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When can Unlabeled Data improve supervised learning?

Important question! In many cases, unlabeled data is plentiful, labeled
data expensive

Medical outcomes (x=<symptoms,treatment>, y=outcome)

Text classification (x=document, y=relevance)

Customer modeling (x=user actions, y=user intent)

Sensor interpretation (x=<video,audio>, y=who’s there)



When can Unlabeled Data help supervised learning?

Problem setting:

e Set X of instances drawn from unknown distribution P(X)
 Wish to learn target function f: X2 Y (or, P(Y|X))
 Given a set H of possible hypotheses for f

Given:
. iid labeled examples L = {{(x1,v1) ... (xm, ym)}
» iid unlabeled examples U = {Zp, 41, .- Ty4-n }

Wish to determine;

f—argmin Pr [h(z) # f(2)]

heH xeP(X)



ldea 1: Use Labeled and Unlabeled Data to
Train Bayes Net for P(X,Y)
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ldea 1: Use Labeled and Unlabeled Data to Train
wacrosmeneeer 3AYES Net for P(X,Y), then infer P(Y|X)

How do we estimate them
from fully observed data?

How do we estimate them Y X 1 X2 X3 X4

from partly observed?
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Supervised: Naive Bayes Learner

Train.
For each class y; of documents

1. Estimate P(Y=y;) &)

® ®
2. For each word w; estimate P(X=w; | Y=y;)
Classify (doc):

Assign doc to most probable*class
P(y;) I1; P(w;ly;)
>k PQyr) 11 P(w;|yg)

P(y;|doc)

* assuming words w; are conditionally independent, given class

e — R — I



if we h

Learn P(Y|X)

ave labels for only some
documents?

Y | X1 X2 | X3 | X4
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What if we have labels for only some
documents? [Nigam et al., 2000]

Learn P(Y[X) Y |X1 |[X2 |X3 |X4
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EM: Repeat until convergence

1. Use probabilistic labels to train classifier h

2. Apply h to assign probabilistic labels to unlabeled data
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[Nigam et al., 2000]
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Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they
change over iterations of EM for a specific trial. By the second iteration of EM, many common
course-related words appear. The symbol D indicates an arbitrary digit.

[teration 0 [teration 1 [teration 2
intelligence DD D
Do N D DD
artificial USIng AIIE lecture lecture
understanding labeled ce ce
DDw D DD:DD
. example per
dist DD:DD due
identical CIGSS handout D>
rus due homework
arrange problem assignment
games set handout
dartmouth tay set,
natural D Dam hw
cognitive yurttas exam
logic homework problem
proving kfoury D Dam
prolog sec postscript
knowledge postscript solution
hlll]'lELl'l. Wor.ds sOr.-l-ed exam quiz
representation solution chapter
field by P(W | COUI"SC) / assaf ascii

P(w| — course)
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Why/When will this work?

e What's best case? Worst case? How can we
test which we have?



Summary : Semisupervised Learning with EM and
Nalve Bayes Model

If all data is labeled, corresponds to supervised training of Naive
Bayes classifier

If all data unlabeled, corresponds to unsupervied, mixture-of-
multinomial clustering

If both labeled and unlabeled data, then unlabeled data helps if the
Bayes net model is correct (e.g., P(X) is a mixture of class-
conditional multinomials with conditionally independent X;)

Of course we could use Bayes net models other than Naive Bayes



ldea 2: Use U to reweight labeled examples

Most learning algorithms minimize errors over labeled examples

But we really want to minimize error over future examples drawn
from the same underlying distribution (ie., true error of hypothesis)

If we know the underlying distribution P(X), we could weight each
labeled training example <x,y> by its probability according to P(X=x)

Unlabeled data allows us to estimate P(X)



ldea 2: Use U to reweight labeled examples L

Use U — P(X) to alter the loss function

1if hypothesis

* \Wish to minimize true error: h.disagrees
A _ with true
f +— arg min x;{ 6(h(z) # f(x))P(x) function 7
else O
» Usually approximate this as:
. 1
f—argmin= > §(h(z) #y)
heH L (g EL n(x |__) _
Which equals: / nun';ber' of
a . (337 L) "’
f < argmin S(h(x) = vy) [n ] Imes X
heH x%;( L] occurs in L

» We can produce a better approximation by incorporating U:

R _ n(xz,L) + n(x,U)
f « arg }r;rglr}x;( d(h(z) #= f(x)) [ e o(n(x,L) > 0)




Reweighting Labeled Examples

Wish to find

i | n(x, L) +n(z,U)
f arg ;Te'ﬂxg §(h(x) # f(x)) |6(n(z, L) > 0) IL| + |U|

Already have algorithm (e.g., decision tree learner) to find

_ 1
f < arg min — > 6(h(z) #y)
(zr,y)EL

Just reweight examples in L, and have algorithm minimize

n(z,L) + n(z,U)

. 1
f—argmin= Y §(h(z) #y) N

heH L (el

Or if X Is continuous, use L+U to estimate p(X), and minimize

Feargmine Y 5(h(a) £ ) pa)

heH L (el



ldea 3: CoTraining

In some settings, available data features are redundant and we can
train two classifiers based on disjoint features

In this case, the two classifiers should agree on the classification for
each unlabeled example

Therefore, we can use the unlabeled data to constrain joint training of
both classifiers
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CoTraining Algorithm #1

[Blum&Mitchell, 1998]

Given: labeled data L,
unlabeled data U
Loop:
Train g1 (hyperlink classifier) using L
Train g2 (page classifier) using L
Allow g1 to label p positive, n negative examps from U
Allow g2 to label p positive, n negative examps from U

Add these self-labeled examples to L




C

oTraining:

Experimental Results

begin with 12 labeled web pages (academic course)
provide 1,000 additional unlabeled web pages
average error: learning from labeled data 11.1%;

average error: cotraining 5.0%

Typical run:
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CoTraining setting:
« wish to learn f: X =2 Y, given L and U drawn from P(X)

o features describing X can be partitioned (X = X1 x X2)

such that f can be computed from either X1 or X2
(391,92)(Vz € X) g1(x1) = f(z) = go(z2)

One result [Blum&Mitchell 1998]:

o |f
— X1 and X2 are conditionally independent given Y
— f is PAC learnable from noisy labeled data

« Then

— f is PAC learnable from weak initial classifier plus unlabeled
data
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Co-Training Rote Learner

hyperlinks pages
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Co-Training Rote Learner

hyperlinks pages
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B

Expected Rote CoTralnlng error given m examples

CoTraining setting :

learn f: X Y

where X =X;x X,

where X drawn from unknown distribution

and 39,, 0, (\V/X)gl(xl) — gz(xz) = f (X)

E[EITOF]ZZP(XE g.)A-P(xeg)" gi‘éf

Where g Is the jth connected component of graph ¢
of L+U, m is number of labeled examples



How many unlabeled examples suffice?

Want to assure that connected components in the underlying
distribution, Gy, are connected components in the observed
sample, G

s

ANV

Gp Gs

O(log(N)/a) examples assure that with high probability, G4 has same
connected components as G, [Karger, 94]

N is size of Gy, a Is min cut over all connected components of G,



PAC Generalization Bounds on CoTraining
[Dasgupta et al., NIPS 2001]

This theorem assumes X1 and X2 are conditionally independent given Y

Theorem 1 With probubility at leust 1 — § over the choice of the sumple S, we have that
for all hy and ha, if vi(h1,h2,0) > 0 for1 < i < k then (a) f is a permutation and (b) for
all1 < i <k,

Plhy#i| fly) =i, #1) < Pl Filha=t 7 L)+ eilh, ha, 0)
Yi(h1, ha, 6)

The theorem states, in essence, that 1f the sample size 1s large, and hy and h- largely agree
on the unlabeled data, then P(hy # i | ho = ¢,hy; # L) is a good estimate of the error rate

P(hy #i | fly) = i, by # L).



PAC Generalization Bounds on CoTraining
[Dasgupta et al., NIPS 2001]

This theorem assumes X1 and X2 are conditionally independent given Y

Theorem 1 With probubility at leust 1 — § over the choice of the sumple S, we have that
for all hy and ha, if vi(h1,h2,0) > 0 for1 < i < k then (a) f is a permutation and (b) for
all1 < i <k,

P(hi #i| fly) =i, # 1) < PlaZilhe=thn # 1)+ (b, b2, 0)
Yi(h1, ha, d)

The theorem states, in essence, that 1f the sample size 1s large, and hy and h- largely agree
on the unlabeled data, then P(hy # i | ho = ¢,hy; # L) is a good estimate of the error rate

P(hy #i | fly) = i, by # L).

Yi(hy, b, d) = ﬁ[hl =tlhs=1.h # L) — ﬁ”h £itlh: =2 by # L) — 2¢;(hy, ha, 8]

s (In2){jhy| + |hz|) +1n %
€ilhi, he,8) = 2|5(h: =14, hy # 1)|




1

What if CoTraining Assumption
Not Perfectly Satisfied?

®
O O

e |dea: Want classifiers that produce a maximally
consistent labeling of the data

 If learning is an optimization problem, what
function should we optimize?



Example 2: Learning to extract named entities

location?

/

| arrived in Beijing on Saturday.

If: “I arrived in <X> on Saturday.”
Then: Location(X)



Co-Training for Named Entity Extraction
(1.e.,classifying which strings refer to people,
placeS, dateS, etC.) [Riloff&Jones 98; Collins et al., 98; Jones 05]

Answerl Answer2
Classifier, Classifier,

| arrived In  saturday

| arrived In saturday.



Bootstrap learnin

g to extract named entities

[Riloff and Jones, 1999], [Collins and Singer, 1999], ...

Initialization
Australia
Canada
China
England
France
Germany
Japan Mexico
Switzerland
United_states

locations in ?X

South Africa
United Kingdom
Warrenton
Far_East
Oregon
Lexington
Europe

U.S. A

Eastern Canada
Blair
Southwestern_states
Texas

States
Singapore ...

operations in ?x

Thailand

Maine
production_control
northern_Los
New_Zealand
eastern_Europe
Americas
Michigan
New_Hampshire
Hungary
south_america
district
Latin_America
Florida ...

avi

republic of ?x
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Co-EM [Nigam & Ghani, 2000; Jones 2005]

ldea:
e Like co-training, use one set of features to label the other

e Like EM, iterate

— Assign probabilistic values to unobserved class labels
— Updating model parameters (= labels of other feature set)

Goaltolearn X1 — Y, Xo—Y, X1 X Xo —Y

P(Y|X1 =k) = ZP(Y\XQ = j)P(Xo = j| X1 = k)
J

P(Y|Xp =j) =) P(Y|X1=k)P(X1 =KXy =)
2
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| applied to Named Entity Recognition

[Rosie Jones, 2005], [Ghani & Nigam, 2000]

X1><X2—>Y X]_ X2

. <X> ran quickly

travelled to <X>

. <X 1s pleasant

the dog

australia

france

the canary
1slands

Update P(Y|X1=k) =3 P(Y|X2 = j)P(Xo = j|X1 = k)
J

rules:
P(Y|Xp =j) =) P(Y|X1=k)P(X1 =KXy =)
k
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Named Entity Recognition

[Rosie Jones, 2005], [Ghani & Nigam, 2000]
X1 X2

. <X> ran quickly

australia travelled to <X>

- - i
= 3 ri . - :
france . K . <X> 1s pleasant
Fa
i
s
the canary Y
1slands

Update P(Y|X1=k) =3 P(Y|Xo = j)P(Xz = j|X1 = k)
J

the dog

rules:
P(Y|Xp =j) =) P(Y|X1=k)P(X1 =KXy =)
k
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CoEM applied to Named Entity Recognition
[Rosie Jones, 2005], [Ghani & Nigam, 2000]

X1 X0
the dog . . <X> ran quickly
australia (- - - -\ - - . travelled to <X>

’
- -
-
france . p . <X> is pleasant
'
r
4
the canary
1slands

Update P(Y|X1=k) =3 P(Y|Xo = j)P(Xz = j|X1 = k)
J

rules:
P(Y|Xp =j) =) P(Y|X1=k)P(X1 =KXy =)
k




Precision

038
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0.4

0.2

locations

T
coem

hand-correctad seed examples
00 random labeled examples

0.2

0.4

Recall

0.6 0.3



Some nodes are more important than others

Can use this for active learning...

[Jones, 2005]

Moun-phrase | Outdegree Context Outdegree
I 1656 <% > Including 653
we 1479 including <x= 612
it 1173 <¥ > provides 565
company 1043 provides < x> 565
this 635 provide < x> 390
all 520 <¥ > include 389
they 500 include <x= 375
information 448 <¥ > provide 364
us 367 one of <x= 354
any 339 <X made 345
products 332 < ¥ > Offers 338
i 319 offers < x> 320
site 314 <X > said 287
one 311 <X > Used 283
1996 282 includes <x>= 279
he 269 to provide <x> 266
customers 269 LUSe < x> 263
these 263 like <x= 260
them 263 variety of < x> 252
time 234 <¥ > includes 250




CoTraining Summary

Unlabeled data improves supervised learning when example features
are redundantly sufficient
— Family of algorithms that train multiple classifiers

Theoretical results
— Expected error for rote learning

— If X1,X2 conditionally independent given Y, Then
 PAC learnable from weak initial classifier plus unlabeled data
« disagreement between g1(x1) and g2(x2) bounds final classifier error

Many real-world problems of this type

— Semantic lexicon generation [Riloff, Jones 99], [Collins, Singer 99]
— Web page classification [Blum, Mitchell 98]

— Word sense disambiguation [Yarowsky 95]

— Speech recognition [de Sa, Ballard 98]

— Visual classification of cars [Levin, Viola, Freund 03]



4. Use U to Detect/Preempt Overfitting

Overfitting is a problem for many learning algorithms (e.g., decision
trees, neural networks)

The symptom of overfitting: complex hypothesis h2 performs better
on training data than simpler hypothesis h1, but worse on test data

Unlabeled data can help detect overfitting, by comparing predictions
of hl and h2 over the unlabeled examples

— The rate at which h1l and h2 disagree on U should be the same as the
rate on L, unless overfitting is occuring
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4. Use U to Detect/Preempt Overfitting
Define metric over H U {f}
definition —d(hy,hg) = [0 (hl(T) # hs(x))p(z)dx

estimates < (s f)= m *ZE oulz:) 7 v
d(hy, hs) = ﬁ > §(hi(x) # ha(x))

Organize H into complexity classes, sorted by P(h)

Let h? be hypothesis with lowest d(h, f)in H,
Prefer h}, h5, or h3?

h;"' - hg" —_— e fg;"

W
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o Definition of distance metric
— Non-negative d(f,g) >0;
— symmetric d(f,g)=d(g,);
— triangle inequality d(f,g) <d(f,h)+d(h,q)

e Classification with zero-one loss:
A(h1,h2) = [ 8(h1 () # ho(2))p(2)da

* Regression with squared loss:

A(h1, ha) = \/ [ (r1(@) = ho())p(2)da




.»"1? _____ h;
N\ #*
/4
\‘ 7,
f

Note:
o d(h?, f) optimistically biased (too short)
o d(h;, h%) unbiased
e Distances must obey triangle inequality!

d(hq,ha) < d(hy, f) +d(f, ha)

— Heuristic:

e Continue training until rf(hh h;y1) fails to satisty
triangle inequality



Procedure TRI

e Given hypothesis sequence hg, hq, ...

e Choose the last hypothesis h, in the sequence that satisfies the triangle
inequality d(hy, he) < d(hg, Paix )+ d(hg, Byx) with every preceding hypoth-
esis hy, 0 < k < £. (Note that the inter-hypothesis distances d(hy, h¢) are
measured on the unlabeled training data.)

o
1

"r?:; - I'rg = h_;f

w




Experimental Evaluation of TRI
[Schuurmans & Southey, MLJ 2002]

 Use it to select degree of polynomial for regression

« Compare to alternatives such as cross validation,
structural risk minimization, ...

- -1 - - -
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Figure 5: Target functions used in the polynomial curve fitting experiments
(in order): step(z > 0.5), sin(1/z), sin?(27z), and a fifth degree polynomial.



Figure 4: An example of minimum squared error polynomials of degrees
1, 2, and 9 for a set of 10 training points. The large degree polynomial
demonstrates erratic behavior off the training set.
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Results using 200 unlabeled, t labeled

Cross validation (Ten-fold)
Structural risk minimization

t=20|TRI | CVT SRM RIC GCV BIC AIC FPE | ADJ
20 (1.00 | 1.06 1.14 7.54 547 152 222 258 |1.02
o0 [ 1.06 | 1.17 1.39 224 118 394 585 590 1.12
™ | 1.17 | 1.42  3.62 5.8e3 3.9e3 9.8e3 1.2e4 1.2e4 | 1.24
95 | 1.44 | 6.75 56.1 6.1ed 3.7ed 7T.8ed 9.2ed 8.2ed | 1.54
100 | 2.41 | 1.1ed 2.2e4 1.5e8 6.0e7 1.5e8 1.0e8 &.2e7 | 3.02

t=30| TRI | CVT SRM RIC GCV BIC AIC FPE | ADJ
25 1 1.00 | 1.08 1.17 469 151 541 545 2.72 | 1.06
50 | 1.08 | 1.17 1.54 348 919 396 40.8 19.1 | 1.14
7™ 1.19 | 1.37 9.68 258 91.3 2606 266 159 1.25
95 | 1.45 | 6.11 419 4.7e3 2.7e3 4.8e3 5.1e3 4.0e3 | 1.51
100 | 2.18 | 643 1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 | 2.10

Table 1: Fitting f(z)=step(z > 0.5) with P, =U(0,1) and 0 =0.05. Tables
give distribution of approximation ratios achieved at training sample size
t = 20 and ¢t = 30, showing percentiles of approximation ratios achieved in
1000 repeated trials.



t=20|TRI | CVT SRM RIC GCV BIC AIC FPE | ADJ
251 2.04 1 1.03 100 1.00 1.06 1.00 1.01 1.58 | 1.02

o0 | 3.11 | 1.37 133 1.34 1.94 1.35 1.61 18.2 | 1.32

7| 3.87 (223 230 213 100 275 414 1.2e3|1.83

95| 5.11 | 945 884 826 5.0e3 11.8 829 1.8e5| 3.94
100 | 8.92 | 105 526 105 2.0e7 2.1ed 2.7edb 2.4e7 | 6.30
t=30|TRI | CVT SRM RIC GCV BIC AIC FPE |ADIJ
25| 1.50 | 1.00 1.00 1.00 1.00 1.00 L.00 1.02 |1.01

50| 3.51 | 1.16 1.03 1.05 1.11 1.02 1.08 145 |1.27

75| 415|164 145 148 202 1.39 1.88 6.44 |1.60

95| 5.51 | 5.21 5.06 421 264 5.01 199 295 |3.02
100 | 9.75 | 124 1.4e3 20.0 9.1e3 284 9.4e3 1.0e4 | 8.35

Table 4: Fitting f(z)=sin?(2rz) with P,=U(0, 1) and o =0.05. Tables give
distribution of approximation ratios achieved at training sample size { = 2()
and ¢ = 30, showing percentiles of approximation ratios achieved in 1000

repeated trials.




Bound on Error of TRI Relative to Best Hypothesis Considered

Proposition 1 Let h,, be the optimal hypothesis in the sequence hgy, hq, ...
(that is, h,, = argminy, d(hg,B.x)) and let hy be the hypothesis selected by

TRI If (i) m < € and (i) d(hm, Box) < d(Bm, Bax) then

d(hu?: P‘r’]}.’) g Sd(hﬂma PY|X) (6)
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Extension to TRI:

Adjust for expected bias of training data estimates
[Schuurmans & Southey, MLJ 2002]

Procedure ADJ
e Given hypothesis sequence hg, hy, ...
e For each hypothesis hy in the sequence

— multiply its estimated distance to the target d(hﬁm) by the worst
ratio of unlabeled and labeled distance to some predecessor hy to

[ . . . — — E l} l}
obtain an adjusted distance estimate d(hg, Py ) = d(he, B )f(u«, )
Y Y d(hy ,hy)

—

e Choose the hypothesis h, with the smallest adjusted distance d(h,,, Bx).

Experimental results: averaged over multiple target functions,
outperforms TRI
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What you should know

Unlabeled can help EM learn Bayes nets for P(X,Y)

 If we assume the Bayes net structure is correct

Using unlabeled data to reweight labeled examples gives better
approximation to true error

« If we assume examples drawn from stationary P(X)

CoTraining multiple classifiers, using unlabeled data as constraints

« If we assume redundantly sufficient features, with different
conditional distributions given the class

Use unlabeled data to detect/preempt overfitting

« If we assume priors over H that correctly order hypotheses
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Further Reading

Semi-Supervised Learning, O. Chapelle, B. Sholkopf, and A. Zien
(eds.), MIT Press, 2006. (excellent new book)

EM for Naive Bayes classifiers: K.Nigam, et al., 2000. "Text
Classification from Labeled and Unlabeled Documents using
EM", Machine Learning, 39, pp.103—134.

CoTraining: A. Blum and T. Mitchell, 1998. “Combining Labeled
and Unlabeled Data with Co-Training,” Proceedings of the 11th
Annual Conference on Computational Learning Theory (COLT-
98).

S. Dasgupta, et al., “PAC Generalization Bounds for Co-training”,
NIPS 2001

Model selection: D. Schuurmans and F. Southey, 2002. “Metric-
Based methods for Adaptive Model Selection and
Regularization,” Machine Learning, 48, 51—84.




