Model Checking with the
Partial Order Reduction

Edmund M. Clarke, Jr.
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Asynchronous Computation

Theinterleaving modefor asynchronous systems allows
concurrent events to be orderadbitrarily.

To avoid discriminating against any particular orderirng, t
events are interleaved in all possible ways

The ordering betweemdependentransitions is largely
meaningless!!

The State Explosion Problem

Allowing all possible orderingis a potential cause of the state
explosion problem.

To see this, consider transitionsthat can be executed
concurrently.

In this case, there arée different ordering@and?2” different states
(one for each subset of the transitions).

If the specification does not distinguish between theseessmgs,
It is beneficial to consider onlgne withn + 1 states

Partial Order Reduction

Thepartial order reductiors aimed at reducing the size of the
state space that needs to be searched.

It exploits thecommutativityof concurrently executed
transitions, which result in the same state.

Thus, this reduction technique is best suitedafeynchronous
systems

(In synchronous systemeoncurrent transitions are executed
simultaneously rather than being interleaved.)

S1

Partial Order Reduction (Cont.)

The method consists of constructingesluced state graph

Thefull state graphwhich may be too big to fit in memorig
never constructed

Thebehaviors of the reduced graphe asubsebf the behaviors
of the full state graph

The justification of the reduction method shows that the
behaviors that are not present do not add any information

Partial Order Reduction (Cont.)

The namepartial order reductiocomes from early versions of
the algorithms that were based on the partial order model of
program execution.

However, the method can be described bettenasel checking
using representativesince the verification is performed using
representatives from the equivalence classes of behaviors

e D. Peled. All from one, one for all: on model checking using
representatives. IRroc. 5th Workshop on Comput.-Aided
Verification pages 409-423, 1993.

Modified Kripke Structures

Thetransitionsof a system play a significant role in the partial
order reduction.

The partial order reduction is based on tlependency relation
that exists between the transitions of a system.

Thus, we modify the definition of a Kripke structure slightly

A state transition systerms a quadruplés, T, Sy, I.) where

e the set of state§, the set of initial states, and the labeling
function L are defined as for Kripke structures, and

e 7' IS a set of transitions such that foreaclke T, a« C S x S.

A Kripke structureM = (5, R, Sy, L) may be obtained by
defining R so that

R(s,s") < da € T[a(s,s')].

Basic Definitions

A transitiona € T is enabledn a states if there is a state’ such
thata(s, s') holds.

Otherwisey is disabledn s. The set of transitions enableddn
IS enabled(s).

A transitiona is deterministidf for every states there is at most
one states’ such thatx(s, s').

Whena is deterministic we often write’ = a(s) instead of
al(s,s').

NoteWe will only consider deterministic transitions!

Basic Definitions (Cont.)

A pathr from a states is afinite or infinite sequence

a0]
™ = Sy > Sq > ...

such that for every, «;(s;, s;+1) holds.

Here, we do not require paths to be infinite. Moreover, anfixpre
of a path is also a path.

If 7 is finite, then theéengthof 7 is the number of transitions in
and will be denoted byr|

Reduced State Graph

Goal is toreduce the number of stateansidered in model
checking, while preserving the correctness of the property

Will assume that aeduced state graps first generated
explicitly usingdepth-first search

The model checking algorithm is then applied to the resgiltin
state graph, which hdswer states and edges

This speeds up the construction of the gramiduses less
memory thus resulting in a more efficient model checking
algorithm.

e Actually, the reduction can be appliea-the-flywhile doing
the model checking.

e The DFS can also be replacedlmyeadth first searcand
combined withsymbolic model checking

10

Depth-First-Search Algorithm

wnN -

13
14
15
16
17
18

hash(sy);
seton_stack(sy);
expand_state(sy);

procedure expand_state(s)
work _set(s) := ample(s);
while work_set(s) is not emptydo
let o € work _set(s);
work _set(s) = work_set(s) \ {a};
s’ = a(s);
If new(s') then
hash(s');
seton_stack(s');
expand_state(s');
end if;
create_edge(s, a, s');
end while;
setcompleted(s);
end procedure

11

Depth-First-Search Algorithm (Cont.)

The reduction is performed by modifying teeandard DFS
algorithmto construct the reduced state graph.

The search starts with an initial state(line 1) and proceeds
recursively.

For each state it selects only a subsetnple(s) of the enabled
transitionsenabled(s) (in line 5).

The DFS explores only successors generated by these itvassit
(lines 6-16).

e The DFS algorithm constructs the reduced state graph
directly.

e Constructing the full state graph and later reducing it woul
defy the purpose of the reduction.

12

Depth-First-Search Algorithm (Cont.)

When model checking is applied to the reduced state graph

e it terminates with abositive answewhen the property holds
for the original state graph.

e it produces aounterexampleotherwise

Note: The counterexample maiffer from one obtained using
the full state graph.

13

Ample Sets

In order to implement the algorithm we must find a systematic
way of calculatingimple(s) for any given state.

The calculation ofimple(s) needs to satisfy three goals:

1.Whenample(s) is used instead afnabled(s), enough
behaviors must be retained so DFS gives correct results.

2. Usingample(s) instead ofnabled(s) should resultin a
significantly smaller state graph.

3. The overhead in calculatingnple(s) must be reasonably
small.

14

Dependence and Independence

An independenceelation/ C T x T is a symmetric,
antireflexive relation such that fere S and(«, 3) € I:

Enablednesdf a, G € enabled(s) thena € enabled(5(s)).
Commutativity «, 3 € enabled(s) thena(3(s)) = G(a(s)).

ThedependencyelationD is the complement of, namely
D=(TxT)\I.

Note

e The enabledness condition states that a pair of independent
transitions do notlisableone another.

e However, that it is possible for one tmableanother.

15

Potential Problems

Suppose that and/ commute:

It does not matter whetheris executed beforg or vice versa in
order to reach the statefrom s.

It is tempting to select only one of the transitions origingt
from s.

This is not appropriate for the following reasons:

Problem 1: The checked property might be sensitive to the
choice between the statesands,, not only the states andr.

Problem 2: The states; ands,; may have other successors in
addition tor, which may not be explored if either is eliminated.

16

Visible and Invisible Transitions

Let L : S — 247 pe the function that labels each state with a set
of atomic propositions.

A transitiona € T is invisible with respect toAP’ C AP if for
each pairs, s’ € S such that'’ = a(s),

L(s)N AP = L(s')n AP'.

Thus, a transition is invisible when its execution from atates
does not change the value of the propositional variablesfin

A transition isvisibleif it is not invisible.

17

Stuttering Equivalence

Stutteringrefers to a sequence of identically labeled states along
a path in a Kripke structure.

Let o andp be two infinite paths:

aqQ aq

o =Sy — S1 >...andp:7“0ﬁ>7“1ﬂ>

Theno andp arestuttering equivalendenotedr ~; p, if there
are two infinite sequences of integers

D= <i <ir<...and0=7jy < j1 < jo < ...
such that for every: > 0,

Stuttering equivalence can be defined similarly for finitédhpa

18

Stuttering Equivalence (Cont.)

A finite sequence of identically labeled states is callédbak.

Intuitively, Two paths are stuttering equivalent if they can be
partitioned into blocks, so states in thin block of one are
labeled the same as states in title block of the other.

Note: Corresponding blocks may have different lengths!

e R s SR S e

2
e’

T s ==

19

Stuttering Equivalence Example

Consider the diagram used to illustrate commutativity mgai

ﬁ 5

NG .
N@ :

Suppose that at least one transition, says invisible, then
L(s) = L(s1) andL(sy) = L(r).

Consequently,

SSIT ~g SSoT

Note: The pathss s; r ands s, r are stuttering equivalent!!

20

LTL and Stuttering Equivalence

An LTL formula A f isinvariant under stutterindy and only if
for each pair of paths and=’ such thatr ~; =’

7= fifand only if 7' |= f.

We denote the subset of the logic LTL without the next time
operator byLTL _ .

Theorem. AnyLTL _y property is invariant under stuttering.

21

Stuttering Equivalent Structures

Without loss of generality, assume théthas initial states, and
that M' has initial states;,.

Then the two structure®/ andM' arestuttering equivalernt
and only if

e For each patlar of M that starts irs, there is a patla’ of M’
starting ins;, such that ~; o'.

e For each patla’ of M’ that starts ins;, there is a patla of M
starting ins, such thav’ ~; o.

Corollary. Let M and M’ be two stuttering equivalent
structures. Then, for eveiy L _y propertyA f

M, sy = f ifand only if M’ sj EA f.

22

DFS Algorithm and Ample Sets

Commutativity and invisibility allow us to avoid generagisome
of the states when the specification is invariant underesiog,

Based on this observation, it is possible to devise a sysiema
way of selecting an ample s&r any given state.

The ample sets will be used by the DFS algorithm to construct a
reduced state graph so that every path not considered there is
a stuttering equivalent path that is considered.

This guarantees that the reduced state graph is stuttering
equivalent to the full state graph.

We say that state is fully expandedwvhen
ample(s) = enabled(s).

In this caseall of the successof that state will be explored by
the DFS algorithm.

23

Correctness of Reduction

Will state four conditions for selectingnple(s) C enabled(s)
so satisfaction of theTL _ specifications is preserved.

Thereductionwill depend on the set of propositions”’ that
appear in théTL _ formula.

Condition CO is very simple:

CO ample(s) = () if and only if enabled(s) = 0.

Intuitively, if the state has at least one successor, themgtuced
state graph also contains a successor for this state.

24

Correctness of Reduction (Cont.)

ConditionC1 is the most complicated constraint.

C1 Along every path in the full state graph that starts,dahe
following condition holds:

A transition that is dependent on a transitiomitnple(s) can
not be executed without one imnple(s) occurring first.

Note that ConditiorC1 refers to paths in th&ill state graph.

Obviously, we need a way of checking ttat holds without
actually constructing the full state graph.

Later, we will show how to restric@1 so thatumple(s) can be
calculated based on the current state

25

Correctness of Reduction (Cont.)

Lemma. The transitions irenabled(s) \ ample(s) are all
independentf those inumple(s).

Proof:

Lety € enabled(s) \ ample(s).

Suppose thaty, §) € D, whered € ample(s).

Since is enabled irs, there is a path starting within the full
graph.

But then a transition dependent on some transitiamimple(s) is
executed before a transitiondmple(s).

This contradicts conditiof 1. []

26

Correctness of Reduction (Cont.)

If we always choose the next transition framuple(s), we will
not omit any paths that are essential for correctness.

ConditionC1 implies that such a path will have one of two
forms:

e The path has a prefi%s; ... 6,,a, wherea € ample(s) and
eachp; is independent of all transitions imnple(s) including

.

e The path is an infinite sequence of transitiohs; . .. where
eachp; is independent of all transitions imple(s).

27

Correctness of Reduction (Cont.)

If along a sequence of transitiofgs; . . . §,, executed frons,

If none of the transitions inmple(s) have occurred, then all the
transitions inumple(s) remain enabled.

This is because each is independent of the transitions in
ample(s) and, therefore, cannot disable them.

28

Correctness of Reduction (Cont.)

In the first case, assume that the sequence of transitions
6oy . .. Bna reaches a state

This sequence will not be considered by the DFS algorithm.

By applying theenablednesandcommutativity conditiongn
times, we can construct a sequengg; . .. 0,,, that also
reaches.

Thus, if the reduced state graph does not contain the seguenc
6oy . .. B that reaches, we can construct from another
seguence that reaches

29

Another Correctness Conditions

Consider the two sequences of states:
e 0 = 5051 ..., generated by,0; ... 5,,«, and
® 0= srgry...7T, generated bwGy 3 . .. G.,.

In order to discard, we wanto andp to bestuttering equivalent

This is guaranteed ik is invisible, since then.(s;) = L(r;) for
0<71<m.

Thus, the checked property will not be able to distinguish
between the two sequences above.

C2If s is notfully expandedthen everyx € ample(s) is
Invisible.

e This condition is callednvisibility .

30

Correctness of Reduction (Cont.)

Now consider the case in which an infinite p&iw, - . . . that
starts ats does not include any transition frommple(s).

By ConditionC2 all transitions imample(s) are invisible. Letx
be such a transition.

Then the path generated by the sequenggs, 5> . .. IS
stuttering equivalent to the one generatedhy.5-

Again, even though the path&: 5 . .. IS nhot in the reduced state
graph, a stuttering equivalent path is included.

31

Problem with Correctness Condition

C1landC2 arenot yet sufficiento guarantee that the reduced
state graph is stuttering equivalent to the full state graph

In fact, there is a possibility thabme transition will actually be
delayed forevebecause of a cycle in the constructed state graph.

a3 aq

g
Q %)

Assume thap is independent of the transitions, a» andas and
thataq, as andas are interdependent.

The process on the left can execute thexactly once.

Assume there is one propositipnwhich is changed fronTrue
to Fulse by (3, so thatg is visible.

The process on the right performs the invisible transitionsy,
andao; repeatedly in a loop.

32

Problem with Correctness Condition (Cont.)

The full state graph of the system is shown below:
! !

S1

/
/
a3 lﬁ aq , aq

/
/
/
az
53

az

52

ﬁl a3 a1 lﬁ

az

Starting with the initial state,, we can selecimple(s;) = {1}
and generate, = a;(sy).

Next, we can selectmple(ss) = {as} and generate; = as(s2).

When we reach;, we can selecimple(ss) = {as} and close
the cycle(sy, s, s3).

(Easy to see that0, C1 andC2 are satisfied at each stgp.

But, the reduced state graph does not contain any sequences
wherep is changed fromirue to False!!

33

Cycle Closing Condition

Note that at each state on the cytie s, s3, s1) 5 is deferred to
a possible future state.

When the cycle is closed, the construction terminates, and
transitions is ignored!!

To prevent this situation from occurring we need one more
condition:

C3 A cycle is not allowed if it contains a state in which some
transitiona is enabled, but is never includeddmple(s) for
any states on the cycle.

ConditionC3 is called theCycle closing condition.

34

Problem 1 Again

Consider the diagram used to illustrate commutativity dioas.

S1

Assume that the DFS reduction algorithm chogs@sample(s)
and does not include statein the reduced graph.

By ConditionC2, 7 must be invisible; thus, s, » ands, s, r are
stuttering equivalent

Since we are only interested in stuttering invariant proggrwe
can’t distinguish between the two sequences.

35

Problem 2 Again

Assume that there is a transitiorenabled frons; .

S1

Note thaty cannot be dependent gn Otherwise, the sequence
«, v violatesCl1.

Thus,v is independent of. Since it is enabled im;, it must also
be enabled in state

Assume thaty, when executed from, results in state’ and
when executed fromy, results in state;.

Sinceg is invisible, the two state sequences,, s} and
s, 89,7, " arestuttering equivalent

Therefore, properties that are invariant under stuttentighot
distinguish between the two.

36

Heuristics for Ample Sets

We assume that the concurrent program is composed of
processes and that each process hasa@ram counter

e pc;(s) will denote the program counter of a procd%sn a
States.

e pre(a) is a set of transitions that includes the transitions
whose execution may enahle

e dep(av) is the set of transitions that are dependenton
e 7} Is the set of transitions of process

o /:(s) =T, Nenabled(s) denotes the set of transitions Bf
that are enabled in the state

e current;(s) is the set of transitions af; that are enabled in
some state’ such thatpc;(s') = pei(s).

37

Heuristics for Ample Sets (Cont.)

We now describe theependency relatiofor the different
models of computation.

e Pairs of transitions that share a variable, which is charmyed
at least one of them, are dependent.

e Pairs of transitions belonging to the same process are
dependent.

e Two send transitions that use the same message queue are
dependent. Similarly, two receive transitions are depehde

Notethat a transition that involvesandshakin@r rendezvous
communicatioras in CSP or ADA can be treated as a joint
transition of both processes. Therefore, it depends orf Hileo

transitions of both processes.

38

Heuristics for Ample Sets (Cont.)

An obvious candidate farmple(s) is the setl;(s) of transitions
enabled ins for some process).

e Since the transitions iih;(s) are interdependent, an ample set
for s must include either all of the transitions or none of them.

e To construct an ample set for the current statee start with
some process®,; such thafl;(s) # 0.

e \We want to check whethemple(s) = T;(s) satisfies
ConditionC1.

e There are two cases in which this selection might viotate

e In both of these cases, some transitions independent af thos
In 7;(s) are executed, eventually enabling a transiticthat is
dependent off;(s).

e The independent transitions in the sequence cannot’Bg in
since all the transitions aP; are interdependent.

39

Heuristics for Ample Sets (First Case)

In the first caseq belongs to some other proce8s

A necessary condition for this to happen is thiat(/;(s))
includes a transition of proces$s.

By examining the dependency relation, this condition can be
checked effectively.

40

Heuristics for Ample Sets (Second Case)

In the second case, belongs taF;. Suppose that the transition
a € T: which violatesC1 is executed from a staté

e The transitions executed on the path freno s’ are
independent of ;(s) and hence, are from other processes.

e Thereforepc;(s') = pci(s). Soa must be incurrent;(s).
e In addition,a & T;(s), otherwise it does not violatgl.
e Thus,a € current;(s) \ Ti(s).

e Sincea is not in7;(s), it is disabled ins.

e Therefore, a transition ipre(«) must be included in the
sequence from to s'.

Thus, a necessary condition is that(current;(s) \ T;(s))
Includes transitions of processes other tlhan

This condition can also be checked effectively.

41

If all else falls . ..

In both cases we discafid(s) and try the transitiong’;(s) of
another processas a candidate farmple(s).

Note: We take aconservative approadiscarding some ample
sets even though at run-tin@l might not actually be violated.

42

