Markov Decision Processes
and
Reinforcement Learning

Readings:
» Mitchell, chapter 13

» Kaelbling et al., [see class website]

Machine Learning 10-701
November 30, 2005

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

nnnnnnnnnnnnn
nnnnnnnnnn

Tom Mitchell, Dec 2006



Reinforcement Learning

[Sutton and Barto 1981; Samuel 1957; ...]

A | |
ol ¥ of ¥ 100]
2
o
a0 100 _.T:: G
A A A
| ‘ | |
a1 a0 :': 100

V'(s)=E[r, +yr,, +7°1,,+..]

Tom Mitchell, Dec 2006



R ———

Outline

Learning control strategies
— Credit assignment and delayed reward
— Discounted rewards

Markov Decision Processes
— Solving a known MDP

Online learning of control strategies
— When next-state function is known: value function V’(s)
— When next-state function unknown: learning Q’(s,a)

Role in modeling reward learning in animals

||||||||||||||||

ssssssssss Tom Mitchell, Dec 2006



Reinforcement Learning Problem

Agent
State Reward Action
Environment
a a a
SO 0 - SI 1 - 52 z -
"0 '] "

Goal: Learn to choose actions that maximize

ML ot +72;:2+ ..., where 0 gy <l

nnnnnnnnnnnnn

nnnnnnnnnn Tom Mitchell, Dec 2006



Markov Decision Process

e Set of states S

e Set of actions A

« At each time, agent observes state s, € S, then chooses
action a, € A

e Then receives reward r,, and state changes to s,,;
o Markov assumption: P(s,.; | Sy @, Siq, 8.4, -..) = P(Spq | Sp &)
e Also assume P(r,| s, a, S.;, a.4,...) = P(r,| S, &)

e The task: learn a policy n: S = A for choosing actions that

maximizes E[ry + yriy1 + 7o + ...]
O<~y<1

||||||||||||||||

ssssssssss Tom Mitchell, Dec 2006



MACHINE LEARNING

nnnnnnnnnn Tom Mitchell, Dec 2006



Reinforcement Learning Task for Autonomous Agent

Execute actions in environment, observe results, and

e Learn control policy n: S— A that maximizes Z Y Elr]
from every state s € S t=0

e Where 0 < A < 1 is the discount factor for future rewards

Note:
e Function to be learned is t: S— A
e But training examples of the form < <s,a>, r >

e —> avallable training experience is not input-output pairs
of the function to be learned !

MAGHINE LEARNING Tom Mitchell, Dec 2006



Value Function for each Policy

 Givenapolicy n:S -2 A, define

o0 - :
tions are

VT(s) — E t,. assuming actio
(s) [tZ:OW t chosen according to

 Then we want the policy ©° where
7 = arg max VT(s), (Vs)

 For any MDP, such a policy exists

o We'll write V*(s) = V™ (s)

* Note if we have V*(s) and P(s,|s;,a), we can compute
*(s)

||||||||||||||||

nnnnnnnnnn Tom Mitchell, Dec 2006



— — e —

Value Function — what are the V*(s) values?

SU??Oit /[\‘/15 Sl/u)u.}l/\ \07/ C\\/c_Lo/ 0\0{’:0\/1 —P«gm ch)q
5u PPOSC X - 0 ? S’f«+e
— 100 O g
73 %% 1| GO
0
R
10
2l =
<7O | OO
60 =70

r(s,a) (immediate reward)

MACHINE LEARNING
nnnnnnnnnn



0

70 i:/wl%"' GO
4[;1_# DHD mo*
7 70 & ee

r(s,a) (immediate reward)

nnnnnnnnnnnnn

uuuuuuuuuu Tom Mitchell, Dec 2006



Immediate rewards r(s,a) ﬁl: - (O

State values V*(s) oHO OHO —!
i.-.. L.-..
State-action values Q*(s,a) - -

r(s,a) (immediate reward) values

100 0
:I: g GQ 90 ol 100 —'B O

g1
H?z Hal + H H
8 90 100
ﬁ *E_ 81 :I: 90 - 100
Q(s,a) values V*(s) values
N L i G

s One Opt imal P OIiC}’



Recursive definition for V*(S)

. o g assuming actions are
Vi(s) = E[)_ v'rd] chosen according to the
t=0 optimal policy, 7*

V*(s1) = E[r(s1,a1)]+E[yr(s2, a2)]+E[y?r(s3,a3)]+. . ]

V¥(s1) = Elr(s1,a1)] + 7B, 5,0, [V (52)]

V*(s) = E[r(s,m*(s))] + VE g s.75(s) [V*(s))]

nnnnnnnnnnnnn

nnnnnnnnnn Tom Mitchell, Dec 2006



Value lteration for learning V* : assumes P(S,,,|S;, A) known

Initialize V(s) arbitrarily
Loop until policy good enough
Loop forsin S
Loop forain A
. Q(s,a) «—r(s,a) +~ Z P(s'|s,a)V (s

S’GS -
V(s) «— max Q(s,a)

End loop 0
0 100
——Hi— — i
End loo
p o G
0 0 *
0 0 100
*

V(s) converges to V*(s). Ol o]

Same alg works if we randomly S -l?

traverse the environment, as long

as visit every transition repeatedly




Value lteration

Interestingly, value iteration works even if we randomly
traverse the environment instead of looping through
each state and action methodically

e but we must still visit each state infinitely often on an
Infinite run

* For details: [Bertsekas 1989]
* Implications: online learning as agent randomly roams

If max (over states) difference between two successive
value function estimates is less that ¢, then the value of
the greedy policy differs from the optimal policy by no

more than 267/(1 o ,y)

||||||||||||||||
nnnnnnnn

Tom Mitchell, Dec 2006



So far: learning optimal policy when we
know P(s; | S, ¢, a;.4)

What if we don’t?

nnnnnnnnnnnnn

uuuuuuuuuu Tom Mitchell, Dec 2006



Q learning

Define new function, closely related to V*
V*(s) = Blr(s, 7 (s)] + vEg)g re(y [V ()]

Q(s,a) = E[r(s,a)] + vEg|5,[V*(s")]

If agent knows Q(s,a), it can choose optimal action
without knowing P(s,,,|s.,a) !

7*(s) = arg max Q(s,a) V*(s) = max Q(s,a)

And, it can learn Q without knowing P(s,,,|S;,a)

||||||||||||||||

nnnnnnnnnn Tom Mitchell, Dec 2006



@ Function Consider first the deterministic
case. P(s’| s,a) deterministic,
denoted &(s,a)

Define new function very similar to V*

Q(s,a) =r(s,a) +yV*(d(s,a))

If agent learns (), it can choose optimal action even
without knowing 4!

7w (8) = arg?ax[r(sﬁ a) +yV*((s,a))]

r*(s) = argmax Q(s, 0

@ is the evaluation function the agent will learn

nnnnnnnnnnnnn

uuuuuuuuuu Tom Mitchell, Dec 2006



e ——T R ———

Training Rule to Learn Q

Note 2 and V* closely related:
V*(s) = max Q(s,d)

Which allows us to write () recursively as

Q(st,a:) = 7(s¢,a:) + V7 ((s1,a1)))
r(st, ar) + max Q(st41,0')

Nice! Let @ denote learner’s current approximation
to (. Consider training rule

Q(s,a) + 7+ ymaxQ(s', )

where s’ is the state resulting from applying action
ML a 1n state s

MACHINE LEARNING

uuuuuuuuuu Tom Mitchell, Dec 2006



e ——

@ Learning for Deterministic Worlds

For each s, a initialize table entry Q(s,a) 0
Observe current state s
Do forever:

e Select an action a and execute it

e Receive immediate reward r

e Observe the new state s’

e Update the table entry for Q(s,a) as follows:
Q(s,a) <1+~ mﬂgm@(s’, a')

es <+ s

MACHINE LEARNING
nnnnnnnnnn

Tom Mitchell, Dec 2006



initial state: SI ( ':O next state: s2

A

Q(Slaa'rzghf) <~ T_i_f}(maXQ(SQv f)

—_—

="~ 04 0.9 max{63,81 (100})

— —_— T \ ——
+ 90

—_—

notice if rewards non-negative, then

(st a, n) @n—l—l(sv a) > Q?l(sa a)

and )
(VS,G,,TL) 0 S Qn(sva) S Q(S,Cb)

nnnnnnnnnnnn

uuuuuuuuuu Tom Mitchell, Dec 2006



Q converges to Q. Consider case of deterministic
world where see each (s, a) visited infinitely often.

Proof: Define a full interval to be an interval during
which each (s, a) is visited. During each full
interval the largest error in Q table is reduced by
factor of

Let @n be table aftqr n updates, and A, be the
maximum error in (),; that is

n — H}%'X |@n(3=a’) — Q(S,ﬂ)'

For any table entry Qn (s,a) updated on iteration
n + 1, the error in the revised estimate @Q,1(s,a) is

Qui1(s,a) = Q(s,a)] = |(r+vmaxQu(s', )

—(r +ymaxQ(s', )|
YImax Qu(s',d') — max Q(s', a’)
ymax [Qu(s',d) — Q(s',d)|
ymax [Qn(s”,a') — Q(s",a)
’}fA;

IA

IA

|@71+1(3? (L) o Q(S? a’)'

VAN

e | max fi(a) — max fo(a)| < max|fi(a) — fa(a)]

a a



Nondeterministic Case

() learning generalizes to nondeterministic worlds

Alter training rule to
Qn(s,a) — (1—an)Qn_1(s, a)+au, [r+max Qn1(s,a)]

where

1
ap = ..
1 + visits,(s,a)

Can still prove convergence of Q to Q [Watkins and
Dayan, 1992]

MACHINE LEARNING

uuuuuuuuuu Tom Mitchell, Dec 2006



Temporal Difference Learning

() learning: reduce discrepancy between successive
() estimates

One step time difference:
QW(sy,ar) =i+ max Q(s14+1,a)
Why not two steps?
Q¥ (s, ar) = re + yrepa + 7 mQXQA(SHQa a)
Or n?

Q(”)(.sh at) = retyrete Ay 14" maax@(sHm a)

Blend all of these:
Q/\(Sf,af) = (1—)\) lQ(U(Sf, Gf) + )\Q(g)(Sf, G«f) -+ )\QQ(3)(Sf,af)



Temporal Difference Learning

Q@ (st,a0) = (1-N) [QW(s1, ar) + AQP (51, ar) + NQP) (51, ar)
Equivalent expression:
QMs,ar) =re+[ (1 — A)max Q(sy, ar)
+A Qk(3t+1¢&t+1)]
TD(\) algorithm uses above training rule
e Sometimes converges faster than () learning

e converges for learning V* for any 0 < A <1
(Dayan, 1992)

e Tesauro’s TD-Gammon uses this algorithm

nnnnnnnnnnnn

uuuuuuuuuu Tom Mitchell, Dec 2006



Subtleties and Ongoing Research

e Replace Q table with neural net or other
generalizer

e Handle case where state only partially observable
e Design optimal exploration strategies

e Extend to continuous action, state

e Learn and use 0 : S x A — S

¢ Relationship to dynamic programming

nnnnnnnnnnnn

uuuuuuuuuu Tom Mitchell, Dec 2006



Reward-based learning in animals

MACHINE LEARNING

uuuuuuuuuu Tom Mitchell, Dec 2006



Dopamine As Reward Signal

v

No prediction
Reward occurs

[Schultz et al.,
Science, 1997]

Reward predicted
Reward occurs

error = 1, +7 V(s,.,) ~ V(s,)

Reward predicted
Mo reward occurs

nnnnnnnnnnnnn
nnnnnnnnnn




RL Models for Human Learning
[Seymore et al., Nature 2004]

a Experimental design

S
(5

0 3.6 7.2

Time (s)

Figure 1 Experimental design and temporal difference model. a, The experimental design
expressed as a Markov chain, giving four separate trial types. b, Temporal difference
value. Aslearning proceeds, earlier cues learn to make accurate value predictions (that is,
weighted averages of the final expected pain). ¢, Temporal difference prediction error;

ML

MACHINE LEARNING
nnnnnnnnnn

Trial type 1 High
(41%) Cue A —» Cue B—» pain

Trial type 2 ~ Low
(41%) Cue C mmp CUE D e oain

High
pain

Trial type 3

(9%) Cue C—p Cue B —p

Trial type 4 Low
@ %) CueA—hCue.‘J—pan

during learning the prediction error is transferred to earlier cues as they acquire the
ability to make predictions. In trial types 3 and 4, the substantial change in prediction
elicits a large positive or negative prediction error. (Forclanty, before and mid-learning are
shown only for trial type 1.)

b Temporal difference value ¢ Temporal difference

prediction errar

.-« Before learning ~ «veeee Mid-learning = | ate learning

Tom Mitchell, Dec 2006



a Experimental design

S Sa®,
S —©

Timé (s)

Trial type 1
(41%)

Trial type 2
(41%)

Trial type 3
(9%)

Trial type 4

(9 %)

High

Cue A —» CueB—» =
pain

Cue C=—p-Cue D—p- Lﬁ;ﬁ:

High

Cue C—p Cue B —p pain

Cue A—pCue D —b LZ”:

b Temporal difference value

€ Temporal difference
prediction error

— N

T— N

- - - Before learning e Mid-learning = Late learning

Figure 2 Temporal difference prediction error (statistical parametric maps). Areas
coloured yellow/orange show significant correlation with the temporal difference

[Seymore et al., Nature 2004]

ec 2006



Human EEG responses to Pos/Neg Reward

from [Nieuwenhuis et al.]

— Negative feedback

6r — — Positive feedback
4 F
2t
0 L
2 -
>
=9
4 L
6 -
8 L
10 + feedback N/
onset «—P300
12 L L 1 1 L L ]
-100 0 100 200 300 400 500 600

Time (ms)

Fig. 1. Typical example of event-related brain potentials associated with
negative and positive feedback (adapted from Ref. [25]). Negative 1s

nnnnnnnnnnnnn
nnnnnnnnnn

Response due to
feedback on timing task
(press button exactly 1
sec after sound).

Neural source appears
to be in anterior
cingulate cortex (ACC)

Response is abnormal
In some subjects with
OCD

Tom Mitchell, Dec 2006



One Theory of RL In the Brain

from [Nieuwenhuis et al.]

e Basal ganglia monitor events, predict future rewards

 When prediction revised upward (downward), causes
Increase (decrease) in activity of midbrain dopaminergic
neurons, influencing ACC

* This dopamine-based activation

Frontal

somehow results in revising the cortex. 7 P,
. . . /)'.'\ e SR 3

reward prediction function. Striatum € *

Possibly through direct

Influence on Basal ganglia, and
via prefrontal cortex

Accumbens .-

Amygdala \ \ \ \

Ventral
tegmental Substan‘ua
ML aréa nigra

nnnnnnnnnn Tom Mitchell, Dec 2006

||||||||||||||||



Summary: Temporal Difference ML Model
Predicts Dopaminergic Neuron Acitivity during Learning

« Evidence now of neural reward signals from
— Direct neural recordings in monkeys
— fMRI in humans (1 mm spatial resolution)
— ERP in humans (1-10 msec temporal resolution)

 Dopaminergic responses track temporal difference error in RL

« Some differences, and efforts to refine HL model
— Better information processing model
— Better localization to different brain regions
— Study timing (e.g., basal ganglia learns faster than PFC ?)

||||||||||||||||

nnnnnnnnnn Tom Mitchell, Dec 2006



What you should know

e Control learning
— Credit assignment, learning from delayed rewards

« Markov Decision Processes
— Discounted reward
— Value iteration solution in case P(S,,|S;, A) is known

 When P(S,,|S;, A) Is unknown
— Learn Q(s,a) online

« Convergence, rote learning, generalizing function
approximators

* Role in modeling reward learning in animals

||||||||||||||||

ssssssssss Tom Mitchell, Dec 2006



R ———

Further Readings

 “Reinforcement Learning: A Survey” L. Kaelbling, M. Littman, A. Moore, JAIR (4), pp.
237-285, 1996.

 “R-max — A general polynomial time algorithm for near-optimal reinforcement
learning,” R. Brafman and M. Tennenholtz, IMLR (3), p.213, (2002).

« Tutorial slides by Andrew Moore, available at http://www.autonlab.org/tutorials/rl.html

nnnnnnnnnnnnn

nnnnnnnnnn Tom Mitchell, Dec 2006



