_{ik}
 - Now a "supervised learning" problem
 - 3. Repeat 1 & 2, until convergence

This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set θ each iteration

Eric Xin

The Baum Welch algorithm

• The complete log likelihood

$$\ell_{c}(\mathbf{0}; \mathbf{x}, \mathbf{y}) = \log p(\mathbf{x}, \mathbf{y}) = \log \prod_{n} \left(p(y_{n,1}) \prod_{t=2}^{T} p(y_{n,t} \mid y_{n,t-1}) \prod_{t=1}^{T} p(x_{n,t} \mid x_{n,t}) \right)$$

• The expected complete log likelihood

$$\left\langle \ell_{c}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}) \right\rangle = \sum_{n} \left(\left\langle \boldsymbol{y}_{n,1}^{i} \right\rangle_{p(y_{n,1}|\mathbf{x}_{n})} \log \pi_{i} \right) + \sum_{n} \sum_{t=2}^{T} \left(\left\langle \boldsymbol{y}_{n,t-1}^{i} \boldsymbol{y}_{n,t}^{j} \right\rangle_{p(y_{n,t-1},y_{n,t}|\mathbf{x}_{n})} \log a_{i,j} \right) + \sum_{n} \sum_{t=1}^{T} \left(\boldsymbol{x}_{n,t}^{k} \left\langle \boldsymbol{y}_{n,t}^{i} \right\rangle_{p(y_{n,t}|\mathbf{x}_{n})} \log b_{i,k} \right)$$

- - The E step

$$\begin{aligned} y_{n,t}^i &= \left\langle y_{n,t}^i \right\rangle = p(y_{n,t}^i = 1 \mid \mathbf{x}_n) \\ \xi_{n,t}^{i,j} &= \left\langle y_{n,t-1}^i y_{n,t}^j \right\rangle = p(y_{n,t-1}^i = 1, y_{n,t}^j = 1 \mid \mathbf{x}_n) \end{aligned}$$

• The M step ("symbolically" identical to MLE)

$$\pi_i^{ML} = \frac{\sum_n \gamma_{n,1}^i}{N}$$

$$a_{ij}^{ML} = \frac{\sum_{n} \sum_{t=2}^{T} \xi_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

$$\pi_{i}^{\mathit{ML}} = \frac{\sum_{n} \gamma_{n,1}^{i}}{N} \qquad \qquad a_{ij}^{\mathit{ML}} = \frac{\sum_{n} \sum_{t=2}^{T} \zeta_{n,t}^{i,j}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}} \qquad \qquad b_{ik}^{\mathit{ML}} = \frac{\sum_{n} \sum_{t=1}^{T} \gamma_{n,t}^{i} \chi_{n,t}^{k}}{\sum_{n} \sum_{t=1}^{T-1} \gamma_{n,t}^{i}}$$

The Baum-Welch algorithm -comments

Time Complexity:

- Guaranteed to increase the log likelihood of the model
- Not guaranteed to find globally best parameters
- · Converges to local optimum, depending on initial conditions
- Too many parameters / too large model: Overt-fitting