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Hidden Markov Model: 33
from static to dynamic mixture models oo
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Example: The Dishonest Casino -

A casino has two dice:

e Fair die

P@1) =P(2) =P(3) =P(5) = P(6) = 1/6
e Loaded die

P(1) = P(2) = P(3) = P(5) = 1/10

P(6) =1/2

Casino player switches back-&-forth
between fair and loaded die once every
20 turns

Game:
1.You bet $1
2.You roll (always with a fair die)

3. Casino player rolls (maybe with fair die,
maybe with loaded die)

4, Highest number wins $2
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Puzzles Regarding the Dishonest
Casino

GIVEN: A sequence of rolls by the casino player

64621461461361366616646616366163661636165156 612356

QUESTION

e How likely is this sequence, given our model of how the casino
works?

e This is the EVALUATION problem in HMMs

e What portion of the sequence was generated with the fair die, and
what portion with the loaded die?
e This is the DECODING question in HMMs

e How “loaded” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e This is the LEARNING question in HMMs
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A Stochastic Generative Model

e Observed sequence:

OO

B

e Hidden sequence (a parse or segmentation):

O—O—O—O—@—
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Definition (of HMM)

e Observation space

\
et =l
: R
Index set of hidden states
) )1(:{1,2’...’I,14} @ @ @ G

e Transition probabilities between any two states ~ Graphical model
p()’rj :1|y7‘/71 =1)= G

or  py, |yl =1)~Multinomial(g, ,,a,,.....a, , ) Vi el. 1 5
e Start probabilities
p(v,) ~ Multinomial(z,, 7,.,..., 7, ).
e Emission probabilities associated with each state
p(x, |y, =1) ~ Multinomial(8,1,6.,...., b, ¢ ) Vi €. X :
or in general:
p(x, Iy,’ =1~ f(. 6. ),V/' clL State automata
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Probability of a Parse o

e Given a sequence x = xj...... Xr
and a parsey = y;, .z @ @ @ @
e To find how likely is the parse:

(given our HMM and the sequence) @ @ @ G

px,y) =px...... Xpy Vir enen y V) (Joint probability)
= POy P Ly Ps L) PO | ya) - PO | ) PO | )
= pPy) PO I ya) - P Ly x P | ya) PO | ys) - POk | )
=Py e ) P Xe| Vi oo V)
def M » def M Vi def MK
tet =, “[Tx] . a,, “T1la] . a5, “[1[]l5]
/-1

i=1

- 7[)/1 a)’l e a}/m YT b)/1 P b)’r XT

T T
e Marginal probability:  p(x) = Z.\ px,y) = Zyl Zyz ...ZyN 7, Ham% l—l/’(Xf §A)
e Posterior probability:  p(y|x) = p(x,y)/ p(x) e -
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The Dishonest Casino Model .
0.05
0.95 0.95
LOADED
P(1|F) = 1/6 P(1|L) = 1/10
P(2|F) = 1/6 P(2IL) = 1/10
P@3|F) = 1/6 0.05 P@3|L) = 1/10
P(4|F) = 1/6 P(4|L) = 1/10
P(5|F) = 1/6 P(IL) = 1/10
P(6|F) = 1/6 P@IL) = 1/2
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Example: the Dishonest Casino .

e Let the sequence of rolls be:
e x=1,2,1,56,2,1,6,2,4

=

e Then, what is the likelihood of
e y=Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?
(say initial probs age,ir = Y2, @g1 oaded = 72)

Y% x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

1 x (1/6)10 x (0.95) = .00000000521158647211 = 5.21 x 10
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Example: the Dishonest Casino

e S0, the likelihood the die is fair in all this run
is just 5.21 x 10°

_ \
e OK, but what is the likelihood of

e 7 =Loaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

% x P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

12 x (1/10)8 x (1/2)2 (0.95)° = .00000000078781176215 = 0.79 x 10

e Therefore, it is after all 6.59 times more likely that the die is fair
all the way, than that it is loaded all the way
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Example: the Dishonest Casino

e Let the sequence of rolls be:

e x=1,6,6,50626,6, 3,6 ﬁ g
2

e Now, what is the likelihood = = F, F, ..., F~
o ¥ x (1/6) x (0.95)° = 0.5 x 10, same as before

e What is the likelihood y=1L, L, ..., L?
Y x (1/10)* x (1/2)® (0.95)° = .00000049238235134735 = 5 x 107

e SO, itis 100 times more likely the die is loaded
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Three Main Questions on HMMs c
1. Evaluation
GIVEN an HMM M, and a sequence x,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y'| x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 6 = (7, g;, m) that maximize P(x| 0)
ALGO. Baum-Welch (EM)
Eric Xing 13
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Applications of HMMs o

e Some early applications of HMMs

° finance, but we never saw them
° speech recognition
° modelling ion channels

e In the mid-late 1980s HMMs entered genetics and molecular
biology, and they are now firmly entrenched.

e Some current applications of HMMs to biology

° mapping chromosomes

° aligning biological sequences

° predicting sequence structure

° inferring evolutionary relationships
° finding genes in DNA sequence

Eric Xing 14




Typical structure of a gene

Startcodon  codons  ponor site

CGCC

Transcription

start
Promoter
Acceptor site ]

Intron

_—

H—-—f’ =5
Poly-A site

||l /
\ Stop codon

GATCCCCATGCCTGAGGGCCCCTC

Eric vy 15

GENSCAN (Burge & Karlin)

GAGAACGTGTGAGAGAGAGGCAAGCCGAAAAATCAGCCGC

GGTATG

CGAAGGATACACTATCGTCGTCCTTGTCCGACGAACCGGT

ATACACAGCGCACACAT

ATAAGCTTGCACACTGATGCACACACACCGACACGTTGTC

‘ ACCGAAATGAACGGGACGGCCATATGACTGGCTGGCGCTC

kS

CCCTGCTGCGCCTC
CGTGCACAATTTGCGCCAATTTCCCCCCTTTTCCAGTTT
TTTCAACCCAGCACCGCTCGTCTCTTCCTCTTCTTAACG
TAGCATTCGTACGAGGAACAGTGCTGTCATTGTGGCCGC
 TGTAGCTAAAAAGCGTAATTATTCATTATCTAGCTATC

[TGTGTAT |

pely) =

C
[TTCGGATATTATTGTCATTTGCCTTTAATC

/3\
¥

| TTATATGGATGAAACGTGCTATAATAACAATGCAGAATGA |
AGAACTGAAGAGTTTCAAAACCTAAAAATAATTGGAATAT
AAAGTTTGG ACAATTTGATAAAACTCTATTGTAAGT
GGAGCGTAACATAGGGTAGAAAACAGTGCAAATCAAAGTA

| TAT \GCTATATTTGTAGAAGTGCA
| TATGCACTTTATAAAAAATTATCCTACATTAACGTATTTT
ATTTGCTTTAAAACCTATCTGAGATATTCCAATAAGGTAA
GTGCAGTAATACAATGTAAATAATTGCAAATAATGTTGTA
ACTAAATACGTAAACAATAATGTA(

orward (+

Reverse (-) strand

GATAAACAGTTGCCTTTAGTTGCATGACTTCCCGCTGGAT

s iy Y




The HMM Algorithms

Questions:

e Evaluation: What is the probability of the observed
sequence? Forward

e Decoding: What is the probability that the state of the 3rd
position is Bk, given the observed sequence? Forward-
Backward

e Decoding: What is the most likely die sequence? Viterbi

e Learning: Under what parameterization are the observed
sequences most probable? Baum-Welch (EM)

The Forward Algorithm e

e We want to calculate Ax), the likelihood of x, given the HMM

e Sum over all possible ways of generating x:

p(x) :ZyP(X'Y) :zyl zyz"'zm ”ylllamyyfl:[p(xf 1y,

e To avoid summing over an exponential number of paths y, define
k P k

a(y, =) =a; =P(x,..x,,y; =1) (the forward probability)

e The recursion:
k _ k /
ay =pX |y, = l)z Q14 k
z
P(x) = z ak
k

Eric Xing 18




The Forward Algorithm —
derivation

e Compute the forward probability:

!
()

af ZP(Xp---rXr—err’yrk:l) \@ @

- ZY?—I P(Xl"“'Xr—errryr—liyrk =1)

:ZYH’D(Xp---erflryrfl)P(}’fk :1|)’H,X1 ----- Xf—l)P(Xf |}’fk :1"\/1""’Xf—1’yf—1)

:ZyH ’D(Xl""'Xffl’yffl)P(yfk =1y, )P(x, |Yrk =1

=P(x, |y =1 P X1 Y1 =DP(yf =11y, =0

= 'D(Xr | }’fk = 1)2, a;—la/,k

Chainrule: P(A,8,C) =P(A)P(B|C)P(C| A, B)

Eric Xing
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Recall the Elimination and
Message Passing Algorithm

e Elimination = message passing on a clique tree

m,(a,c,d)
=1"p(elc,d)m, (e)m, (a.e)

=

at = p(X1 | y[k :l)zati—lal,k

Eric Xing
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The Forward Algorithm

e We can compute af for all &, #, using dynamic programming!
Initialization: af = P(x, i =1)

=Pl |yl =DP(y =1)

af =P(x |y =D, =P(x, |y =D,

Iteration:

O{f =P(x, |yrk :l)z,a;fla/,k

Termination:

P(x)=>af
k

Eric Xing 21

The Backward Algorithm

e We want to compute A(y// =1]x) , MO D=0

the posterior probability distribution on the

#t position, given x @ Q

e We start by computing
Pyl =1,x)=P(x;,... X, vi =1, x, ,
= P(Xpsor X, VE = DP(Xs g X | X X,y =1)
= P(xy.. X,y =D)P(X, 0.5 |y =1)
e

Forward, a/ Backward, B =P(X,i... Xy |yl =1)

e The recursion:
k 7 ; ;
ﬂf = i ak,/'p(XHl |y;+1 = l)ﬂ;ﬂ
;

Eric Xing 22
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The Backward Algorithm —
derivation

o

e Define the backward probability: @,@
,Brk =P(Xy 10 Xr |Yrk =1 @ @

= zm P(Xy v X, Yo | Y =1)

~

= Z;P()’rjq =1yt =0)pe | Y =Ly =DP(X e X | Xy Vi =Ly =1)
:z/’p(}’ffu :1|Yrk =Dpa | ¥ =DPX s Xr | g = 1)
= Zl. a,, pX;. | yr/+1 = 1),3;;1

Chainrule: P(A,B,C|a)=P(Aa)P(B|C,a)P(C| A B,a)

Eric Xing 23

The Backward Algorithm

e We can compute ﬂfk for all &, #, using dynamic programming!
Initialization:

BE=1 vk

Iteration:

ﬂ,k = Z,. a, PX.4 |}’r/+1 :l)ﬂffﬂ

Termination:

P(x) = Zalkﬂ1k
k

Eric Xing 24
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Posterior decoding :
e We can now calculate
Pl =1)x) = PO =LY ey
T - =
P(x) P(x)
e Then, we can ask
e What is the most likely state at position t of sequence x:
k' =argmax, P(y} =1]x)
e Note that this is an MPA of a single hidden state,
what if we want to a MPA of a whole hidden state sequence?
e Posterior Decoding: {}’,«k; =1:#=1.--T }
e This is different from MPA of a whole sequence of hidden
states x|y PCx.y)
e This can be understood as bit error rate 9| o g=2
vs. word error rate Example: o| 7 Q.95
MPA of X ? zZ O o3
MPA of (X, Y) ? 7 7 0.3
Eric Xing 25
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Viterbi decoding o

e GIVENXx =X, .., xswewanttofindy =y, .., y4, such that
Aylx) is maximized:

y' = argmax, Aylx) = argmax, Ay,x)
e Let

k k
V, :max{ylwm}P()(l,...,X,_l,yl,...,y,_l,x,,y, =1)

= Probability of most likely sequence of states ending at state y; = &
e The recursion: Xy Xp Xg eeeersensuennenensessuemnssessens Xy

V¥ = plx |y =1ymax; a, ",

State 1 M

e Underflows are a significant problem = 4
PXiyeos X Yoo V3) = 7y Gy y, .“ayfflv)/fbylvxl "'byfvxf

These numbers become extremely small — underflow
Solution: Take the logs of all values: V¥ =log p(x, | y¥ =1)+max,(log(a, , )+¥/’,)

Eric Xing 26
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The Viterbi Algorithm — derivation

e Define the viterbi probability:

Vil =maxy, o P(Xses Xps Vi Vs X Vi = 1)
=maXg, o P Vi =1 X X Vi Y )P (Ko X Vi V1)
=maXy, 3 P(Xya Vi =1 V)P Koo Xy g Yireens Vo1 X V)
=max, P(x,,, yr =1y =1) MaXy,, 3 P(Xpseeos X s Vi Yo Xps Vi =1)

=max; P(x;,,, |Yfk+1 :1)‘7/;/(1//

=P(X, |Yfk+1 =1)max; a/,eri

The Viterbi Algorithm s

e Input:x =X, ..., Xp;
Initialization:
e =Plx, |)’1k =17,
Iteration:
W =Plx, |y =lymax, ",
Ptr(k,t) =argmax; a, V',
Termination:
P(x,y") = max, *
TraceBack:
y; —argmax, 1j*

Vi1 =Ptr(y; 1)

Eric Xing 28
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Computational Complexity and
implementation details

\
e What is the running time, and space required, for Forward,

and Backward? _
atk = p(Xl | ytk :1)Za:—1ai,k

ﬁtk = Zak,i p(XHl | yti+1 :1)ﬂti+1
Vtk = p(xt | ytk :1) max; ai,kvti—l
Time: O(KN); Space: O(KN).

e Useful implementation technique to avoid underflows
e Viterbi: sum of logs
e Forward/Backward: rescaling at each position by multiplying by a constant

[ X X ]
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Learning HMM: two scenarios o

e Supervised learning: estimation when the “right answer” is
known

e Examples:

GIVEN:  agenomic region X = X;...X; go0,000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters 6 of the model to maximize
X 6) --- Maximal likelihood (ML) estimation

Eric Xing 30
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Supervised ML estimation

|
e Given x= x;...x), for which the true state path y = y,...yyis

known,

e Define:
A, = # times state transition /- j occurs in'y
By, = # times state /in y emits Ain x

e We can show that the maximum likelihood parameters fare:

. . T ; j
g B D) DD Vi - A

v #(/ o) Z,, Zi—:z y;;‘,r—l Z/‘ AU

b_ML _ #(/ - k) _ anzﬂyl;fxrfr - B/k

Tk

GOV W

e What if y is continuous? We can treat {(Xﬂf,ynvf): t=1:T,n :1;/\/} as AT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...

|
(HomeworBIf.)

(Homework!)

Eric Xing

Supervised ML estimation, ctd.

e Intuition:

e When we know the underlying states, the best estimate of @is the
average frequency of transitions & emissions that occur in the training
data

e Drawback:
e Given little data, there may be overfitting:
P(x|0) is maximized, but 0 is unreasonable
0 probabilities — VERY BAD

e Example:
e Given 10 casino rolls, we observe
x=2,1,5,6, 1,2, 3,6, 2,3
y=F, F, F, F, F, F, F, F, F, F
e Then: age=1, ag =0
Bry = bz = .2;
Bry = .3; by = 05 bps = beg = .1

Eric Xing 32
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Pseudocounts :
e Solution for small training sets:
e Add pseudocounts
A = # times state transition /—»joccursiny + R;;
By = # times state /in y emits Ainx+ 5,
° R,j, S;are pseudocounts representing our prior belief
e Total pseudocounts: R;=% R, 5;= %5,
--- "strength" of prior belief,
--- total number of imaginary instances in the prior
e Larger total pseudocounts = strong prior belief
e Small total pseudocounts: just to avoid O probabilities ---
smoothing
Eric Xing 33
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Unsupervised ML estimation :

e Given x= x;...xy for which the true state path y= y,...yy/is
unknown,

o EXPECTATION MAXIMIZATION

o. Starting with our best guess of a model M, parameters &
1. Estimate A;;, B, in the training data

How? 4 :Zn‘,<y;‘r71)/n/t,> B, :zm<yn/f>)(nk¢, How? (homework)
2. Update ¢according to A, B,

Now a "supervised learning" problem

3. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm
We can get to a provably more (or equally) likely parameter set 8 each iteration

Eric Xing 34
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The Baum Welch algorithm

\
e The complete log likelihood

.
4(91 X, y) = |Og P(Xa y) = |09H[P(Yn1)HP()’nr | yn,r—l)
n =2
e The expected complete log likelihood
(£Oxy)= ;(<y;ﬁ>p(yn oo ﬂ/]+ ;é[@mm}

e EM
e The E step

Var =(¥ie) = Pyas =11x,)

&l =(yar i) = Pyara =Lyl =11x,)
e The M step ("symbolically" identical to MLE)

T

px,, | Xn,r)J

=

T .
|Oga,‘/j+22[xnfr<yg‘r>p(ym‘xn) IOgbﬁkj

P(Ynp1:Yntlxn) praleuy

) T T
M Zn}’,’m a,j“ = Z"Zfr:ié,:: b = Zan:th*:\/:f
' N Zn Zrzl Vnt Zn Zle Vnt

Eric Xing 35

The Baum-Welch algorithm -- §§:
comments oo

Time Complexity:

# iterations x O(K2N)

e Guaranteed to increase the log likelihood of the model

e Not guaranteed to find globally best parameters

e Converges to local optimum, depending on initial conditions

e Too many parameters / too large model: Overt-fitting
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