

Will Klieber 15-414 Aug 31, 2011

Why study SAT solvers?

- Many problems reduce to SAT.
 - Formal verification
 - CAD, VLSI
 - Optimization
 - AI, planning, automated deduction
- Modern SAT solvers are often fast.
- Other solvers (QBF, SMT, etc.) borrow techniques from SAT solvers.
- SAT solvers and related solvers are still active areas of research.

Negation-Normal Form (NNF)

- A formula is in negation-normal form iff:
 - all negations are directly in front of variables, and
 - the only logical connectives are: "∧", "∨", "¬".
- A literal is a variable or its negation.
- Convert to NNF by pushing negations inward:

$$\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$$
$$\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$$
 (De Morgan's Laws)

Disjunctive Normal Form (DNF)

- Recall: A literal is a variable or its negation.
- A formula is in DNF iff:
 - it is a disjunction of conjunctions of literals.

$$\underbrace{(\ell_{11} \wedge \ell_{12} \wedge \ell_{13})}_{\text{conjunction 1}} \vee \underbrace{(\ell_{21} \wedge \ell_{22} \wedge \ell_{23})}_{\text{conjunction 2}} \vee \underbrace{(\ell_{31} \wedge \ell_{32} \wedge \ell_{33})}_{\text{conjunction 3}}$$

- Every formula in DNF is also in NNF.
- A simple (but inefficient) way convert to DNF:
 - Make a truth table for the formula φ .
 - Each row where φ is true corresponds to a conjunct.

Conjunctive Normal Form (CNF)

- A formula is in CNF iff:
 - it is a conjunction of disjunctions of literals.

$$\underbrace{(\ell_{11} \lor \ell_{12} \lor \ell_{13})}_{\text{clause 1}} \land \underbrace{(\ell_{21} \lor \ell_{22} \lor \ell_{23})}_{\text{clause 2}} \land \underbrace{(\ell_{31} \lor \ell_{32} \lor \ell_{33})}_{\text{clause 3}}$$

- Modern SAT solvers use CNF.
- Any formula can be converted to CNF.
 - Equivalent CNF can be exponentially larger.
- Equi-satisfiable CNF (Tseitin encoding):
 - Only linearly larger than original formula.

Tseitin transformation to CNF

Introduce new variables to represent subformulas.

Original:
$$\exists \vec{x}. \phi(\vec{x})$$

Transformed: $\exists \vec{x}. \exists \vec{g}. \psi(\vec{x}, \vec{g})$

- E.g, to convert (A ∨ (B ∧ C)):
 - Replace (B \wedge C) with a new variable g_1 .
 - Add clauses to equate g_1 with $(B \land C)$.

$$(A \lor g_1) \land \underbrace{(B \lor \neg g_1)}_{(\neg B \to \neg g_1)} \land \underbrace{(C \lor \neg g_1)}_{(\neg C \to \neg g_1)} \land \underbrace{(\neg B \lor \neg C \lor g_1)}_{((B \land C) \to g_1)}$$

■ Gives value of g₁ for all 4 possible assignments to {B, C}.

Tseitin transformation to CNF

Convert (A \vee (B \wedge C)) to CNF by introducing new variable g_1 for (B \wedge C).

$$(A \lor g_1) \land \underbrace{(\neg g_1 \lor B)}_{(g_1 \to B)} \land \underbrace{(\neg g_1 \lor C)}_{(g_1 \to C)} \land \underbrace{(\neg B \lor \neg C \lor g_1)}_{((B \land C) \to g_1)}$$

$$\underbrace{(g_1 \to (B \land C))}_{(g_1 \Leftrightarrow (B \land C))} \land ((B \land C) \to g_1)$$

SAT Solvers -- Representation

- A CNF formula is represented by a set of clauses.
 - Empty set represents a true formula.
- A clause is represented by a set of literals
 - Empty set represents a false clause.
- A variable is represented by a positive integer.
- The logical negation of a variable is represented by the arithmetic negation of its number.
- E.g., $((x1 \lor x2) \land (\neg x1 \lor \neg x2))$ is represented by $\{\{1, 2\}, \{-1, -2\}\}$

Naïve Approach

- SAT problem: Given a boolean formula φ , does there exist an assignment that satisfies φ ?
- Naïve approach: Search all assignments!
 - *n* variables $\rightarrow 2^n$ possible assignments
 - Explosion!
- SAT is NP-complete:
 - Worst case is likely $O(2^n)$, unless P=NP.
 - But for many cases that arise in practice, we can do much better.

Unit Propagation

- Davis-Putnam-Logemann-Loveland (DPLL)
- Unit Clause: Clause with exactly one literal.
- Algorithm:
 - If a clause has exactly one literal, then assign it true.
 - Repeat until there are no more unit clauses.

Example:

- $((x1 \lor x2) \land (\neg x1 \lor \neg x2) \land (x1))$
- $((T \lor x2) \land (F \lor \neg x2) \land (T))$
- **■** ((T) ∧ (¬ x2))
- T

Helper function

from copy import copy, deepcopy

```
def AssignLit(ClauseList, lit):
    ClauseList = deepcopy(ClauseList)
    for clause in copy(ClauseList):
        if lit in clause: ClauseList.remove(clause)
        if -lit in clause: clause.remove(-lit)
    return ClauseList
>>> AssignLit([[1, 2, -3], [-1, -2, 4], [3, 4]], 1)
[[-2, 4], [3, 4]]
>>> AssignLit([[1, 2, -3], [-1, -2, 4], [3, 4]], -1)
[[2, -3], [3, 4]]
```

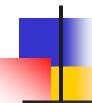
Assumption: No clause contains both a variable and its negation.

Naïve Solver

```
def AssignLit(ClauseList, lit):
   ClauseList = deepcopy(ClauseList)
   for clause in copy(ClauseList):
        if lit in clause: ClauseList.remove(clause)
        if -lit in clause: clause.remove(-lit)
   return ClauseList
def IsSatisfiable(ClauseList):
    # Test if no unsatisfied clauses remain
    if len(ClauseList) == 0: return True
   # Test for presense of empty clause
    if [] in ClauseList: return False
   # Split on an arbitrarily decided literal
   DecLit = ClauseList[0][0]
   return (IsSatisfiable(AssignLit(ClauseList, DecLit)) or
            IsSatisfiable(AssignLit(ClauseList, -DecLit)))
```

DPLL Solver

```
def IsSatisfiable(ClauseList):
    # Unit propagation
    repeat until fixed point:
        for each unit clause UC in ClauseList:
            ForcedLit = UC[0]
            ClauseList = AssignLit(ClauseList, ForcedLit)
    # Test if no unsatisfied clauses remain
    if len(ClauseList) == 0: return True
    # Test for presense of empty clause
    if [] in ClauseList: return False
    # Split on an arbitrarily decided literal
    DecLit = (choose a variable occuring in ClauseList)
    return (IsSatisfiable(AssignLit(ClauseList, DecLit)) or
            IsSatisfiable(AssignLit(ClauseList, -DecLit)))
```



GRASP: an efficient SAT solver

Original Slides by Pankaj Chauhan Modified by Will Klieber

Please interrupt me if anything is not clear!

Terminology

• CNF formula φ

- $x_1, ..., x_n$: n variables
- $\omega_1, \ldots, \omega_m$: m clauses

Assignment A

- Set of (variable, value) pairs.
- Notation: $\{(x_1,1), (x_2,0)\}, \{x_1:1, x_2:0\}, \{x_1=1, x_2=0\}, \{x_1, \neg x_2\}$
- $|A| < n \rightarrow \text{partial assignment}$ $\{x_1=0, x_2=1, x_4=1\}$
- $|A| = n \rightarrow \text{complete assignment} \{x_1=0, x_2=1, x_3=0, x_4=1\}$
- $\varphi|_A = 0 \rightarrow falsifying assignment \{x_1=1, x_4=1\}$
- $\varphi|_A = 1 \rightarrow \text{satisfying assignment } \{x_1 = 0, x_2 = 1, x_4 = 1\}$
- $\varphi|_A = X \rightarrow \text{unresolved asgnment } \{x_1 = 0, x_2 = 0, x_4 = 1\}$

$$\varphi = \omega_1 \wedge \omega_2 \wedge \omega_3$$

$$\omega_1 = (x_2 \vee x_3)$$

$$\omega_2 = (\neg x_1 \lor \neg x_4)$$

$$\omega_3 = (\neg x_2 \lor x_4)$$

$$A = \{x_1=0, x_2=1, x_3=0, x_4=1\}$$

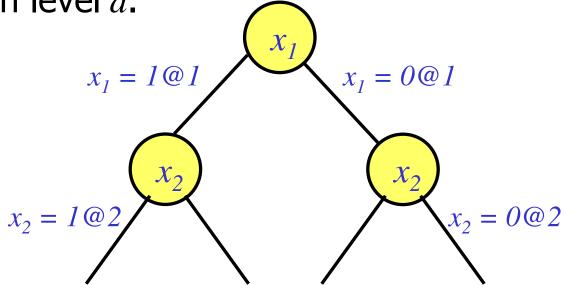
Terminology

- An assignment partitions the clause database into three classes:
 - Satisfied, falsified, unresolved
- Free literal: an unassigned literal
- Unit clause: has exactly one free literal

Basic Backtracking Search

- Organize the search in the form of a decision tree.
 - Each node is a decision variable.
 - Outgoing edges: assignment to the decision variable.
 - Depth of node in decision tree is decision level $\delta(x)$.

" x=v @ d" means variable x is assigned value v at decision level d.

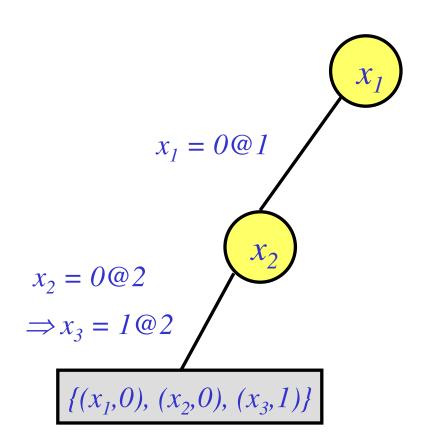


Basic Backtracking Search

- Make new decision assignments.
- Infer implied assignments by a deduction process (unit propagation).
 - May lead to falsifying clauses, conflict!
 - The assignment is called "conflicting assignment".
- 3. Conflicting assignments leads to backtrack.

Backtracking Search in Action

Example 1



$$\omega_1 = (x_2 \lor x_3)$$

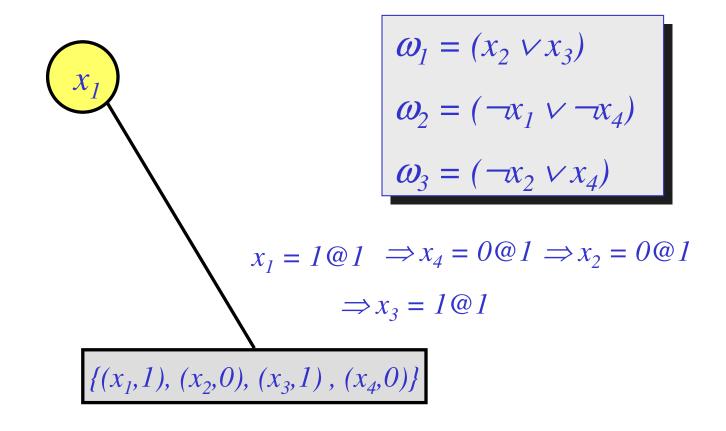
$$\omega_2 = (\neg x_1 \lor \neg x_4)$$

$$\omega_3 = (\neg x_2 \lor x_4)$$

No backtrack in this example!

Backtracking Search in Action

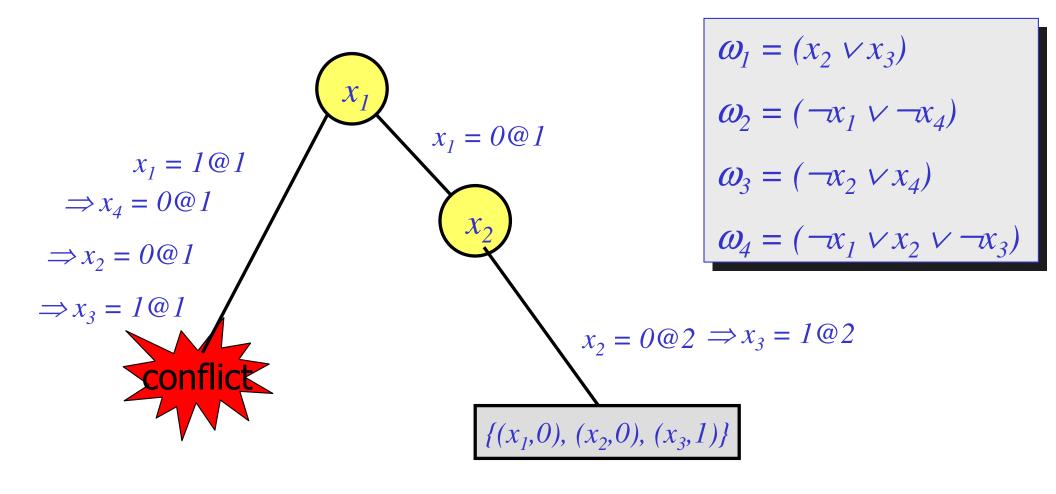
Example 2



No backtrack in this example!

Backtracking Search in Action

Example 3



GRASP

 GRASP is Generalized seaRch Algorithm for the Satisfiability Problem (Silva, Sakallah, '96).

Features:

- Implication graphs for Unit Propagation and conflict analysis.
- Learning of new clauses.
- Non-chronological backtracking!

Learning

- GRASP can learn new clauses that are logically implied by the original formula.
- Goal is to allow Unit Prop to deduce more forced literals, pruning the search space.
- Example:
 - ullet ϕ contains clauses $(x \lor y \lor z)$ and $(x \lor y \lor \neg z)$.
 - **Resolving** on z yields a new clause $(x \lor y)$.
 - If y is false, then x must be true for ϕ to be true.
 - But not discoverable by simple Unit Prop w/o resolvent clause.
 - Clause $(x \lor y)$ allows Unit Prop to force x=1 when y=0.
- New clauses learned from conflicting assignments.

Resolution

From

$$(x_1 \lor \cdots \lor x_n \lor r) \land (\neg r \lor y_1 \lor \cdots \lor y_m)$$

deduce

$$(x_1 \vee \cdots \vee x_n \vee y_1 \vee \cdots \vee y_m)$$

Top-level of GRASP-like solver

```
CurAsgn = \{\};
2.
     while (true) {
3.
        while (value of \varphi under CurAsgn is unknown) {
4.
           DecideLit(); // Add decision literal to CurAsgn.
5.
           Propagate(); // Add forced literals to CurAsgn.
6.
7.
        if (CurAsgn satisifies \varphi) {return true;}
8.
        Analyze conflict and learn a new clause;
        if (the learned clause is empty) {return false;}
9.
10.
        Backtrack();
11.
        Propagate(); // Learned clause will force a literal
12.
```


GRASP Decision Heuristics

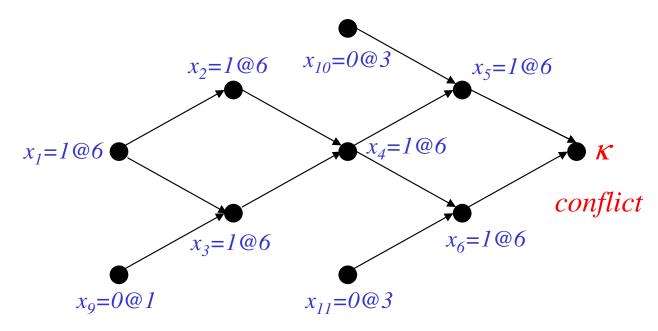
- Procedure DecideLit()
- Choose the variable that satisfies the most clauses
- Other possibilities exist

GRASP Deduction

- Unit Propagation is a type of Boolean Constraint Propagation (BCP).
- Grasp does Unit Prop using implication graphs: E.g., for the clause $\omega = (x \lor \neg y)$, if y=1, then x=1 is forced; the antecedent of x is {y=1}.
- If a variable x is forced by a clause during BCP, then assignment of 0 to all other literals in the clause is called the antecedent assignment A(x).
 - E.g., for $\omega = (x \lor y \lor \neg z)$, $A(x) = \{y:0, z:1\}, \ A(y) = \{x:0, z:1\}, \ A(z) = \{x:0, y:0\}$
 - Variables directly responsible for forcing the value of x.
 - Antecedent assignment of a decision variable is empty.

Implication Graphs

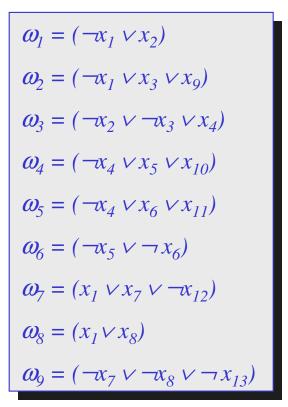
- Depicts the antecedents of assigned variables.
- A node is an assignment to a variable.
 - (decision or implied)
- Predecessors of x correspond to antecedent A(x).
 - No predecessors for decision assignments!
- For special conflict vertex κ , antecedent $A(\kappa)$ is assignment to vars in the falsified clause.

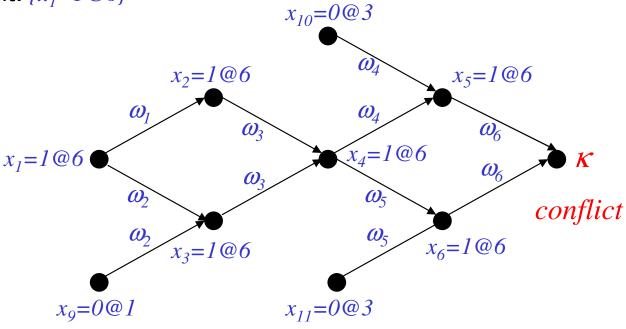


Example Implication Graph

Current truth assignment: $\{x_9=0@1, x_{12}=1@2, x_{13}=1@2, x_{10}=0@3, x_{11}=0@3\}$

Current decision assignment: $\{x_1 = 1 @ 6\}$





GRASP Conflict Analysis

- After a conflict arises, analyze the implication graph.
- Add new clause that would prevent the occurrence of the same conflict in the future.
 - ⇒ Learning
- Determine decision level to backtrack to; this might not be the immediate one.
 - ⇒ Non-chronological backtrack

Learning Algorithm

- 1. Let CA be the assignment of False to all literals in the falsified clause. ("CA" is short for "conflict assignment".)
 - **Example:** $CA = \{x_5 = 1 @ 6, x_6 = 1 @ 6\}$
- 2. A literal $l \in CA$ is a unique implication point (UIP) iff every other literal in CA has an earlier decision level than l.

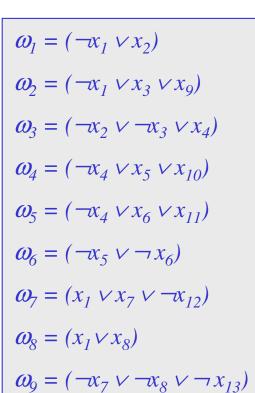
3. loop:

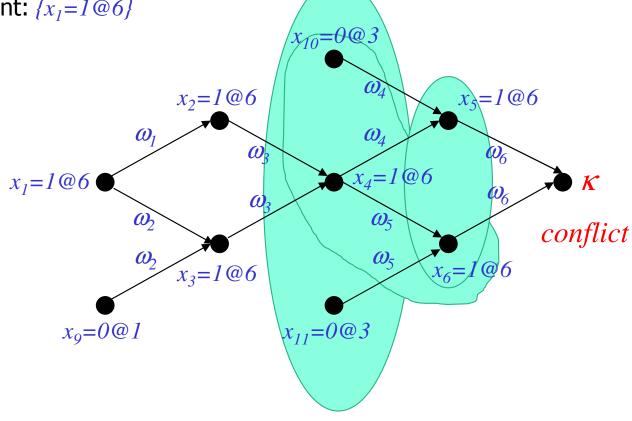
- Remove the most recently assigned literal from CA and replace it by its antecedent.
- if (CA is empty or has a UIP): break;
- 4. Let $\{L_1, ..., L_n\} = CA$; learn clause $(\neg L_1 \lor ... \lor \neg L_n)$.
- 5. Backtrack to the earliest decision level at which the learned clause will force the UIP to be false.
 - Why is this guaranteed to be possible?

Example Implication Graph

Current truth assignment: $\{x_9=0@1, x_{12}=1@2, x_{13}=1@2, x_{10}=0@3, x_{11}=0@3\}$

Current decision assignment: $\{x_1 = 1 @ 6\}$





Example

$$\omega_{1} = (\neg x_{1} \lor x_{8} \lor x_{9})$$

$$\omega_{2} = (\neg x_{1} \lor x_{8} \lor \neg x_{9})$$

$$\omega_{3} = (\neg x_{1} \lor \neg x_{8} \lor x_{9})$$

$$\omega_{4} = (\neg x_{1} \lor \neg x_{8} \lor \neg x_{9})$$

$$\omega_{5} = (x_{1} \lor x_{3})$$

$$\omega_{6} = (x_{1} \lor \neg x_{3})$$

Is that all?

- Huge overhead for boolean constraint propagation (BCP)
- Better decision heuristics
- Better learning, problem specific
- Better engineering!

Chaff