Machine Learning

10-701/15-781, Fall 2006
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Learning Graphical Models &
The goal:
Given set of independent samples (assignments of
random variables), find the best (the most likely?)
Bayesian Network (both DAG and CPDs)
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Learning completely observed
GMs

e The data:
{(20,x0), (22 x?)), (23, x3), ... (zV xNM)}

Review: sess
the basic idea underlying MLE oo

e The completely observed model:

e Zis a class indicator vector

(-0

whereZ  =[01], and Y 7, =1

7 and a datum is in class W.p. 7;
M All except one
of these terms

_ _ 2] Z3 M
P(z, =1|7)=m =7 x 12 x...x 71\ will be one

p@)=]]=x

e JXis a conditional Gaussian variable with a class-specific mean

1
p(x|z, =1, p,0) = e eXp{Z},Z(X-ﬂm)Z}

(270?)
p(x]2,1,6) =[ [N(X| . o)™
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Review:
the basic idea underlying MLE

e Data log-likelihood
(0] D) = | log [ p(z™ | 7)p(x™ | 2™, 1,0) %

=Y log p(z™ | z)+ Y log p(x™ | 2, u,0)
= Zlog]_[ﬁrff"n) +> log [ TN(x™ | 1y, )
=> > zogr, - > 20 4 (X - )2 +C

e MLE
7. =argmax|(0| D), =321(0|D)=0,vm, st 7, =1
m
>z :
= g =4 m/:ny the fraction of
" N N samples of class m
N ) 70y (M) 70y ()
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MLE for general BNs 5

e If we assume the parameters for each CPD are globally
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one
per node:
£(6,D)=log p(D|6) = logH(H PO [ X ,Hi)j:Z[Zlog PCoi [ X ﬂi)j
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MLE for BNs with tabular CPDs

e Assume each CPD is represented as a table (multinomial)
where =
O = /J(X JIX., =k)

¢ Note that in case of multiple parents, X will have a composite state, a **,

CPD will be a high-dimensional table EE }

e The sufficient statistics are counts of family configurations

WA

1]
X2

e The log-likelihood is

£(0,0) = log H‘gljl//(k = Z”g‘k log &,
i.jk ik
e Using a Lagrange multiplier to enforce so ZJ. 0k =1 we get
n.
ijk

Znuk
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Partially observed GMs

e Speech recognition
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Fig. 1.7 Isolated Word Problem
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Partially observed GM o
e Biological Evolution
T years
Unobserved Variables ot

e A variable can be unobserved (latent) because:

e itis an imaginary quantity meant to provide some simplified and abstractive view
of the data generation process

e.g., speech recognition models, mixture models ...
e itis areal-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors ...

e itis areal-world object and/or phenomena, but sometimes wasn’t measured,
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen,

e Discrete latent variables can be used to partition/cluster data
into sub-groups (mixture models, forthcoming).

e Continuous latent variables (factors) can be used for
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models $e
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Mixture Models, con'd s

¢ A density model p(x) may be multi-modal.

e We may be able to model it as a mixture of uni-modal
distributions (e.g., Gaussians).

e Each mode may correspond to a different sub-population
(e.g., male and female).

.'..:.; .‘..', = NN
¢ 2 LY
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Gaussian Mixture Models (GMMs)

e Consider a mixture of K Gaussian components:
e Zis alatent class indicator vector:

P(z,) = multi(z, : 7) = ' (7, )"
k
e JXis a conditional Gaussian variable with a class-specific mean/covariance
12 =135y =— L FL0, - ) 2 0, - 1)
plx, 1z, =1, 1,%)= 172 OXP1 7 (X, - 24)" Zo (X, - 14y)

(272_)/"/2‘2/(‘

e The likelihood of a sample:

mixture component

mixture proportion

wI) =2, P =Umplx| 2 =Lus) T —=
- Zz” Hk((”k)z:N(Xn ::“k*zk)znk ): Z,/QN(XJ M Zg)

px,

Gaussian Mixture Models (GMMSs) G

e Consider a mixture of K Gaussian components:

p(xn\,u,Z) :Zk”kN(Xalﬂk’Zk)
(S

mixture proportion  mixture component

X

e This model can be used for unsupervised clustering.

e This model (fit by AutoClass) has been used to discover new kinds of stars in
astronomical data, etc.
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Why is Learning Harder?

\
e In fully observed iid settings, the log likelihood decomposes

into a sum of local terms (at least for directed models).
¢(60;D)=log p(x,z|0) =log p(z|8,)+log p(x| z,6,)

e With latent variables, all the parameters become coupled
together via marginalization

4(0;D)=log > p(x,z|0)=log > p(z16,)p(x|z,6,)
z ’ z

X, Xz X; X X> X,

Eric Xing

Toward the EM algorithm

e E.g., A mixture of K Gaussians:

-0

Z is a latent class indicator vector

p(z,) = multi(z, : 7) = " (, "

X is a conditional Gaussian variable with a class-specific
mean/covariance

1 .
p(x, |2t =1,1,) :Wexp{-%(xn 1) 5 (%, )
k

The likelihood of a sample:
P(,[ee.Z) =", p(z* =1]7)p(x,| 2 =1, 1,%)

= ZZ” Hk((”k)z‘& N(X, :/”kka)Z: )=Zk”kN(Xv|ﬂkka)
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Toward the EM algorithm

e Recall MLE for completely observed data

e Data log-likelihood

0

£(6;D)=log " p(z,,x,) =log[ [ p(z, | 7)p(X, | Z,, 1, 0)
= 2 log [T + X 10g [ TN (x,; 4, 0)*
n k n k
:Z;znk log 7, —Zgﬁi(xn -1)*+C

e MLE T e =argmax, £(0;D),

k
(L - Z) X,
Hy mie =argmax,, £(0;D) = Mowe = zz‘m: b
n
Oy me =argmax, £(6;D) !
e What if we do not know z,?
Eric Xing .

Expectation-Maximization (EM)
Algorithm H

e EM is an optimization strategy for objective functions that can
be interpreted as likelihoods in the presence of missing data.

e |tis much simpler than gradient methods:
e No need to choose step size.
e Enforces constraints automatically.
e Calls inference and fully observed learning as subroutines.

e EMis an lterative algorithm with two linked steps:

e E-step: fill-in hidden values using inference, p(zx, ).

e M-step: update parameters t+1 using standard MLE/MAP method applied to
completed data

e We will prove that this procedure monotonically improves (or
leaves it unchanged). Thus it always converges to a local
optimum of the likelihood.
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e Start:
e "Guess" the centroid g and coveriance 2, of each of the K clusters
e Loop
e Foreach point n=1to N,
compute its cluster label:
t \T 5 -1(t t
200 = argmax(x, - 4")" £, (x, - 1)
e For each cluster k=1:K
S(7 (1)
IL[(HI) o Zné(zn 'k)X” Z(Ul) .
ko= ko T
2..0(z.K)
w2 L . -3, w3 B3 S
ge. Se. . gee . RPN o gae
7 o = R H] &7 - 4
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Expectation-Maximization g
e Start:
e "Guess" the centroid 4 and coveriance %, of each of the K clusters
e Loop
2 & :' L=1 - L=4 e |
e O =& ﬁ @
[ ..' l'..n‘ . _. L) L] i L] . 4
'. _.'-:. Q g %
(@ (c) (d) (e)
L=6 .@ L=8 '{-3 L=10 @ L=12 '(-3 .
., - tga? = I - ’ 0"';* . ’
g8 g |8
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(f) (9) (h) (i)
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Example: Gaussian mixture
model &

p(z,) = multi(z, :7) = 3" (x, )"

o A mixture of K Gaussians:
e Zis a latent class indicator vector ;
N

e Xis a conditional Gaussian variable with a class-specific mean/covariance

1
pX, 12 =1, u,%) = WQXP{'%(XH 1) 2 (x, _/Uk)}
k

e The likelihood of a sample:
px | )=, p(z“ =1|7)p(x,| 2" =1, 1,%)
=2 Hk((ﬂk)z”kN(Xﬂ 1/@,204): > N 1, Z)
e The expected complete log likelihood
(4.(0;%,2)) =D (log p(z, 1 7)), +2<Iog PO, 1200 465)

n

:Z%XﬁWMm—%Z%XﬁWM—MYZNM—MHmﬁM+Q
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E-step H

o We maximize</c (0)> iteratively using the following
iterative procedure:

— Expectation step: computing the expected value of the
sufficient statistics of the hidden variables (i.e., z) given
current est. of the parameters (i.e., zand u).

7N (% | 10 2)
2 ON (| 42, Z)

k k k
Z-n(t) :<Zn >qm = p(z, =1] X“u(t)’z(t)) =

Here we are essentially doing inference

Eric Xing 22
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M-step

e We maximize</€ (9)> iteratively using the following
iterative procudure:

— Maximization step: compute the parameters under

N
current results of the expected value of the hidden variables
m, =argmax(l(0)), = Z(.(0)=0,vk, stz =1
k
* zn Z: (t) :(I) n
= = < >q N:Zﬂ74:<k%
k(t)
w =argmax(1(0)), = g :2”77"“:” Fact:
anﬂ alogla?| .
K(t) (t+1) (ts1)\T oA
. € Do Tr O = )% = ™)
¥, =argmax(1(0)), = ={= 0 ('\ﬁ:x:xxr
This is isomorphic to MLE except that the variables that are hidden are
replaced by their expectations (in general they will by replaced by their
Erio Xina corresponding "sufficient statistics") 2
[ X X ]
0000
[ X XX
[
C . K [ X J
ompare. K-means o
e The EM algorithm for mixtures of Gaussians is like a "soft
version" of the K-means algorithm.
¢ In the K-means “E-step” we do hard assignment:
t PNT -1t t
2 =argmax(x, - i) =0 (x, - )
e In the K-means “M-step” we update the means as the
weighted sum of the data, but now the weights are 0 or 1:
S( (1)
,Lz(f+1) _ Zné(zﬂ KX,
kKT t
>.,8(z" k)
AN et o x’ RN x. PN SR, LN
KA * T & &2
> L] A > * >
[E)] ®) [G] d) (€] m
Eric Xing 24

12



[ X X ]
0000
0000
82
EM for general BNs &
while not converged
% E-step
for each node /
£55,=0 % reset expected sufficient statistics
for each data sample »
do inference with X, ,
for each node /
ESS, += (55,(%,,.%,,))
' o P(Xn,/—llxﬂﬁ/—/)
% M-step
for each node /
0,:= MLE(£ESS,)
[ X X ]
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Partially Hidden Data o

e Of course, we can learn when there are missing (hidden)
variables on some cases and not on others.

e In this case the cost function is:

4(0;:0)= Y logp(x,.y,10)+ > 109> p(X,.y,|6)

neComplete meMissing Ym

Note that ¥, do not have to be the same in each case --- the data can have different
missing values in each different sample

e Now you can think of this in a new way: in the E-step we
estimate the hidden variables on the incomplete cases only.

e The M-step optimizes the log likelihood on the complete data
plus the expected likelihood on the incomplete data using the
E-step.
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Optional Material!

-- Theory underlying EM

Eric Xing 27

Theory underlying EM

e What are we doing?

e Recall that according to MLE, we intend to learn the model
parameter that would have maximize the likelihood of the
data.

e But we do not observe z, so computing
4(0;D)=log > p(x,z|0)=log > p(z16,)p(x|z,6,)

is difficult!

e \What shall we do?

Eric Xing 28
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Complete & Incomplete Log
Likelihoods

e Complete log likelihood
Let X'denote the observable variable(s), and Z denote the latent variable(s).
If Zcould be observed, then ot

{(0,x,z)=logp(x,z|0)

e Usually, optimizing 4() given both zand xis straightforward (c.f. MLE for fully
observed models).

e Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of
factors, the parameter for each factor can be estimated separately.

e Butgiven that Z is not observed, () is a random quantity, cannot be
maximized directly.

Incomplete log likelihood
With zunobserved, our objective becomes the log of a marginal probability:

4.(6;x)=log p(x|6)=logy" p(x.z|6)

e This objective won't decouple

Expected Complete Log
Likelihood o

e For any distribution ¢(z), define expected complete log likelihood:

def
(4.(0:x,2)), = Y g(z| x.0)log p(x, 2| 0)
A deterministic function gf 0
Linear in £() --- inherit its factorizabiility

Does maximizing this surrogate yield a maximizer of the likelihood?

e Jensen’s inequality

£(0,x)=log p(x|6)
:|ngp(X,Z|¢9) /
. px.z10) V
ong/(zlx) 710

px.z16)
9(z1x)
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>Zq(Z|X)|Og = £(0:x)2(4(0;x,2)),+H,
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Lower Bounds and Free Energy

\
e For fixed data x, define a functional called the free energy:

Fg.02 Y gz | x)log PX 219

9(z|x)

e The EM algorithm is coordinate-ascent on F:
o E-step: gt =argmax F(¢g,0")
q
e M-step:

</4(6;x)

Hf+1 _ arg méiX F(qnl,gr)

Fas)

—%
Eric Xing Q ) 31
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E-step: maximization of expected | £32¢
o0
gw.rt. g .
o Claim: g =argmax F(q,0") = p(z| x,0")
q
e This is the posterior distribution over the latent variables given the data and the
parameters. Often we need this at test time anyway (e.g. to perform
classification).
e Proof (easy): this setting attains the bound 48,x)>F(¢,0)
- o PXZ167)
F(p(z|x,07),0") = (z]x,0")log —=———=
P 2t plz|x.6)
=2 g(z|x)log p(x|6")
=log p(x 6")=£(0"; x)
e Can also show this result using variational calculus or the fact
that 6.x)- Flg.00=KLlg | p(z1x.0))

16



E-step = plug in posterior
expectation of latent variables

e Without loss of generality: assume that p(x,26) is a
generalized exponential family distribution:

mh(x ,2) exp{z 0.f(x, z)}

e Special cases: if p(X] Z) are GLIMs, then £(x,2) =1 (2)&(X)

» The expected complete log likelihood under ;71 — p(7 | x,0")

is
<4(0";x,z)>¢1 = Zc/(z | x,0")log p(x,z|6")—A(6)
_Zgr<f(x z)>q(zw , —A©)
P~ LIMZQT<,7I (Z)>q(z‘x o E(x)-A(9)

M-step: maximization of expected
Lw.rt. 6 o

e Note that the free energy breaks into two terms:

p(x.z|6)
g(z|x)
=>.9(z|x)log p(x,z|0)~> g(z| x)logg(z | x)

F(g,0)=> g(z|x)log

=({4(0:x.2)),+H,

e The first term is the expected complete log likelihood (energy) and the second
term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to @ for fixed ¢
we only need to consider the first term:
F+1 . o
0" =arg mgx(!c @;x, z)>q,4 =arg maaqu(z | x)log p(x,z|6)

e Under optimal ¢", this is equivalent to soIvingza standard MLE of fully observed
model p(x,z| 6), with the sufficient statistics involving z replaced by their
expectations w.r.t. p(z| x,6).

Eric Xing 34
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Summary: EM Algorithm

\
e A way of maximizing likelihood function for latent variable

models. Finds MLE of parameters when the original (hard)
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

e Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this

guess:
o E-step: QM =argmax £ (g,0")
g
e M-step: gt = arg mglx F(q”l ,0")

e Inthe M-step we optimize a lower bound on the likelihood. In
the E-step we close the gap, making bound=likelihood.

A Report Card for EM s

e Some good things about EM:
e no learning rate (step-size) parameter
e automatically enforces parameter constraints
e very fast for low dimensions
e each iteration guaranteed to improve likelihood

e Some bad things about EM:

e can get stuck in local minima

e can be slower than conjugate gradient (especially near convergence)
e requires expensive inference step

e is a maximum likelihood/MAP method

Eric Xing 36

18



