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Last time: PAC Learning

1. Finite H, assume target functionc € H

Pr[(3h € H)s.t.(errorirgin(h) = O)A(errorgye(h) > ¢€)] < |H|e™ ™

T

Suppose we want this to be at most 6. Then m examples suffice:

m > 2(In|H| + In(1/5))

2. Finite H, agnostic learning: perhaps ¢ not in H

with probability at least (1-6) every h in H satisfies

In|H| 4+ In %
2m

errortrue(h) < errortrain(h> + J



What iIf H 1s not finite?

e Can’t use our result for finite H

* Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!



Shattering a Set of Instances

Definition: a dichotomy of a set S is a
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

Instance space X H ¥ YLS H




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

Instance space X

VC(H)=3




Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-5)?

le., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-6) approximately (g) correct

m > ~(41092(2/8) + 8VC(H) 1095(13/c))

4 550Me
Compare to our earlier results based on |H|: 7 D
1
m > —(In(1/8) + In|H]|) fvanva,
€ otvoY



VC dimension: examples

Consider X = ¥, want to learn c:X->{0,1} 14
What is VC dimension of Yl = X
« Open intervals: 1-/31 N

| =Vc(H1y if x >a theny=1¢else y=0 -

—

o

@L:\/C(H2> if £ > a then y =1 else

O
or, if x > a then y = 0 else 1

y:
y:

e Closed intervals:
"= "H3: ifa<z<btheny=1else y=0

H4: ifa<x<btheny=1e¢else y=20
or, ifa<x<btheny=0e¢elsey=1



VC dimension: examples
Consider X = R, want to learn ¢c:X->{0,1}

What is VC dimension of o o X
 Open intervals:

H1l: if x > a then y =1 else y = VC(H1)=1

H2: if x >a then y=1 else y
or, if x > a then y =0 else y

0
0 VC(H2)=2
1

e Closed intervals:
H3: ifa<z<btheny=1elsey=0 VC(H3)=2

H4: ifa<xz<btheny=1e¢else y=0 VC(H4)=3
or, ifa<x<btheny=0e¢elsey=1



VC dimension: examples

Consider X = 2, want to learn c:X—->{0,1}

What is VC dimension of lines in a plane?
e H={((wxth)>0 = y=1)}
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VC dimension: examples

Consider X = 2, want to learn c:X—->{0,1}

What is VC dimension of
e H={((w-xth)>0 = y=1)}
— VC(H1)=3
— For linear separating hyperplanes in n dimensions,
VC(H)=n+1



For any finite hypothesis space H,
give an upper bound on VC(H) in terms of
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More VC Dimension Examples

Decision trees defined over n boolean features
F:<Xy, ..X>>Y

Decision trees defined over n continuous features
Where each internal tree node involves a threshold test (X; > c)

Decision trees of depth 2 defined over n features

Logistic regression over n continuous features? Over n
boolean features?

How about 1-nearest neighbor?



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-8) approximately (&) correct?

m > 2(41092(2/8) + 8VC(H) 1092(13/¢))
€
How tight is this bound?

P
Lower bound on sample complexity (Ehrenfeucht et al., 1989): \ (X>

Consider any class C of concepts such that VC(C) > 2, any learner L, J/
any 0 <e<1/8,and any 0 < 06 <0.01. Then there exists a distribution D
and target concept in C, such that if L observes fewer examples than
Vo) —1

32¢

1
max |—1log(1/6),
€

Then with probability at least §, L outputs a hypothesis with errorp(h) > €



Agnostic Learning: VC Bounds
[Schoélkopf and Smola, 2002]

With probability at least (1-6) every h € H satisfies

VC(H)(In Vc(m +1)+1In?

errorirye(h) < errortmin(h)—l‘d
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Structural Risk Minimization .

Which hypothesis space should we choose?
* Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

J VCH)(In ;20 +1) +In4

m

errorirye(h) < erroryqgin(h)-+

* unfortunately a somewhat loose bound...



What You Should Know

Sample complexity varies with the learning setting
— Learner actively queries trainer
— Examples provided at random

Within the PAC learning setting, we can bound the probability that
learner will output hypothesis with given error

— For ANY consistent learner (case where ¢ 2 H)
— For ANY “best fit” hypothesis (agnostic learning, where perhaps c not in H)

VC dimension as measure of complexity of H

Quantitative bounds characterizing bias/variance in choice of H
— but the bounds are quite loose...

Mistake bounds in learning

Conference on Learning Theory: http://www.learningtheory.org



