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Recap of Basic Prob. Concepts o

e Joint probability dist. on multiple variables:

P(Xl,XZ,X3,X4,X5,X6)
= P(Xl)P(XZ | Xl)P(x3 | )(1Y XZ)P(X4 | Xl' XZY X3)P(X5 ‘ Xl' XZV XS’ XA)P(XG | XlY XZYX3YX4' X5)
o If Xi's are independent: (P(X|-)= P(X;))
P(vaz*Xsﬁmesvxe)
=P(Xl)P(Xz)P(XS)P(XA)P(Xa)P(Xe)=HP(X.)

e If Xi's are conditionally independent (as described by a
GM), the joint can be factored to simpler products, e.g.,
X

3

P(Xy, X3, X3, X4, X5, Xe)
= P(Xp) P(Xal Xp) P(X3l X3) P(Xyl X1) P(Xs| X,) P(Xgl Xz, Xs5)

P(Xel Xz Xs)
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Markov Random Fields

Structure: an undirected
graph

* Meaning: a node is
conditionally independent of
every other node in the network
given its Directed neighbors

» Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

* Give correlations between
variables, but no explicit way to
generate samples
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Representation

e Defn: an undirected graphical model represents a distribution
P(X;,...,X,,) defined by an undirected graph H, and a set of
positive potential functions y, associated with cliques of H,
s.t.

P(Xl""'xn) = l]i[l//c(xc)
Z ceC
where Z is known as the partition function:

Z=> Tlv.(x)
X1,.. Xy CeC
e Also known as Markov Random Fields, Markov networks ...

e The potential function can be understood as an contingency
function of its arguments assigning "pre-probabilistic" score of
their joint configuration.
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GMs are your old friends :
m,s
o
Parametric and nonparametric methods X
X
X Y
Linear, conditional mixture, nonparametric o @)
Q Q
Generative and discriminative approach X X
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Probabilistic Inference

e We now have compact representations of probability
distributions: Graphical Models

e A GM Mdescribes a unique probability distribution 2
e How do we answer queries about P?

e We use inference as a name for the process of computing
answers to such queries
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Query 1: Likelihood

e Most of the queries one may ask involve evidence

e Evidence eis an assignment of values to a set £ variables in the
domain

e Without loss of generality £={ X,.,, .., X}
e Simplest query: compute probability of evidence
P@E)=)...D0 P(X... X8)
% X
e this is often referred to as computing the likelihood of e

Eric Xing 8




Query 2: Conditional Probability

\
e Often we are interested in the conditional probability

distribution of a variable given the evidence

P(X.e) P(X.e)
P(e) D P(X =xe)

P(X |e)=

e this is the a posteriori belief in X] given evidence e

e We usually query a subset Y of all domain variables X={ ¥, 2}
and "don't care" about the remaining, Z

P(Y |e)=> P(Y.Z=1z]e)

e the process of summing out the "don't care" variables zis called
marginalization, and the resulting Ayle) is called a marginal prob.

Applications of a posteriori Belief | ::

e Prediction: what is the probability of an outcome given the starting
condition ?

A D=L O>=»_C O

e the query node is a descendent of the evidence

e Diagnosis: what is the probability of disease/fault given symptoms

I)
C A D=L D> 5
e the query node an ancestor of the evidence
e Learning under partial observation

e fill in the unobserved values under an "EM" setting (more later)

e The directionality of information flow between variables is not
restricted by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network
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[ X X ]
Query 3: Most Probable sels
Assignment H
e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest
e Such reasoning is usually performed under some given
evidence e, and ignoring (the values of) other variables z :
MPA(Y |e) =argmax, P(y|e) =argmax, Z P(y,z|e)
o this is the maximum a posteriori configuration of y.
[ X X ]
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Applications of MPA :

e Classification

o find most likely label, given the evidence

e Explanation

e what is the most likely scenario, given the evidence

Cautionary note:

e The MPA of a variable depends on its

"context"---the set

of variables been jointly queried

Xy Pl y)

e Example: o O 035
e MPA of X? o 7 0.05
o MPAOf (X, ¥)? 7 O o3
7 7 0.3

Eric Xing
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Complexity of Inference 5
Thm:
Computing AX'= x| e) in a GM is NP-hard
e Hardness does not mean we cannot solve inference
e Itimplies that we cannot find a general procedure that works efficiently for
arbitrary GMs
e For particular families of GMs, we can have provably efficient procedures
Eric Xing 13
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Approaches to inference &

e Exact inference algorithms

e The elimination algorithm v
e The junction tree algorithms \ (but will not cover in detail here)

e Approximate inference techniques

e Stochastic simulation / sampling methods N
e Markov chain Monte Carlo methods N
e Variational algorithms (will be covered in advanced ML courses)
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Marginalization and Elimination

e A signal transduction pathway:

What is the likelihood that protein E is active?
e Query: Ae)

P(e)=>>> > P(abcde)

a naive summation needs to
enumerate over an
exponential number of terms

e By chain decomposition, we get

=333 P(a)P(b|a)P(c|b)P(d|c)P(e|d)

o000

cose

. . . . oo
Elimination on Chains o

CAO—C D>~ o—Coo—CED

e Rearranging terms ...

P(e)=> > > S P(a)P(bla)P(c|b)P(d|c)P(e|d)
=>" >3 P(clb)P(d |c)P(e|d)>. P(a)P(b|a)
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Elimination on Chains o2
\
O~ O~ o~ oD
e Now we can perform innermost summation
Pe)=>.> > P(cIb)P(d[c)P(e|d)) P(a)P(b|a)
d ¢ b a
=> 2. > P(c|b)P(d |c)P(e|d)p(b)
d ¢ b
e This summation "eliminates" one variable from our
summation argument at a "local cost".
[ X X ]
eecs
: . . eoe
Elimination in Chains e

CED—CEA D>~ o~ o~

e Rearranging and then summing again, we get

PE)=>> > P(c|b)P(d |c)P(e|d)p(b)
=Y > P(d|c)P(e]d)> P(c|b)p(b)
=> > P(d|c)P(e|d)p(c)




Elimination in Chains

CLO—CA D>~~~

—

e Eliminate nodes one by one all the way to the end, we get

P(e) =) P(e|d)p(d)
e Complexity:

e Each step costs O(|Val(X))|*|Val(X,,,)|) operations: O(kn?)
e Compare to naive evaluation that sums over joint values of n-1 variables O(n¥)

Eric Xing 19
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Inference on General GM via sels
. . . . oo
Variable Elimination 5
General idea:
e Write query in the form
P(X; e)= ZZZH P(x | pa;)
Xn X3 Xp i
e this suggests an "elimination order" of latent variables to be marginalized
e lteratively
e Move all irrelevant terms outside of innermost sum
e Perform innermost sum, getting a new term
e Insert the new term into the product
e wrap-up
P(X;. e)
P(X;|e)=
P(e)
Eric Xing 20
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A more complex network

A food web

What is the probability that hawks are leaving given that the grass condition is poor?

[ X X ]
0000
0000
Example: Variable Elimination o
e Query: P(A|h)
e Need to eliminate: B,CD,E,F,6,H o 0
e Initial factors: 0 Q
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)P(h]|e, f) e o
Choose an elimination order: H,6,F,E,D,C.B
) & @
e Step 1: A regulatory network

e Conditioning (fix the evidence node (i.e., A) on its observed value (i.e., h)
m,(e, f)=p(h=h]e, f
(e 1) =p(h=Ne, ) .

)
e This step is isomorphic to a marginalization step: G ‘
CO—BO
22

m,(e, f)=> p(hle, f)s(h=h)
h D

Eric Xing
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Example: Variable Elimination 5
e Query: P(B|h)
e Need to eliminate: BCD,EF.6 0 o
e |nitial factors: G Q
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) e 6
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)m,(e, )
& W
e Step 2: Eliminate &
° t
e my(e)=>" p(gle)=1
g ® W
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)mg (e)m, (e, f) @O
=P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)m,(e, ) B, £
00
0000
o000
: . oo
Example: Variable Elimination o
e Query: A(B|h)
e Need to eliminate: B,C.D,E,F 0 o
e Initial factors: e 0
P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f |a)P(g|e)P(h|e, f) e o
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m,(e, T)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) &
e Step 3: Eliminate £
e compute
m,(e,a)=>_p(f a)m, (e, f)
f Ca) A
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m, (a,e) O

Eric Xing
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Example: Variable Elimination 5
e Query: P(B|h)
o Need to eliminate: BCD,E 0 o
e |Initial factors: e Q
P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) (ES A
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m,(e, f) CH)
= P(a)P(b)P(c|b)P(d|a)P(e|c,d)m, (a,e)
e Step 4: Eliminate £
e compute
m.(a,c,d)=> p(e|c,d)m,(a,e) o o
= P(a)P(b)P(c|b)P(d |a)m,(a,c,d) &
00
0000
[ X XX}
: . : ooe
Example: Variable Elimination o
e Query: A(B|h)
o Need to eliminate: 8,0 0 0
e |[nitial factors: 0
P(a)P(b)P(c|b)P(d [a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)P(g|e)m, (e, f) (&) (P
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)P(f |a)m, (e, f) CH)
= P(a)P(b)P(c|b)P(d |a)P(e|c,d)m,(a,e)
= P(a)P(b)P(c|b)P(d | a)m,(a,c,d)
e Step 5: Eliminate D D @
G

e compute m (a, C) = Z p(d | a)me (a, C, d)

= P(a)P(b)P(c|d)m,(a,c)

Eric Xing
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Example: Variable Elimination :
\
e Query: P(B|h)
e Need to eliminate: 8,C 0 o
e |Initial factors: e Q
P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f) CE) A
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f [a)P(g|e)m,(e, )
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m, (e, f) (&) CH)
= P(a)P(b)P(c|d)P(d[a)P(e|c,d)m(a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
e Step 6: Eliminate £
+ compte  m(a,b) =Y p(c|b)m,(a,c)
= P(a)P(b)P(c|d)m,(a,c) i
[ X X ]
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Example: Variable Elimination o
e Query: A(B|h)
e Need to eliminate: 2 0 0
e Initial factors: e 0
P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)P(g|e)P(h]e, f)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f|a)P(g|e)m,(e, f) e o
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m, (e, f) (&) CH)
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)m, (a,e)
= P(a)P(b)P(c|d)P(d|a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m, (a,b)
e Step 7: Eliminate 8 @
o compute m, (a) = Z p(b)m_ (a,b)
b
= P(a)m,(a)

Eric Xing
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Example: Variable Elimination 5
e Query: A(B|h)
o Need to eliminate: B 0 o
e |nitial factors: 0 Q
P@P(O)P(|d)P(d |a)P(elc,d)P(f [2)P(gle)P(hle, T)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)P(f[a)P(g|e)m,(e, f) G 0
= P(a)P(b)P(c|d)P(d |a)P(e|c,d)P(f |a)m, (e, f) (&) CH)
= P(a)P(b)P(c|d)P(d|a)P(e|c,d)m,(a,e)
= P(a)P(b)P(c|d)P(d |a)m,(a,c,d)
= P(a)P(b)P(c|d)m,(a,c)
= P(a)P(b)m.(a,b)
= P(a)m,(a)
e Step8:Wrap-up  p(ah)=p(@m,(a), p(h)=> p(@m,(a)
- p(a)m,(a) ‘
P(alh)= =—2"
= PEIN=5 @, (@
. . 00
Complexity of variable sete
elimination :

e Suppose in one elimination step we compute
M (Yareoe Vi) = 2, MY (% Vi Vi)
X k
m' (%, Yoo Vi) = [T mi(xye,)
i=1

This requires
o ke|Val(X)eJT|Val(Y;)| multiplications

— For each value of x, y;, ..., v, we do A multiplications
o [ValOO)[sTTVal(¥,,)| additions
i

— For each value of y,, ..., y,, we do /Va/(X)/ additions

Complexity is exponential in number of variables in the
intermediate factor

Eric Xing
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Understanding Variable
Elimination

e A graph elimination algorithm

@ @ @ @ @ @ @ @ @ @ 3‘0 o> @
coh Rt et
@ @ S & ©;

S

D @ D @
S @ —
e‘o - gée
& & & &
D @ D @ ® @ D _D
5 5 SF— oﬁ
-] o] ] L
& & &
m, (e, f) m, (e) m; (e,a) m,(a,c,d)
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Understanding Variable
Elimination

e A graph elimination algorithm

@ @ @ @ @ @ @ @ @ @ 3‘0 o> @
coh Rt et
@ @ S & ©;

e Intermediate terms correspond to the cliques resulted from
elimination

S

e “good” elimination orderings lead to small cliques and hence reduce complexity

(what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or near-

optimum can often be heuristically found

e Applies to undirected GMs

Eric Xing
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A clique tree

m,(a,c,d)

=> p(elc,d)m,(e)m (a,e)

Eric Xing
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From Elimination to Message
Passing

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree

® @ @ @ @ @ @ @ DD D_D o—@ @
e e

m,(a,c,d)

=Y p(elc,d)m,(e)m, (a,e)

(&

e Messages can be reused

Eric Xing 35

From Elimination to Message
Passing -

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree
e Another query ...

e Messages m,and m, are reused, others need to be recomputed

Eric Xing 36

18



A Sketch of the Junction Tree
Algorithm

e The algorithm
e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

e Results in marginal probabilities of all cliques --- solves all
queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,
and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...

[ X X ]
esce
. [
Approaches to inference '

e Exact inference algorithms

e The elimination algorithm v
e The junction tree algorithms \ (but will not cover in detail here)

e Approximate inference techniques

e Stochastic simulation / sampling methods N
e Markov chain Monte Carlo methods N
e Variational algorithms (later lectures)

Eric Xing 38
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Monte Carlo methods

Draw random samples from the desired distribution

Yield a stochastic representation of a complex distribution

e marginals and other expections can be approximated using sample-based
averages

E[f (0] = %Z F(x)

Asymptotically exact and easy to apply to arbitrary models

Challenges:

e how to draw samples from a given dist. (not all distributions can be trivially
sampled)?

e how to make better use of the samples (not all sample are useful, or eqally
useful, see an example later)?

e how to know we've sampled enough?

Eric Xing 39

Example: naive sampling

e Sampling: Construct samples according to probabilities given in a

BN.
Burglary

EO BO AO MO JO

T EO | BO | A0 | Mo | Jo
. E0 | BO | A0 | Mo | J1
— EO | BO | A0 MO | Jo

EO | BO | A0 | MO | Jo

L
T E0 | BO | A0 | MO | Jo

Alarm example: (Choose the right sampling sequence)

1) Sampling:P(B)=<0.001, 0.999> suppose it is false,

BO0. Same for E0. P(A|BO, E0)=<0.001, 0.999> suppose EO BO AD MO Jo
it is false... ) ) EO BO A0 MO Jo
2) Frequency counting: In the samples right,

P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>. EO BO AO MO Jo

Eric Xing 40
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Example: naive sampling :
|
e Sampling: Construct samples according to probabilities given in a
Alarm example: (Choose the right sampling EO BO A0 MO Jo

sequence)

EO BO AO MO JO

3) what if we want to compute P(J|A1) ?

EO BO A0 MO J1
we have only one sample ...

P(J|A1)=P(J,A1)/P(A1)=<0, 1>. EO BO AO MO Jo
4) what if we want to compute P(J|B1) ? EO BO A0 MO Jo
No such sample available! EO BO AO MO Jo

P(JJA1)=P(J,B1)/P(B1) can not be defined.

E1 BO A1 M1 J1
For a model with hundreds or more variables,
rare events will be very hard to garner evough EO BO A0 MO Jo

samples even after a long time or sampling ... EO BO AO MO Jo

EO BO A0 MO JO

Monte Carlo methods (cond.) G

e Direct Sampling

e We have seen it.
e Very difficult to populate a high-dimensional state space

e Rejection Sampling

e Create samples like direct sampling, only count samples which is
consistent with given evidences.

e Markov chain Monte Carlo (MCMC)

Eric Xing 42
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Markov chain Monte Carlo

e Samples are obtained from a Markov chain (of
sequentially evolving distributions) whose stationary
distribution is the desired p(x)

e Gibbs sampling

Eric Xing

we have variable set to X={x,, x,, X3,... X\}

at each step one of the variables X/ is selected (at random or according
to some fixed sequences)

the conditonal distribution p(.X| X ) is computed
a value x;is sampled from this distribution

the sample x; replaces the previous of X;in X.

43

MCMC

e Markov-Blanket

e A variable is independent from

others, given its parents,
children and children’s parents.
d-separation.

= pX} X))= p(X] MB(X)

e Gibbs sampling

e Create a random sample.

Eric Xing

Every step, choose one MB(A)={B, E, J, M}
variable and sample it by MB(E)={A, B}
P(X|MB(X)) based on previous

sample.

44
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MCMC

°
F(E) [ ]
Burglary Earthquake ) =
°
[ Y
T 95
Fl oo L4
7| 2
Fl oom .
Al kD A | BM) o
Tl 0 T| 70
w Fl 0 Fl oo °
°

Eric Xing

!
To calculate P(J|B1,M1)

Choose (B1,E0,A1,M1,J1) as a
start

Evidences are B1, M1,
variables are A, E, J.

Choose next variable as A

Sample A by
P(AIMB(A))=P(A|B1, EO, M1,
J1) suppose to be false.

(B1, EO, A0, M1, J1)

Choose next random variable
as E, sample E~P(E|B1,A0)

45

Complexity for Approximate

Inference

e Approximate Inference will
not reach the exact
probability distribution in
finite time, but only close to
the value. R

e Often much faster than
exact inference when BN is
big and complex enough. In
MCMC, only consider
P(X|MB(X)) but not the
whole network.

Eric Xing
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