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Lecture 13, October 26, 2006

Reading: Chap. 8, C.B book
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P(X1, X2, X3, X4, X5, X6)
= P(X1) P(X2| X1) P(X3| X2) P(X4| X1) P(X5| X4) P(X6| X2, X5)

Recap of Basic Prob. Concepts
Joint probability dist. on multiple variables:

If Xi's are independent: (P(Xi|·)= P(Xi))

If Xi's are conditionally independent (as described by a 
GM), the joint can be factored to simpler products, e.g., 
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Structure: an undirected 
graph

• Meaning: a node is 
conditionally independent of 
every other node in the network 
given its Directed neighbors

• Local contingency functions 
(potentials) and the cliques in 
the graph completely determine 
the joint dist. 

• Give correlations between 
variables, but no explicit way to 
generate samples

X

Y1 Y2

Markov Random Fields
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Representation
Defn: an undirected graphical model represents a distribution 
P(X1 ,…,Xn) defined by an undirected graph H, and a set of 
positive potential functions yc associated with cliques of H, 
s.t.

where Z is known as the partition function:

Also known as Markov Random Fields, Markov networks …
The potential function can be understood as an contingency 
function of its arguments assigning "pre-probabilistic" score of 
their joint configuration.   
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Density estimation

Regression

Classification

Parametric and nonparametric  methods

Linear, conditional mixture, nonparametric

Generative and discriminative approach

Q

X

Q

X

X Y

m,s

X X

GMs are your old friends
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(Picture by Zoubin
Ghahramani and 
Sam Roweis)

An 
(incomplete) 

genealogy 
of graphical 

models
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Probabilistic Inference
We now have compact representations of probability 
distributions:  Graphical Models

A GM M describes a unique probability distribution P

How do we answer queries about P?

We use inference as a name for the process of computing 
answers to such queries
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Most of the queries one may ask involve evidence

Evidence e is an assignment of values to a set E variables in the 
domain
Without loss of generality E = { Xk+1, …, Xn }

Simplest query: compute probability of evidence

this is often referred to as computing the likelihood of  e
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Query 1: Likelihood



5

Eric Xing 9

Often we are interested in the conditional probability 
distribution of a variable given the evidence

this is the a posteriori belief in X, given evidence e

We usually query a subset Y of all domain variables X={Y,Z}
and "don't care" about the remaining, Z:

the process of summing out the "don't care" variables z is called 
marginalization, and the resulting P(y|e) is called a marginal prob.
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Query 2: Conditional Probability
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A CB
?

A CB
?

Applications of a posteriori Belief
Prediction: what is the probability of an outcome given the starting 
condition

the query node is a descendent of the evidence

Diagnosis: what is the probability of disease/fault given symptoms

the query node an ancestor of the evidence

Learning under partial observation
fill in the unobserved values under an "EM" setting (more later)

The directionality of information flow between variables is not 
restricted by the directionality of the edges in a GM

probabilistic inference can combine evidence form all parts of the network
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In this query we want to find the most probable joint 
assignment (MPA) for some variables of interest

Such reasoning is usually performed under some given 
evidence e, and ignoring (the values of) other variables z :

this is the maximum a posteriori configuration of y.
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Query 3: Most Probable 
Assignment
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x y P(x,y)
0 0 0.35
0 1 0.05
1 0 0.3
1 1 0.3

Applications of MPA

Classification 
find most likely label, given the evidence

Explanation 
what is the most likely scenario, given the evidence

Cautionary note:

The MPA of a variable depends on its "context"---the set 
of variables been jointly queried
Example:

MPA of X ?
MPA of (X, Y) ?
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Thm:
Computing P(X = x | e) in a GM is NP-hard

Hardness does not mean we cannot solve inference

It implies that we cannot find a general procedure that works efficiently for 
arbitrary GMs
For particular families of GMs, we can have provably efficient procedures

Complexity of Inference
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Approaches to inference

Exact inference algorithms

The elimination algorithm
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniques

Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
Variational algorithms (will be covered in advanced ML courses)
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A signal transduction pathway:

Query: P(e)

By chain decomposition, we get
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)(
a naïve summation needs to 
enumerate over an 
exponential number of  terms

What is the likelihood that protein E is active?

Marginalization and Elimination
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Elimination on Chains

Rearranging terms ...
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Now we can perform innermost summation

This summation "eliminates" one variable from our 
summation argument at a "local cost".
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Elimination on Chains
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Elimination in Chains

Rearranging and then summing again, we get
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Eliminate nodes one by one all the way to the end, we get

Complexity:
Each step costs O(|Val(Xi)|*|Val(Xi+1)|) operations: O(kn2)
Compare to naïve evaluation that sums over joint values of n-1 variables O(nk)
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Elimination in Chains
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General idea:
Write query in the form

this suggests an "elimination order" of latent variables to be marginalized  

Iteratively

Move all irrelevant terms outside of innermost sum
Perform innermost sum, getting a new term
Insert the new term into the product

wrap-up
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Inference on General GM via 
Variable Elimination
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B A

DC

E F

G H

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

A more complex network
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Query: P(A |h)
Need to eliminate: B,C,D,E,F,G,H

Initial factors:

Choose an elimination order: H,G,F,E,D,C,B

Step 1: 
Conditioning (fix the evidence node (i.e., h) on its observed value (i.e.,   )):

This step is isomorphic to a marginalization step:

B A

DC

E F

G H

),|()|()|(),|()|()|()()( fehPegPafPdcePadPbcPbPaP

),|~(),( fehhpfemh ==
h~

∑ ==
h

h hhfehpfem )~(),|(),( δ

B A

DC

E F

G

A regulatory network

Example: Variable Elimination
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Query: P(B |h)
Need to eliminate: B,C,D,E,F,G

Initial factors:

Step 2: Eliminate G
compute

B A

DC

E F

G H
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Example: Variable Elimination
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Query: P(B |h)
Need to eliminate: B,C,D,E,F

Initial factors:

Step 3: Eliminate F
compute

B A

DC

E F

G H

Example: Variable Elimination

),()|(),|()|()|()()(
),()|()|(),|()|()|()()(

),|()|()|(),|()|()|()()(

femafPdcePadPbcPbPaP
femegPafPdcePadPbcPbPaP

fehPegPafPdcePadPbcPbPaP

h

h

⇒
⇒

∑=
f

hf femafpaem ),()|(),(

),(),|()|()|()()( eamdcePadPbcPbPaP f⇒

B A

DC

E



13

Eric Xing 25

Query: P(B |h)
Need to eliminate: B,C,D,E

Initial factors:

Step 4: Eliminate E
compute

B A

DC

E F

G H

Example: Variable Elimination

),(),|()|()|()()(
),()|(),|()|()|()()(

),()|()|(),|()|()|()()(
),|()|()|(),|()|()|()()(

eamdcePadPbcPbPaP
femafPdcePadPbcPbPaP

femegPafPdcePadPbcPbPaP
fehPegPafPdcePadPbcPbPaP

f

h

h

⇒
⇒
⇒

∑=
e

fe eamdcepdcam ),(),|(),,(

),,()|()|()()( dcamadPbcPbPaP e⇒

B A

DC

Eric Xing 26

Query: P(B |h)
Need to eliminate: B,C,D

Initial factors:

Step 5: Eliminate D
compute

B A

DC

E F

G H

Example: Variable Elimination
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Query: P(B |h)
Need to eliminate: B,C

Initial factors:

Step 6: Eliminate C
compute

B A

DC

E F

G H

Example: Variable Elimination
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Query: P(B |h)
Need to eliminate: B

Initial factors:

Step 7: Eliminate B
compute

B A

DC

E F

G H

Example: Variable Elimination
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Query: P(B |h)
Need to eliminate: B

Initial factors:

Step 8: Wrap-up

B A

DC

E F

G H

Example: Variable Elimination
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Suppose in one elimination step we compute

This requires 
multiplications

─ For each value of x, y1, …, yk, we do k multiplications

additions

─ For each value of y1, …, yk , we do |Val(X)| additions

Complexity is exponential in number of variables in the 
intermediate factor
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Complexity of variable 
elimination
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moralization
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graph elimination

Understanding Variable 
Elimination

A graph elimination algorithm
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Elimination Cliques
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moralization
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graph elimination

Understanding Variable 
Elimination

A graph elimination algorithm

Intermediate terms correspond to the cliques resulted from 
elimination

“good” elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found 

Applies to undirected GMs
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A clique tree
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Our algorithm so far answers only one query (e.g., on one node), do 
we need to do a complete elimination for every such query? 
Elimination ≡ message passing on a clique tree

Messages can be reused
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B A

DC

E F

G H

B A

DC

B A

DC

E F

G

B A

DC

E F

B A

DC

E

B A

C

B A A

≡
∑=

e
fg

e

eamemdcep
dcam

),()(),|(
),,(

From Elimination to Message 
Passing
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E F

H
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E F
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fm

hm

From Elimination to Message 
Passing

Our algorithm so far answers only one query (e.g., on one node), do 
we need to do a complete elimination for every such query? 
Elimination ≡ message passing on a clique tree

Another query ...

Messages mf and mh are reused, others need to be recomputed
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A Sketch of the Junction Tree 
Algorithm 

The algorithm
Construction of junction trees --- a special clique tree

Propagation of probabilities --- a message-passing protocol

Results in marginal probabilities of all cliques --- solves all 
queries in a single run

A generic exact inference algorithm for any GM

Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique, 
and hence a good (i.e., thin) JT

Many well-known algorithms are special cases of JT
Forward-backward, Kalman filter, Peeling, Sum-Product ...
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Approaches to inference

Exact inference algorithms

The elimination algorithm
The junction tree algorithms      (but will not cover in detail here)

Approximate inference techniques

Stochastic simulation / sampling methods
Markov chain Monte Carlo methods
Variational algorithms (later lectures)
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Monte Carlo methods
Draw random samples from the desired distribution 

Yield a stochastic representation of a complex distribution
marginals and other expections can be approximated using sample-based 
averages

Asymptotically exact and easy to apply to arbitrary models

Challenges:
how to draw samples from a given dist. (not all distributions can be trivially 
sampled)?

how to make better use of the samples (not all sample are useful, or eqally 
useful, see an example later)?

how to know we've sampled enough?
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Example: naive sampling
Sampling: Construct samples according to probabilities given in a 
BN.

Alarm example: (Choose the right sampling sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, 
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose 
it is false... 
2) Frequency counting: In the samples right, 
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

J1M1A1B0E1

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J1M0A0B0E0

J0M0A0B0E0
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Example: naive sampling
Sampling: Construct samples according to probabilities given in a 
BN.

Alarm example: (Choose the right sampling 
sequence)

3) what if we want to compute P(J|A1) ? 
we have only one sample ...
P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ? 
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, 
rare events will be very hard to garner evough 
samples even after a long time or sampling ...

J1M1A1B0E1

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J0M0A0B0E0

J1M0A0B0E0

J0M0A0B0E0
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Monte Carlo methods (cond.)

Direct Sampling 
We have seen it.
Very difficult to populate a high-dimensional state space 

Rejection Sampling
Create samples like direct sampling, only count samples which is
consistent with given evidences.

....

Markov chain Monte Carlo (MCMC)



22

Eric Xing 43

Markov chain Monte Carlo

Samples are obtained from a Markov chain (of 
sequentially evolving distributions) whose stationary 
distribution is the desired p(x) 

Gibbs sampling
we have variable set to X={x1, x2, x3,... xN}

at each step one of the variables Xi is selected (at random or according 
to some fixed sequences)

the conditonal distribution p(Xi| X-i) is computed

a value xi is sampled from this distribution

the sample xi replaces the previous of Xi in  X.
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MCMC

Markov-Blanket
A variable is independent from 
others, given its parents, 
children and children‘s parents. 
d-separation.

⇒ p(Xi| X-i)= p(Xi| MB(Xi))

Gibbs sampling
Create a random sample. 
Every step, choose one 
variable and sample it by 
P(X|MB(X)) based on previous 
sample.

MB(A)={B, E, J, M}
MB(E)={A, B}
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MCMC
To calculate P(J|B1,M1)

Choose (B1,E0,A1,M1,J1) as a 
start

Evidences are B1, M1, 
variables are A, E, J.

Choose next variable as A

Sample A by 
P(A|MB(A))=P(A|B1, E0, M1, 
J1) suppose to be false.

(B1, E0, A0, M1, J1)

Choose next random variable 
as E, sample E~P(E|B1,A0) 

...
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Complexity for Approximate 
Inference

Approximate Inference will 
not reach the exact 
probability distribution in 
finite time, but only close to 
the value.
Often much faster than 
exact inference when BN is 
big and complex enough. In 
MCMC, only consider 
P(X|MB(X)) but not the 
whole network.


