Computational Learning Theory Part 2

VC dimension, Sample Complexity, Mistake bounds

Required reading:

Mitchell chapter 7

Optional advanced reading:

Kearns & Vazirani, 'Introduction to Computational Learning Theory'

Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

October 17, 2006

Last time: PAC Learning

1. Finite H, assume target function $c \in H$

$$\Pr[(\exists h \in H) s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)] \leq |H|e^{-\epsilon m}$$

Suppose we want this to be at most δ . Then m examples suffice:

$$m \ge \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

2. Finite H, agnostic learning: perhaps c not in H

with probability at least $(1-\delta)$ every h in H satisfies

$$error_{true}(h) \le error_{train}(h) + \sqrt{\frac{\ln|H| + \ln\frac{1}{\delta}}{2m}}$$

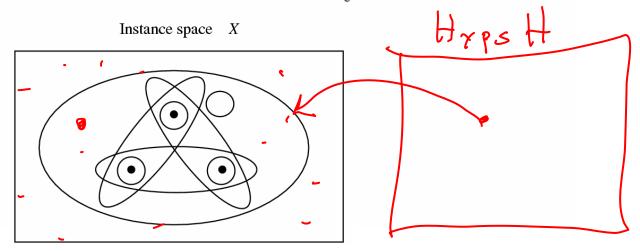
What if H is not finite?

- Can't use our result for finite H
- Need some other measure of complexity for H
 - Vapnik-Chervonenkis (VC) dimension!

Shattering a Set of Instances

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

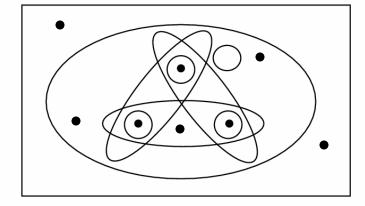
Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.



The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

Instance space X



VC(H)=3

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ε -exhaust VS_{H,D} with probability at least (1- δ)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ϵ) correct

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

Compare to our earlier results based on |H|:

$$m \geq \frac{1}{\epsilon}(\ln(1/\delta) + \ln|H|)$$

250mes Zero training

Consider $X = \Re$, want to learn c:X \rightarrow {0,1}

What is VC dimension of

Open intervals:

• Open intervals:

$$1 = V(x) + 1$$
: if $x > a$ then $y = 1$ else $y = 0$

or, if
$$x > a$$
 then $y = 1$ else $y = 0$ or, if $x > a$ then $y = 0$ else $y = 1$

Closed intervals:

)— H3: if
$$a < x < b$$
 then $y=1$ else $y=0$ H4: if $a < x < b$ then $y=1$ else $y=0$ or, if $a < x < b$ then $y=0$ else $y=1$

Consider $X = \Re$, want to learn $c: X \rightarrow \{0,1\}$

What is VC dimension of

Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$ VC(H1)=1

H2: if
$$x > a$$
 then $y = 1$ else $y = 0$ VC(H2)=2 or, if $x > a$ then $y = 0$ else $y = 1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H3)=2

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H4)=3 or, if $a < x < b$ then $y = 0$ else $y = 1$

Consider $X = \Re^2$, want to learn c:X \rightarrow {0,1}

What is VC dimension of lines in a plane?

•
$$H = \{ ((wx+b)>0 \rightarrow y=1) \}$$

Consider $X = \Re^2$, want to learn c:X \rightarrow {0,1}

What is VC dimension of

- $H = \{ ((w \cdot x + b) > 0 \rightarrow y = 1) \}$
 - VC(H1)=3
 - For linear separating hyperplanes in n dimensions,
 VC(H)=n+1

VC(H) < los 2 | H | <

For any finite hypothesis space H, give an upper bound on VC(H) in terms of |H|-

More VC Dimension Examples

- Decision trees defined over n boolean features F: $\langle X_1, ... X_n \rangle \rightarrow Y$
- Decision trees defined over n continuous features Where each internal tree node involves a threshold test $(X_i > c)$
- Decision trees of depth 2 defined over n features
- Logistic regression over n continuous features? Over n boolean features?
- How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \ge \frac{1}{\epsilon} (4 \log_2(2/\delta) + 8VC(H) \log_2(13/\epsilon))$$

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that $VC(C) \ge 2$, any learner L, $\sqrt{}$ any $0 < \epsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution \mathcal{D} and target concept in C, such that if L observes fewer examples than

$$\max\left[rac{1}{\epsilon}\log(1/\delta),rac{VC(C)-1}{32\epsilon}
ight]$$

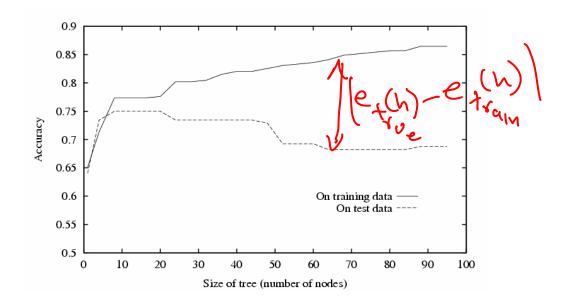
Then with probability at least δ , L outputs a hypothesis with $error_{\mathcal{D}}(h) > \epsilon$

Agnostic Learning: VC Bounds

[Schölkopf and Smola, 2002]

With probability at least (1- δ) every $h \in H$ satisfies

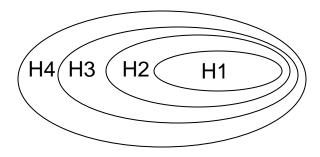
$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$



Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?

Bias / variance tradeoff



SRM: choose H to minimize bound on true error!

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

^{*} unfortunately a somewhat loose bound...

What You Should Know

- Sample complexity varies with the learning setting
 - Learner actively queries trainer
 - Examples provided at random
- Within the PAC learning setting, we can bound the probability that learner will output hypothesis with given error
 - For ANY consistent learner (case where c 2 H)
 - For ANY "best fit" hypothesis (agnostic learning, where perhaps c not in H)
- VC dimension as measure of complexity of H
- Quantitative bounds characterizing bias/variance in choice of H
 - but the bounds are quite loose...
- Mistake bounds in learning
- Conference on Learning Theory: http://www.learningtheory.org