Solvers for the Problem of

!'_ Boolean Satisfiability (SAT)

Will Klieber
15-414
Aug 31, 2011

i Why study SAT solvers?

= Many problems reduce to SAT.
= Formal verification
= CAD, VLSI
= Optimization
= Al, planning, automated deduction

s Modern SAT solvers are often fast.

= Other solvers (QBF, SMT, etc.)
borrow techniques from SAT solvers.

s SAT solvers and related solvers
are still active areas of research.

i Negation-Normal Form (NNF)

= A formula is in negation-normal form iff:
= all negations are directly in front of variables, and

\\' /7 W\ 757 \ n

= the only logical connectives are: “A”, “v", “=".

= A literal is a variable or its negation.
= Convert to NNF by pushing negations inward:
“(PAQ) = (=P V-Q)

(De Morgan’s Laws)
~(PVQ) & (-PA-Q)

i Disjunctive Normal Form (DNF)

= Recall: A /iteral is a variable or its negation.

= A formula is in DNF iff:
= it is a disjunction of conjunctions of literals.

(b11 A1 Ni3) V (ba1 A loa A laz) V (€31 A 32 N £33)
conjunction 1 conjunction 2 conjunction 3

= Every formula in DNF is also in NNF,

= A simple (but inefficient) way convert to DNF:
= Make a truth table for the formula .
= Each row where @ is true corresponds to a conjunct.

i Conjunctive Normal Form (CNF)

= A formula is in CNF iff;
= it is a conjunction of disjunctions of literals.

(€11 V L12 V €13) A (L1 V lag V lag) A (€31 V €3y V £33)
N o\, i\, e
clause 1 clause 2 clause 3

s Modern SAT solvers use CNF.

= Any formula can be converted to CNF.
= Equivalent CNF can be exponentially larger.

= Equi-satisfiable CNF (Tseitin encoding):
= Only linearly larger than original formula.

i Tseitin transformation to CNF

= Introduce new variables to represent subformulas.
Original: 3%. ¢(Z)
Transformed: 3%.3g. ¢(Z, g)

= E.g, to convert (A v (B A Q)):

= Replace (B A C) with a new variable g;.
= Add clauses to equate g, with (B A C).

" (AVg1)A(BV=g1)AN(CV—gi)) A(=BV-CV gr)
—— Ne—— ~ J
(wB—=—g1) (C——g1) ((BAC)—g1)

= Gives value of g, for all 4 possible assignments to {B, C}.

Tseitin transformation to CNF

Convert (A v (B A C)) to CNF by introducing new
variable g, for (B A C).

(A\/gl) A\ (—lgl V B)/\ (ﬂgl V C) A\ (—IB V ﬂC\/gl)
7 —~

\(91—>B) (91—>C)j \((BAC)—>91) Y,
Y Y
\(glﬁ(B/\C)) N\ ((B/\C)%gl)/

(91 & (BAC))

i SAT Solvers -- Representation

= A CNF formula is represented by a set of clauses.
=« Empty set represents a true formula.

= A clause is represented by a set of literals
=« Empty set represents a false clause.

= A variable is represented by a positive integer.

= The logical negation of a variable is represented by
the arithmetic negation of its number.

= E.g., (X1 vXx2) A (—=X1v—=Xx2))is represented by
{{11 2}1 {_11 _2}}

i Naive Approach

= SAT problem: Given a boolean formula ¢, does
there exist an assignment that satisfies ¢?

= Naive approach: Search all assignments!
= 11 variables — 27 possible assignments
= Explosion!

= SAT is NP-complete:

« Worst case is likely O(27), unless P=NP.

« But for many cases that arise in practice,
we can do much better.

i Unit Propagation

= Davis-Putnam-Logemann-Loveland (DPLL)
= Unit Clause: Clause with exactly one literal.
= Algorithm:

« If a clause has exactly one literal, then assign it true.
= Repeat until there are no more unit clauses.

= Example:
s (XL vXx2)A(=Xx1v—=x2)A(X1))
s ((Tvx2)A(F v=x2)aA(T))

I((T)/\(— X2))
s |

10

Helper function

from copy import copy, deepcopy

def AssignLit(ClauselList, 1it):
Clauselist = deepcopy(ClauselList)
for clause in copy(ClauseList):
if 1it in clause: ClauselList.remove(clause)

if -1it in clause: clause.remove(-1lit)
return Clauselist

>>> Assignlit([[1, 2, -3], [-1, -2, 4], [3, 4]], 1)
[[_2! 4]! [3! 4:]

>>> Assignlit([[1, 2, -3], [-1, -2, 4], [3, 4]1], -1)
[[25 _3]! [3! 4:]

Assumption: No clause contains both a variable and its negation.

11

i Naive Solver

def

def

Assignlit(ClauselList, 1lit):
Clauselist = deepcopy(ClauselList)
for clause in copy(ClauseList):
if 1it in clause: Clauselist.remove(clause)
if -1it in clause: clause.remove(-1lit)
return Clauselist

IsSatisfiable(Clauselist):
Test 1if no unsatisfied clauses remain

if len(Clauselist) == 0: return True

Test for presense of empty clause
if [] in Clauselist: return False

Split on an arbitrarily decided literal

DecLit = ClauseList[0] [0]

return (IsSatisfiable(AssignLit(ClauseList, DecLit)) or
IsSatisfiable(AssignLit(ClauselList, -DecLit)))

12

i DPLL Solver

def IsSatisfiable(Clauselist):
Unit propagation

o
S
T
S
S

<

-

N

repeat until fixed point:

for each unit clause UC in ClauseList:
ForcedLit = UCLO]
ClauselList = AssignLit(ClauselList, ForcedLit)

Test 1f no unsatisfied clauses remain
if len(ClauselList) == 0: return True

Test for presense of empty clause
if [] in Clauselist: return False

Split on an arbitrarily decided literal

DecLit = (choose a variable occuring in ClauseList)

return (IsSatisfiable(AssignLit(ClauseList, DecLit)) or
IsSatisfiable(AssignlLit(ClauselList, -DecLit)))

13

!'_ GRASP: an efficient SAT solver

Original Slides by Pankaj Chauhan
Modified by Will Klieber

Please interrupt me if anything is not clear!

i Terminology
Q=0; AW, A0,

= CNF formula (0 To, = (X, V X3)
= X,..., X,: nvariables
= @,..., @, M clauses—

A = {x,=0, x,=1,

L

= Assignment A
« Set of (variable, value) pairs.
= Notation: {(x,,1), (x,,0)}, {X;:1, %,:0}, {x;=1, x,=0}, {X;, =%X,}
= |Al <n — partial assignment {x,=0, x,=1, x,=1}
= |Al=n — complete assignment {x,=0, x,=1, x,=0, x,=1}
= ¢l =0 — falsifying assignment {x,=1, x,=1}
= ol,=1 — satisfying assignment {x,=0, x,=1, x,=1}
= ¢l,=X — unresolved asgnment {x,=0, x,=0, x,=1}

X4=1}

15

i Terminology

= An assignment partitions the
clause database into three classes:

= Satisfied, falsified, unresolved
= Free literal: an unassigned literal
= Unit clause: has exactly one free literal

16

i Basic Backtracking Search

= Organize the search in the form of a decision tree.
= Each node is a decision variable.

= Outgoing edges: assignment to the decision variable.
= Depth of node in decision tree is decision level &x).

\

o x=v @ d" means variable x is assigned value v at
decision level d.

x,=1@]

17

i Basic Backtracking Search

1. Make new decision assignments.
2. Infer implied assignments by a deduction
process (unit propagation).
B May lead to falsifying clauses, conflict!
B The assignment is called “conflicting assignment”.

3. Conflicting assignments leads to backtrack.

18

Example 1

{(X],O), (X2,0), (X3,])}

Backtracking Search in Action

W, = (x, VX3)

W, =(—u; v,

W; = (—, VX,

No backtrack in this example!

19

Backtracking Search in Action

Example 2

W, = (x, VX3)

W, =(—u; v,

W; = (—w, VX,

x, =1@] =x,=0@] =x,=0@]
=x;=1@]

{(X],]), (XZ’ 0)’ (X3,]) ’ (X4,0)}

No backtrack in this example!

20

Backtracking Search in Action

Example 3

W, = (x, VX3)

W, =(—u; v,

X, =1@l W, = (—, VX,
—x,=0@] . S
—=x,=0@] Wy = (U VX, V 3)

=x;=1@]
x,=0@2 =x;=1@2

{(X],O), (XZ’ 0)’ (X3,])}

21

i GRASP

= GRASP is Generalized seaRch Algorithm for
the Satisfiability Problem (Silva, Sakallah, 96).

s Features:

=« Implication graphs for Unit Propagation and
conflict analysis.

= Learning of new clauses.
= Non-chronological backtracking!

22

i Learning

= GRASP can learn new clauses that are logically
implied by the original formula.

= Goal is to allow Unit Prop to deduce more
forced literals, pruning the search space.

= Example:
= (p contains clauses (x vy v z)and (X vy v —z).
= Resolving on z yields a new clause (x v y).

» If v is false, then x must be true for ¢ to be true.
= But not discoverable by simple Unit Prop w/o resolvent clause.

= Clause (x v y) allows Unit Prop to force x=1 when y=0.
= New clauses learned from conflicting assignments.

23

‘L Resolution

From

(1 V-V, Vr)A(rVyr V-V Yn)
deduce

(x1 V-V, VyiV-Vyn)

24

i Top-level of GRASP-like solver

CurAsgn = {};
while (true) {
while (value of ¢ under CurAsgn is unknown) {
DecidelLit(); // Add decision literal to CurAsgn.
Propagate(); // Add forced literals to CurAsgn.
b
iIf (CurAsgn satisifies ¢) {return true;}
Analyze conflict and learn a new clause;
iIf (the learned clause is empty) {return false; }
Backtrack();
Propagate(); // Learned clause will force a literal

0o N UR WM

e
= O -

|
N
-~

25

i GRASP Decision Heuristics

s Procedure DecidelLit ()

s Choose the variable that satisfies the
most clauses

= Other possibilities exist

26

i GRASP Deduction

= Unit Propagation is a type of Boolean Constraint
Propagation (BCP).
= Grasp does Unit Prop using implication graphs:

E.qg., for the clause w = (x v —y),
if y=1, then x=1 is forced; the antecedent of x is {y=1}.

= If a variable x is forced by a clause during BCP, then
assignment of 0 to all other literals in the clause is
called the antecedent assignment A(x).

M E.g., for m=(xv y Vv —z),

A(x)=1{y:0, z:1}, A(y) ={x:0,z:1}, A(z) = {x:0, y:0}
= Variables directly responsible for forcing the value of x.
= Antecedent assignment of a decision variable is empty.

27

Implication Graphs

= Depicts the antecedents of assigned variables.

= A node is an assignment to a variable.
= (decision or implied)

= Predecessors of x correspond to antecedent A(x).
= No predecessors for decision assignments!

= For special conflict vertex x, antecedent A(x) is
assignment to vars in the falsified clause.

xX;=1@6

' conflict

xs=1@6

x,=1@6

X=0@] x,=0@3

28

‘L Example Implication Graph

Current truth assignment: (x,=0@1, x,,=1@2, x,;=1@2, x,,=0@3, x,,=0@3}

Current decision assignment: /x,=1 @6/

W, = (—; VX,)

@, = (—; VX3 VXg)

W; = (—w, V3 VXy)

W, = (—%,VXs VX;) x=1@6 K
s = (—x, VXs VX)) “ conflict
W = (x5 vV 77 Xg) “ x;=1@6 Xs=1@6

@y = (X VX7 v 0070) X=0@]1 x,=0@3

29

i GRASP Conflict Analysis

= After a conflict arises, analyze the implication graph.

= Add new clause that would prevent the occurrence
of the same conflict in the future.
— Learning

= Determine decision level to backtrack to; this might
not be the immediate one.

= Non-chronological backtrack

30

i Learning Algorithm

Let CA be the assignment of False to all literals in the
falsified clause. ("CA” is short for “conflict assignment”.)
m Example: CA= {x.=1@6, x,=1@6)

2. Aliteral I € CA is a unique implication point (UIP) iff every
other literal in CA has an earlier decision level than |.

3. loop:

m Remove the most recently assigned literal from CA and
replace it by its antecedent.

m If (CA is empty or has a UIP): break;
4. Let{L, ..., L.} = CA; learn clause (—L; v ... v —L,).

Backtrack to the earliest decision level at which the
learned clause will force the UIP to be false.

m Why is this guaranteed to be possible?

31

‘L Example Implication Graph

Current truth assignment: (x,=0@1, x,,=1@2, x,;=1@2, x,,=0@3, x,,=0@3}

Current decision assignment: /x,=/ @6/

W, = (—; VX,)

@, = (—; VX3 VXg)
W; = (—, V3 Vxy,)
W, = (—%,VXs VX;) x,=1@6
Ws = (—w, VXsVXy;)
W = (s vV —1Xg)
@ =(x; VX, vV —x;,)

32

‘L Example

W, = (—le vV TiXg V —|X9)

W5 = (X; V X3)

33

i Is that all?

= Huge overhead for boolean constraint
propagation (BCP)
= Better decision heuristics
= Better learning, problem specific
= Better engineering!
Chaff

34

