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Recap of Basic Prob. Concepts o

e Joint probability dist. on multiple variables:

P(Xl,XZ,X3,X4,X5,X6)
= P(Xl)P(XZ | Xl)P(x3 | )(1Y XZ)P(X4 | Xl' XZY X3)P(X5 ‘ Xl' XZV XS’ XA)P(XG | XlY XZYX3YX4' X5)
o If Xi's are independent: (P(X|-)= P(X;))
P(vaz*Xsﬁmesvxe)
=P(Xl)P(Xz)P(XS)P(XA)P(Xa)P(Xe)=HP(X.)

e If Xi's are conditionally independent (as described by a
GM), the joint can be factored to simpler products, e.g.,
X

3

P(Xy, X3, X3, X4, X5, Xe)
= P(Xp) P(Xal Xp) P(X3l X3) P(Xyl X1) P(Xs| X,) P(Xgl Xz, Xs5)

P(Xel Xz Xs)
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Markov Random Fields see

Structure: an undirected
graph

* Meaning: a node is
conditionally independent of
every other node in the network
given its Directed neighbors

+ Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

» Give correlations between
variables, but no explicit way to
generate samples
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Representation

\
e Defn: an undirected graphical model represents a distribution

P(X;,...,X,) defined by an undirected graph H, and a set of
positive potential functions y, associated with cliques of H,

s.t. 1
P(XI""'Xn) ZZHWC(XC)

ceC
where Z is known as the partition function:

Z=> []w.(x)
X1y..0 Xy CEC
e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic” score of
their joint configuration.
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GMs are your old friends

Density estimation m,s ®
Parametric and nonparametric methods X
X
Regression
9 X Y
Linear, conditional mixture, nonparametric o &)
Q Q

Classification

Generative and discriminative approach X X
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Probabilistic Inference &

e We now have compact representations of probability

distributions: Graphical Models

e A GM Mdescribes a unique probability distribution P

e How do we answer queries about P?

e We use inference as a name for the process of computing
answers to such queries
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Query 1: Likelihood &
\
e Most of the queries one may ask involve evidence
e Evidence eis an assignment of values to a set £ variables in the
domain
e Without loss of generality £ ={ X,, ..., X}
e Simplest query: compute probability of evidence
PE)=)...> P(X,... X.€)
e this is often referred to as computing the likelihood of e
[ X X ]
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Query 2: Conditional Probability o
e Often we are interested in the conditional probability
distribution of a variable given the evidence
P(X |e)= P(Xe) _  P(Xe)
Ple) D P(X=xe)
e this is the a posteriori belief in X; given evidence e K 7: [?

e We usually query a subset Y of all domain variabﬁsk/}’:j)/,Z}
and "don't care" about the remaining, Z* t)

P(Y|e)=) P(Y.Z=1z]e)

e the process of summing out the "don't care" variables zis called
marginalization, and the resulting Ayje) is called a marginal prob.
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Applications of a posteriori Belief

e Prediction: what is the probability of an outcome given the starting
condition ?

T L S /7[(//77/))

e the query node is a descendent of the evidence -

=P R

e Diagnosis: what is the probability of disease/fault given symptems

> PlRid) PLEl8
PLALR )

e the query node an ancestor of the evidence = lp ( I\ i
us.
e Learning under partial observation D ( IQ(

e fill in the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not
restricted by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network
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Query 3: Most Probable
Assignment o

e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

B = Aty BlR| 11

e Such reasoning is usually performed under some given
evidence e, and ignoring (the values of) other variables z :

MPA(Y |e) =argmax, P(y|e) =argmax, Z P(y,z|e)

o this is the maximum a posteriori configuration of y.
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Applications of MPA

e Classification
e find most likely label, given the evidence

e Explanation
e what is the most likely scenario, given the evidence

Cautionary note:

e The MPA of a variable depends on its "context"---the set

of variables been jointly queried Lo
X ¥y Pexy)
e Example: RO [O 035
o MPAof X? i O fvZ o0.05
e MPAoOf (X ¥)? §]F0 O3
sZ g, Z o3
Eric Xing 13

Complexity of Inference

Thm:
Computing AX'= x| e) in a GM is NP-hard

e Hardness does not mean we cannot solve inference

e Itimplies that we cannot find a general procedure that works efficiently for
arbitrary GMs

e For particular families of GMs, we can have provably efficient procedures

Eric Xing 14




(X))
o000
o000
e0o
: o0
Approaches to inference &
e Exact inference algorithms
e The elimination algorithm v
. mmms ' (but will not cover in detail here)
-
e Approximate inference techniques
e Stochastic simulation / sampling methods ~
e Markov chain Monte Carlo methods v
e Variational algorithms (will be covered in advanced ML courses)
Eric Xing 15
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Marginalization and Elimination o

e A signal transduction pathway:

What is the likelihood that protein E is active?

e Query: Ae)

P(e)=>>> > P(abcde)

a naive summation needs to
enumerate over an
exponential number of terms

e By chain decomposition, we get

=>> > >®(a)P(b|a)P(c|b)P(d [c)P(e|d)

Eric Xing




Elimination on Chains oo
|
A~ o~ o—Coo—ED
e Rearranging terms ...
P(e)=>>>> P(a)P(b|a)P(c|b)P(d |c)P(e|d)
=> > > P(c|b)P(d|c)P(e|d)> P(a)P(b|a)
Elimination on Chains oo

A~~~ o—Co o=

e Now we can perform innermost summation
P(e)=>.2.> P(cIb)P(d[c)P(e|d)D P(a)P(ba)
:ZZZ P(c|b)P(d |c)P(e|d)&b)

e This summation "eliminates" one variable from our
summation argument at a "local cost".

Eric Xing 18




Elimination in Chains oo
\
CDO—CE D>~ o—Coo—ED
e Rearranging and then summing again, we get
P()=>.>"> P(clb)P(d|c)P(e|d)p(b)
=> > P(d[c)P(e|d)> P(c|b)p(b)
=> > P(d|c)P(e|d)p(c)
Elimination in Chains oo

CED—CE D>~~~
. S—

e Eliminate nodes one by one all the way to the end, we get

P(e) =) P(eld)p(d)
e Complexity:

e Each step costs O(|Val(X)|*|Val(Xi,,)|) operations: O(kn?)
e Compare to naive evaluation that sums over joint values of n-1 variables O(n)

Eric Xing 20
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Inference on General GM via sels
Variable Elimination -
General idea:
e Write query in the form
P(X; €)= ZZZH P(x | pa;)
e this suggests an "eIiminationmorder" f)f Iaient variables to be marginalized
e lteratively
e Move all irrelevant terms outside of innermost sum
e Perform innermost sum, getting a new term
e Insert the new term into the product
e wrap-up
P(X;, e
P(X, | &) = 1)
P(e)
o000
o000
o000
s
A more complex network o

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

Eric Xing 22
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Example: Variable Elimination 5
\
o Query{ P(A |h)
o Need to eliminate: B,C.D,E,F,6,H 0 o
e
e Initial factors: G Q
P(@)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e 6
e Choose an elimination order: H.6,F,E,D,C.B e 0
e Step 1:
e Conditioning (fix the evidence node (i.e., A) on its observed value (i.e., F])):
m.(e, f)=p(h=h|e, f) >
e This step is isomorphic to a marginalization step: OO
m,(e, f)=" p(hle, f)s(h=h) CENG
h D,
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0000
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Example: Variable Elimination o
e Query: A(B|h)
e Need to eliminate: B,C‘,D,/:',Fé 0 o
e Initial factors: e Q
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f|a)P(g|e)P(h]e, f) e o
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
& W
e Step 2: Eliminate &
° t
e m,(e)=> p(gle)=1
g o W
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)mg (e)ym, (e, T) O O
=P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e, f) G, £
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Example: Variable Elimination 5
\
e Query: P(B|h)
o Need to eliminate: B,CZD,E@ 0 o
e |Initial factors: e Q
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) (E) A
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e, f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, ) & W
e Step 3: Eliminate £~
e compute
m,(e,a)=> p(fla)m,(e f)
f e ¢
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m, (a,e) O, y
B
00
0000
[ X XX}
. . . eoe
Example: Variable Elimination o
e Query: A(B|h)
e Need to eliminate: BCD,E 0 o
e |[nitial factors: e 0
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) CE) A
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e, f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e, ) Cé) CH)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)m, (a,e)
e Step 4: Eliminate £
" compute m.(a,c,d)=>"p(e|c,d)m,(a,e) o o
= P(a)P(b)P(c|b)P(d|a)m.(a,c,d) e.y
B

Eric Xing
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Example: Variable Elimination 5
\
e Query: P(B|h)
e Need to eliminate: 8,0 0 o
e |nitial factors: e Q
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, T) G 6
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) &) A
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m,(a,e)
= P(a)P(b)P(c|b)P(d|a)m,(a,c,d)
e Step 5: Eliminate D @ @
o compute m,(a,c) =Y p(d|a)m,(a,c,d) G
d
= P(a)P(b)P(c|d)m,(a,c)
00
0000
o000
Example: Variable Elimination o
e Query: A(B|h)
e Need to eliminate: 8,C 0 0
e Initial factors: e Q
P(@)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]|e, f)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f [a)P(g|e)m, (e, f) e o
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)m,(e, ) e 0
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
e Step 6: Eliminate €

e compute m, (a, b) = Z p(C | b)md (a, C)

= P(a)P(b)P(c|d)m,(a,c)

Eric Xing
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Example: Variable Elimination 5
e Query: P(B|h)
o Need to eliminate: B 0 o
e |nitial factors: e Q
P(@)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h|e, f)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, f) e 6
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f [a)m,(e, ) e 0
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m, (a,b)
e Step 7: Eliminate 8 @
* compute m,(a) = p(b)m,(a,b)
b
= P(a)m,(a)
00
0000
o000
Example: Variable Elimination o
e Query: A(B|h)
e Need to eliminate: B 0 0
e Initial factors: e Q
P(@)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e o
= P(@)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, f)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f |a)m,(e, ) e 0

= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m, (a,e)

= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)

= P(a)P(b)P(c|d)m,(a,c)

= P(a)P(b)m,(a,b)

= P(a)m,(a)
e Step8:Wrap-up  p(ah)=p(@m,(a), p(h)=2 p(a)m,(a)
p(a)m,(a) :

= PEIN=$am @

30
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Complexity of variable 3
.. . b
elimination :
e Suppose in one elimination step we compute
m', (x, yl,...,yk)— Tm(xy,)
This requires
° k-VaI(X)uItipIications
ll.
h
— Foreach value of x, y;, ..., y,, we do kA multiplications
[Val(X)] e [T|Val(Y,,) additions
— For each value of y,, ..., v, we do /Va/(X)/ additions
Complexity is exponential in number of variables in the
~_intermediate factor
. . [ X X ]
Understanding Variable sels
Elimination H

e A graph elimination algorithm

@ @ @ @ @ P @ @D @ @ D _LD D _@
GHHAAY =7
@ @ @ & @ -

@

moralization graph elimination

Eric Xing
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Elimination Cliques '
@ G @ D
© O O—
s o 7 géo
©®@ G @ @
@ @ @ @ @ @ _(D
O— O— O— O—@
-<5] :9 <ol L)
@ & D)
m, (e, ) m, (e) m; (e,a) m,(a,c,d)
& @D Opwr s = @@ = @
-=> m"
m, (&,¢) m.(a,b) m, (a)
Understanding Variable sels
Elimination H

e A graph elimination algorithm

.51 ] & &P
O—B &—>B &
B,

e Intermediate terms correspond to the cliques resulted from
elimination

e “good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found

e Applies to undirected GMs

Eric Xing 34
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A clique tree

m,(a,c,d)

=Y p(elc,d)m,(e)m, (a,e)

Eric Xing 35

From Elimination to Message
Passing

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree

® @ ® @ ® @ ® @ DD DD OO OO O
25 B
QD O O—D O—C O—C O—OD 0@ O
HHHAAT
O D S D D

m,(a,c,d)

=" p(elc,d)m,(e)m, (a,e)

(&

e Messages can be reused

Eric Xing 36
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From Elimination to Message
Passing

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree
e Another query ...

o Messages m.and m, are reused, others need to be recomputed

Eric Xing 37

A Sketch of the Junction Tree
Algorithm H

e The algorithm
e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

e Results in marginal probabilities of all cliques --- solves all
queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,
and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...

Eric Xing 38
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Approaches to inference &
e Exact inference algorithms
e The elimination algorithm v
e The junction tree algorithms \ (but will not cover in detail here)
e Approximate inference techniques
e Stochastic simulation / sampling methods ~
e Markov chain Monte Carlo methods v
e Variational algorithms (later lectures)
Eric Xing 39
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Monte Carlo methods &

e Draw random samples from the desired distribution

e Yield a stochastic representation of a complex distribution
e marginals and other expections can be approximated using sample-based
averages
1 N
ELFO0l=—2 f(x")
N =
e Asymptotically exact and easy to apply to arbitrary models
e Challenges:
e how to draw samples from a given dist. (not all distributions can be trivially
sampled)?
e how to make better use of the samples (not all sample are useful, or eqally
useful, see an example later)?
e how to know we've sampled enough?
Eric Xing 40
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Example: naive sampling

e Sampling: Construct samples according to probabilities given in a

BN.
Burglary

EO BO A0 MO Jo
EO BO A0 MO Jo
EO BO AO MO J1
EO BO A0 MO Jo
EO BO A0 MO Jo
T EO | BO | A0 | Mo | Jo
Alarm example: (Choose the right sampling sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false,
BO. Same for E0. P(A|BO, E0)=<0.001, 0.999> suppose EO BO AQ MO Jo
ftis false... _ _ EO | BO | A0 MO | JO
2) Frequency counting: In the samples right,
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>. EO BO A0 MO Jo
Eric Xing 41
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Example: naive sampling .

e Sampling: Construct samples according to probabilities given in a

Alarm example: (Choose the right sampling EO BO AO MO Jo
sequence)

EO BO A0 MO Jo
3) what if we want to compute P(J|A1) ?
we have only one sample ... EO BO A0 Mo J1
P(J|AL1)=P(J,A1)/P(A1)=<0, 1>. EO BO A0 MO Jo
4) what if we want to compute P(J|B1) ? EO BO A0 Mo Jo
No such sample available! EO BO AO MO 10
P(J]A1)=P(J,B1)/P(B1) can not be defined.

E1 BO A1 M1 J1
For a model with hundreds or more variables,
rare events will be very hard to garner evough EO BO AO MO J0
samples even after a long time or sampling ... EO BO A0 MO Jo

EO BO AO MO JO

Eric Xing
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Monte Carlo methods (cond.) -
e Direct Sampling
e We have seenit.
e Very difficult to populate a high-dimensional state space
e Rejection Sampling
e Create samples like direct sampling, only count samples which is
consistent with given evidences.
[ J
e Markov chain Monte Carlo (MCMC)
(XY
eecs
. o000
Markov chain Monte Carlo -

e Samples are obtained from a Markov chain (of
sequentially evolving distributions) whose stationary
distribution is the desired p(x)

e Gibbs sampling
e we have variable set to X={x, x,, X;,... X\}

e ateach step one of the variables X’ is selected (at random or according
to some fixed sequences)

e the conditonal distribution p(X| X)) is computed
e avalue x;is sampled from this distribution

e the sample x;replaces the previous of X in X.

Eric Xing 44
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MCMC

e Markov-Blanket

A variable is independent from
others, given its parents,

children and children‘s parents.

d-separation.

= X X)= PX) MB(X))

e Gibbs sampling

Eric Xing

Create a random sample.
Every step, choose one
variable and sample it by
P(X|MB(X)) based on previous
sample.

MB(A)={B, E, J, M}
MB(E)={A, B}

45

MCMC

Eric Xing

Burglary

Earthquake ]3:’

£

i)

A ] PM)
T %
: T
Bl @ Fl o

To calculate P(J|B1,M1)

Choose (B1,E0,A1,M1,J1) as a
start

Evidences are B1, M1,
variables are A, E, J.

Choose next variable as A

Sample A by
P(AIMB(A))=P(A|B1, EO, M1,
J1) suppose to be false.

(B1, EO, A0, M1, J1)

Choose next random variable
as E, sample E~P(E|B1,A0)

46
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Complexity for Approximate

Inference

e Approximate Inference will
not reach the exact
probability distribution in
finite time, but only close to
the value.

e Often much faster than
exact inference when BN is
big and complex enough. In
MCMC, only consider
P(X|MB(X)) but not the
whole network.

Eric Xing
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