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Machine LearningMachine Learning

1010--701/15701/15--781, Fall 2006781, Fall 2006

Learning Graphical ModelsLearning Graphical Models
Maximum Likelihood Estimation and Maximum Likelihood Estimation and 

Expectation MaximizationExpectation Maximization

Eric XingEric Xing

Lecture 14, October 31, 2006

Reading: Chap. 1&2, C.B book
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The goal:

Given set of independent samples (assignments of 
random variables), find the best (the most likely?) 
Bayesian Network (both DAG and CPDs)

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)
……..
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Learning completely observed  
GMs

Z

X

The data:
{(z(1),x(1)), (z(2),x(2)), (z(3),x(3)), ... (z(N),x(N))} 

Eric Xing 4

The completely observed model:
Z is a class indicator vector

X is a conditional Gaussian variable with a class-specific mean

Z

X
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Review: 
the basic idea underlying MLE
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the basic idea underlying MLE

Data log-likelihood

MLE
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MLE for general BNs
If we assume the parameters for each CPD are globally 
independent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one 
per node:
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MLE for BNs with tabular CPDs
Assume each CPD is represented as a table (multinomial) 
where

Note that in case of multiple parents,      will have a composite state, and the 
CPD will be a high-dimensional table
The sufficient statistics are counts of family configurations

The log-likelihood is

Using a Lagrange multiplier to enforce so                   we get

)|(
def

kXjXp
iiijk === πθ

iπ
X

∑= n
k

n
j
inijk i
xxn π,,

def

∑∏ ==
kji

ijkijk
kji

n
ijk nD ijk

,,,,

loglog);( θθθl

1=∑j ijkθ

∑
=

'
'

j
kij

ijkML
ijk n

n
θ

Eric Xing 8

Partially observed GMs
Speech recognition

A AA AX2 X3X1 XT

Y2 Y3Y1 YT... 

... 
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Partially observed GM
Biological Evolution

ancestor

A C

Qh
Qm

T years

?

AGAGAC
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Unobserved Variables
A variable can be unobserved (latent) because:

it is an imaginary quantity meant to provide some simplified and abstractive view 
of the data generation process

e.g., speech recognition models, mixture models …

it is a real-world object and/or phenomena, but difficult or impossible to measure
e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

it is a real-world object and/or phenomena, but sometimes wasn’t measured, 
because of faulty sensors; or was measure with a noisy channel, etc.

e.g., traffic radio, aircraft signal on a radar screen, 

Discrete latent variables can be used to partition/cluster data 
into sub-groups (mixture models, forthcoming).

Continuous latent variables (factors) can be used for 
dimensionality reduction (factor analysis, etc., later lectures).
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Mixture Models
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Mixture Models, con'd
A density model p(x) may be multi-modal.
We may be able to model it as a mixture of uni-modal 
distributions (e.g., Gaussians).
Each mode may correspond to a different sub-population 
(e.g., male and female).

⇒
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Gaussian Mixture Models (GMMs)
Consider a mixture of K Gaussian components:

Z is a latent class indicator vector:

X is a conditional Gaussian variable with a class-specific mean/covariance

The likelihood of a sample:

( )∑==
k

z
knn

k
nzzp ππ ):(multi)(

{ })-()-(-exp
)(

),,|( // knk
T

kn
k

m
k
nn xxzxp µµ

π
µ 1

2
1

2122
11 −Σ
Σ

=Σ=

( )( ) ∑∑ ∏
∑

Σ=Σ=

Σ===Σ

k kkkz k
z

kkn
z

k

k
kk

n

xNxN

zxpzpxp

n

k
n

k
n ),|,(),:(

),,|,()|(),(

µπµπ

µπµ 11
mixture proportion

mixture component

Z

X

Eric Xing 14

Gaussian Mixture Models (GMMs)
Consider a mixture of K Gaussian components:

This model can be used for unsupervised clustering.
This model (fit by AutoClass) has been used to discover new kinds of stars in 
astronomical data, etc.
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Why is Learning Harder?
In fully observed iid settings, the log likelihood decomposes 
into a sum of local terms (at least for directed models).

With latent variables, all the parameters become coupled 
together via marginalization
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Toward the EM algorithm
E.g., A mixture of K Gaussians:

Z is a latent class indicator vector

X is a conditional Gaussian variable with a class-specific 
mean/covariance

The likelihood of a sample:
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Recall MLE for completely observed data

Data log-likelihood

MLE

What if we do not know zn?
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Expectation-Maximization (EM) 
Algorithm

EM is an optimization strategy for objective functions that can 
be interpreted as likelihoods in the presence of missing data.
It is much simpler than gradient methods:

No need to choose step size.
Enforces constraints automatically.
Calls inference and fully observed learning as subroutines.

EM is an Iterative algorithm with two linked steps:
E-step: fill-in hidden values using inference, p(z|x, θt).
M-step: update parameters t+1 using standard MLE/MAP method applied to 
completed data

We will prove that this procedure monotonically improves (or 
leaves it unchanged). Thus it always converges to a local 
optimum of the likelihood.
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K-means
Start: 

"Guess" the centroid µk and coveriance Σk of each of the K clusters 

Loop
For each point n=1 to N,
compute its cluster label:

For each cluster k=1:K

)()(maxarg )()()()( t
kn

t
k

Tt
knk

t
n xxz µµ −Σ−= −1

∑
∑=+

n
t

n

n n
t

nt
k kz

xkz
),(

),(
)(

)(
)(

δ
δ

µ 1 ...)( =Σ +1t
k

Eric Xing 20

Expectation-Maximization
Start: 

"Guess" the centroid µk and coveriance Σk of each of the K clusters 

Loop
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Example: Gaussian mixture 
model

A mixture of K Gaussians:
Z is a latent class indicator vector

X is a conditional Gaussian variable with a class-specific mean/covariance

The likelihood of a sample:

The expected complete log likelihood
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We maximize           iteratively using the following           
iterative procedure:

─ Expectation step: computing the expected value of the 
sufficient statistics of the hidden variables (i.e., z) given 
current est. of the parameters (i.e., π and µ). 

Here we are essentially doing inference
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We maximize           iteratively using the following           
iterative procudure:

─ Maximization step: compute the parameters under               
current results of the expected value of the hidden variables

This is isomorphic to MLE except that the variables that are hidden are 
replaced by their expectations (in general they will by replaced by their 
corresponding "sufficient statistics") 
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Compare: K-means
The EM algorithm for mixtures of Gaussians is like a "soft 
version" of the K-means algorithm.
In the K-means “E-step” we do hard assignment:

In the K-means “M-step” we update the means as the 
weighted sum of the data, but now the weights are 0 or 1:
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EM for general BNs
while not converged

% E-step
for each node i

ESSi = 0 % reset expected sufficient statistics
for each data sample n

do inference with Xn,H

for each node i

% M-step
for each node i

θi := MLE(ESSi )
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Partially Hidden Data
Of course, we can learn when there are missing (hidden) 
variables on some cases and not on others.
In this case the cost function is:

Note that Ym do not have to be the same in each case --- the data can have different 
missing values in each different sample

Now you can think of this in a new way: in the E-step we 
estimate the hidden variables on the incomplete cases only.
The M-step optimizes the log likelihood on the complete data 
plus the expected likelihood on the incomplete data using the 
E-step.
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Optional Material!

-- Theory underlying EM 

Eric Xing 28

Theory underlying EM
What are we doing?

Recall that according to MLE, we intend to learn the model 
parameter that would have maximize the likelihood of the 
data. 

But we do not observe z, so computing 

is difficult!

What shall we do?
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Complete & Incomplete Log 
Likelihoods

Complete log likelihood
Let X denote the observable variable(s), and Z denote the latent variable(s). 
If Z could be observed, then

Usually, optimizing lc() given both z and x is straightforward (c.f. MLE for fully 
observed models).
Recalled that in this case the objective for, e.g., MLE, decomposes into a sum of 
factors, the parameter for each factor can be estimated separately.
But given that Z is not observed, lc() is a random quantity, cannot be 
maximized directly.

Incomplete log likelihood
With z unobserved, our objective becomes the log of a marginal probability:

This objective won't decouple 
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Expected Complete Log 
Likelihood
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For any distribution q(z), define expected complete log likelihood:

A deterministic function of θ
Linear in lc() --- inherit its factorizabiility
Does maximizing this surrogate yield a maximizer of the likelihood?

Jensen’s inequality



16

Eric Xing 31

Lower Bounds and Free Energy
For fixed data x, define a functional called the free energy:

The EM algorithm is coordinate-ascent on F :
E-step:

M-step:
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E-step: maximization of expected 
lc w.r.t. q

Claim: 

This is the posterior distribution over the latent variables given the data and the 
parameters. Often we need this at test time anyway (e.g. to perform 
classification).

Proof (easy): this setting attains the bound l(θ;x)≥F(q,θ )

Can also show this result using variational calculus or the fact 
that
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E-step ≡ plug in posterior 
expectation of latent variables

Without loss of generality: assume that p(x,z|θ) is a 
generalized exponential family distribution:

Special cases: if p(X|Z) are GLIMs, then 

The expected complete log likelihood under                      
is
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M-step: maximization of expected 
lc w.r.t. θ

Note that the free energy breaks into two terms:

The first term is the expected complete log likelihood (energy) and the second 
term, which does not depend on θ, is the entropy.

Thus, in the M-step, maximizing with respect to θ for fixed q
we only need to consider the first term:

Under optimal qt+1, this is equivalent to solving a standard MLE of fully observed 
model p(x,z|θ), with the sufficient statistics involving z replaced by their 
expectations w.r.t. p(z|x,θ).

qqc

zz

z

Hzx

xzqxzqzxpxzq
xzq

zxpxzqqF

+=

−=

=

∑∑

∑

),;(

)|(log)|()|,(log)|(
)|(
)|,(

log)|(),(

θ

θ

θ
θ

l

∑== +
+

z
qc

t zxpxzqzx t )|,(log)|(maxarg),;(maxarg θθθ
θθ

1
1 l



18

Eric Xing 35

Summary: EM Algorithm
A way of maximizing likelihood function for latent variable 
models. Finds MLE of parameters when the original (hard) 
problem can be broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed data and current 
parameters.

2. Using this “complete” data, find the maximum likelihood parameter estimates.

Alternate between filling in the latent variables using the best
guess (posterior) and updating the parameters based on this 
guess:

E-step: 
M-step: 

In the M-step we optimize a lower bound on the likelihood. In 
the E-step we close the gap, making bound=likelihood.
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A Report Card for EM
Some good things about EM:

no learning rate (step-size) parameter
automatically enforces parameter constraints
very fast for low dimensions
each iteration guaranteed to improve likelihood

Some bad things about EM:
can get stuck in local minima
can be slower than conjugate gradient (especially near convergence)
requires expensive inference step
is a maximum likelihood/MAP method


