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1 Introduction

According to Wikipedia, logic is the study of the principles of valid infer-
ences and demonstration. From the breadth of this definition it is immedi-
ately clear that logic constitutes an important area in the disciplines of phi-
losophy and mathematics. Logical tools and methods also play an essential
role in the design, specification, and verification of computer hardware and
software. It is these applications of logic in computer science which will be
the focus of this course. In order to gain a proper understanding of logic
and its relevance to computer science, we will need to draw heavily on the
much older logical traditions in philosophy and mathematics. We will dis-
cuss some of the relevant history of logic and pointers to further reading
throughout these notes. In this introduction, we give only a brief overview
of the goal, contents, and approach of this class.

2 Topics
The course is divided into four parts:
L. Proofs as Evidence for Truth
II. Proofs as Programs

III. Proofs as Computations

IV. Substructural and Modal Logics
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L1.2 Constructive Logic: Overview

Proofs are central in all parts of the course, and give it its constructive na-
ture. In each part, we will exhibit connections between proofs and forms
of computations studied in computer science. These connections will take
quite different forms, which shows the richness of logic as a foundational
discipline at the nexus between philosophy, mathematics, and computer
science.

In Part I we establish the basic vocabulary and systematically study
propositions and proofs, mostly from a philosophical perspective. The
treatment will be rather formal in order to permit an easy transition into
computational applications. We will also discuss some properties of the
logical systems we develop and strategies for proof search. We aim at a sys-
tematic account for the usual forms of logical expression, providing us with
a flexible and thorough foundation for the remainder of the course. We will
also highlight the differences between constructive and non-constructive
reasoning. Exercises in this section will test basic understanding of logical
connectives and how to reason with them.

In Part II we focus on constructive reasoning. This means we consider
only proofs that describe algorithms. This turns out to be quite natural in
the framework we have established in Part I. In fact, it may be somewhat
surprising that many proofs in mathematics today are not constructive in
this sense. Concretely, we find that for a certain fragment of logic, con-
structive proofs correspond to functional programs and vice versa. More
generally, we can extract functional programs from constructive proofs of
their specifications. We often refer to constructive reasoning as intuitionis-
tic, while non-constructive reasoning is classical. Exercises in this part ex-
plore the connections between proofs and programs, and between theorem
proving and programming.

In Part III we study a different connection between logic and programs
where proofs are the result of computation rather than the starting point as
in Part II. This gives rise to the paradigm of logic programming where the
process of computation is one of systematic proof search. Depending on
how we search for proofs, different kinds of algorithms can be described at
a very high level of abstraction. Exercises in this part focus on exploiting
logic programming to implement various algorithms in concrete languages
such as Prolog.

In Part IV we study logics with more general and more refined notions
of truth. For example, in temporal logic we are concerned with reasoning
about truth relative to time. Another example is the modal logic S5 where
we reason about truth in a collection of worlds, each of which is connected
to all other worlds. Proofs in this logic can be given an interpretation as dis-
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tributed computation. Similarly, linear logic is a substructural logic where
truth is ephemeral and may change in the process of deduction. As we will
see, this naturally corresponds to imperative programming.

3 Goals

There are several related goals for this course. The first is simply that we
would like students to gain a good working knowledge of constructive
logic and its relation to computation. This includes the translation of in-
formally specified problems to logical language, the ability to recognize
correct proofs and construct them.

The second set of goals concerns the transfer of this knowledge to other
kinds of reasoning. We will try to illuminate logic and the underlying
philosophical and mathematical principles from various points of view.
This is important, since there are many different kinds of logics for rea-
soning in different domains or about different phenomena’, but there are
relatively few underlying philosophical and mathematical principles. Our
second goal is to teach these principles so that students can apply them in
different domains where rigorous reasoning is required.

A third set of goals relates to specific, important applications of logic in
the practice of computer science. Examples are the design of type systems
for programming languages, specification languages, or verification tools
for finite-state systems. While we do not aim at teaching the use of par-
ticular systems or languages, students should have the basic knowledge to
quickly learn them, based on the materials presented in this class.

These learning goals present different challenges for students from dif-
ferent disciplines. Lectures, recitations, exercises, and the study of these
notes are all necessary components for reaching them. These notes do not
cover all aspects of the material discussed in lecture, but provide a point of
reference for definitions, theorems, and motivating examples. Recitations
are intended to answer students” questions and practice problem solving
skills that are critical for the homework assignments. Exercises are a com-
bination of written homework to be handed in at lecture and theorem prov-
ing or programming problems to be submitted electronically using the soft-
ware written in support of the course. A brief introduction to this software
is included in these notes, a separate manual is available with the on-line
course material.

Yor example: classical, intuitionistic, modal, second-order, temporal, belief, linear, rele-
vance, affirmation, . ..
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Lecture 2
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1 Introduction

The goal of this chapter is to develop the two principal notions of logic,
namely propositions and proofs. There is no universal agreement about the
proper foundations for these notions. One approach, which has been par-
ticularly successful for applications in computer science, is to understand
the meaning of a proposition by understanding its proofs. In the words of
Martin-Lof [ML96, Page 27]:

The meaning of a proposition is determined by [...] what counts as a
verification of it.

A verification may be understood as a certain kind of proof that only ex-
amines the constituents of a proposition. This is analyzed in greater detail
by Dummett [Dum91] although with less direct connection to computer
science. The system of inference rules that arises from this point of view is
natural deduction, first proposed by Gentzen [Gen35] and studied in depth
by Prawitz [Pra65].

In this chapter we apply Martin-Lof’s approach, which follows a rich
philosophical tradition, to explain the basic propositional connectives. We
will see later that universal and existential quantifiers and types such as
natural numbers, lists, or trees naturally fit into the same framework.
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2 Judgments and Propositions

The cornerstone of Martin-Lo6f’s foundation of logic is a clear separation of
the notions of judgment and proposition. A judgment is something we may
know, that is, an object of knowledge. A judgment is evident if we in fact
know it.

We make a judgment such as “it is raining”, because we have evidence
for it. In everyday life, such evidence is often immediate: we may look out
the window and see that it is raining. In logic, we are concerned with sit-
uation where the evidence is indirect: we deduce the judgment by making
correct inferences from other evident judgments. In other words: a judg-
ment is evident if we have a proof for it.

The most important judgment form in logic is “A is true”, where A is a
proposition. There are many others that have been studied extensively. For
example, “A is false”, “ A is true at time t” (from temporal logic), “A is neces-
sarily true” (from modal logic), “program M has type 7" (from programming
languages), etc.

Returning to the first judgment, let us try to explain the meaning of con-
junction. We write A true for the judgment “ A is true” (presupposing that A
is a proposition. Given propositions A and B, we can form the compound
proposition “A and B”, written more formally as A A B. But we have not
yet specified what conjunction means, that is, what counts as a verification
of A A B. This is accomplished by the following inference rule:

A true B true
A N B true

Here the name AI stands for “conjunction introduction”, since the conjunc-
tion is introduced in the conclusion.

This rule allows us to conclude that A A B true if we already know that
A true and B true. In this inference rule, A and B are schematic variables,
and A is the name of the rule. The general form of an inference rule is

Ji ... Iy
————— name
where the judgments Ji, ..., J, are called the premises, the judgment J is

called the conclusion. In general, we will use letters J to stand for judg-
ments, while A, B, and C are reserved for propositions.

We take conjunction introduction as specifying the meaning of A A B
completely. So what can be deduce if we know that A A B is true? By the
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Natural Deduction L2.3

above rule, to have a verification for A A B means to have verifications for
A and B. Hence the following two rules are justified:

A N B true A N B true
—————— AEg ——— AFER
A true B true

The name AE7, stands for “left conjunction elimination”, since the conjunc-
tion in the premise has been eliminated in the conclusion. Similarly AERr
stands for “right conjunction elimination”.

We will later see what precisely is required in order to guarantee that
the formation, introduction, and elimination rules for a connective fit to-
gether correctly. For now, we will informally argue the correctness of the
elimination rules.

As a second example we consider the proposition “truth” written as
T. Truth should always be true, which means its introduction rule has no
premises.

TI
T true

Consequently, we have no information if we know T true, so there is no
elimination rule.

A conjunction of two propositions is characterized by one introduction
rule with two premises, and two corresponding elimination rules. We may
think of truth as a conjunction of zero propositions. By analogy it should
then have one introduction rule with zero premises, and zero correspond-
ing elimination rules. This is precisely what we wrote out above.

3 Hypothetical Judgments

Consider the following derivation, for some arbitrary propositions A, B,

and C:
AN (BAC) true

B A C true
B true

AE],

Have we actually proved anything here? At first glance it seems that cannot
be the case: B is an arbitrary proposition; clearly we should not be able to
prove that it is true. Upon closer inspection we see that all inferences are
correct, but the first judgment A A (B A C) true has not been justified. We
can extract the following knowledge:
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From the assumption that AN (B AC) is true, we deduce that B must
be true.

This is an example of a hypothetical judgment, and the figure above is an
hypothetical deduction. In general, we may have more than one assumption,
so a hypothetical deduction has the form

J oy
J

where the judgments Ji, ..., J, are unproven assumptions, and the judg-
ment J is the conclusion. Note that we can always substitute a proof for
any hypothesis J; to eliminate the assumption. We call this the substitution
principle for hypotheses.

Many mistakes in reasoning arise because dependencies on some hid-
den assumptions are ignored. When we need to be explicit, we write Ji, .. .,
J for the hypothetical judgment which is established by the hypothetical
derivation above. We may refer to Ji, ..., J, as the antecedents and J as
the succedent of the hypothetical judgment.

One has to keep in mind that hypotheses may be used more than once,
or not at all. For example, for arbitrary propositions A and B,

A A B true AN B true
——  ANEp ———— AEp
B true A true N
B A A true

can be seen a hypothetical derivation of A A B true - B A A true.

With hypothetical judgments, we can now explain the meaning of im-
plication “A implies B” or “if A then B” (more formally: A D B). The intro-
duction rule reads: A D B is true, if B is true under the assumption that A
is true.

u
A true

B true 5
A D B true
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Natural Deduction L2.5

The tricky part of this rule is the label u. If we omit this annotation, the rule

would read
A true

B true 5
A D B true

which would be incorrect: it looks like a derivation of A D B true from the
hypothesis A true. But the assumption A true is introduced in the process
of proving A D B true; the conclusion should not depend on it! Therefore
we label uses of the assumption with a new name v, and the corresponding
inference which introduced this assumption into the derivation with the
same label .

As a concrete example, consider the following proof of A D(B D(AAB)).

U w
A true B true

A N B true 5
BD(A N B) true

D)
AD(BD(ANB)) true

Note that this derivation is not hypothetical (it does not depend on any
assumptions). The assumption A true labeled v is discharged in the last in-
ference, and the assumption B true labeled w is discharged in the second-
to-last inference. It is critical that a discharged hypothesis is no longer
available for reasoning, and that all labels introduced in a derivation are
distinct.

Finally, we consider what the elimination rule for implication should
say. By the only introduction rule, having a proof of A D B true means that
we have a hypothetical proof of B true from A true. By the substitution
principle, if we also have a proof of A true then we get a proof of B true.

AD B true A true
oF
B true

This completes the rules concerning implication.

With the rules so far, we can write out proofs of simple properties con-
cerning conjunction and implication. The first expresses that conjunction is
commutative—intuitively, an obvious property.
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L2.6 Natural Deduction

— —u

A N B true AN B true

——  ANEp ———— AEp
B true A true Al

B A A true

D
(AANB)D(BAA) true

U

When we construct such a derivation, we generally proceed by a com-
bination of bottom-up and top-down reasoning. The next example is a dis-
tributivity law, allowing us to move implications over conjunctions. This
time, we show the partial proofs in each step. Of course, other sequences
of steps in proof constructions are also possible.

(AD(BAC)) 3((14:33) A (ADC)) true

First, we use the implication introduction rule bottom-up.

u

AD(BAC) true

(ADB) A (:A D C) true
(AD(BANC)D((ADB)AN(ADCQ)) true

DI

Next, we use the conjunction introduction rule bottom-up.

u

u
AD(BAC) true AD(BAC) true

ADB true ADC‘true
(ADB)A(ADC) true
(AD(BAC))D((ADB)AN(ADCQ)) true

DI

We now pursue the left branch, again using implication introduction
bottom-up.
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Natural Deduction L2.7

U w
AD(BAC) true A true u
: AD(BAC) true
B i;rue w :
ADBtrueD ADC true

(ADB)AN(ADCQC) true
(AD(BAC))D((ADB)AN(ADCQ)) true

DI

Note that the hypothesis A true is available only in the left branch, but
not in the right one: it is discharged at the inference D/". We now switch
to top-down reasoning, taking advantage of implication elimination.

u w
AD(BAC) true A true

oF
B A C true u
: AD(BAC) true
B true :
A D B true ADC true
i

(ADB)AN(ADC) true
(AD(BAC))D(ADB)AN(ADC)) true

DI¢

Now we can close the gap in the left-hand side by conjunction elimina-
tion.

u w
AD(BAC) true A true

oF u
B A C true AD(BAC) true
— ALy,
B true :
D w .
A D B true ADC true

(ADB)AN(ADCQC) true
(AD(BAC))D(ADB)AN(ADC)) true

DI¢

The right premise of the conjunction introduction can be filled in analo-
gously. We skip the intermediate steps and only show the final derivation.
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L2.8 Natural Deduction

u w u v
AD(BAC) true A true AD(BAC) true A true

OF OF
B A C true B A C true
— AEp —— AER
B true C true
A D B true ADC true

(ADB)AN(ADC) true
(AD(BAC))D((ADB)AN(ADCQ)) true

DI*

4 Disjunction and Falsehood

So far we have explained the meaning of conjunction, truth, and implica-
tion. The disjunction “A or B” (written as A V B) is more difficult, but does
not require any new judgment forms. Disjunction is characterized by two
introduction rules: A V B is true, if either A or B is true.
A true B true
[ \/IL e
AV B true AV B true

Now it would be incorrect to have an elimination rule such as
AV B true

VE;?
A true

because even if we know that A V B is true, we do not know whether the
disjunct A or the disjunct B is true. Concretely, with such a rule we could
derive the truth of every proposition A as follows:

TI
T true
AV T true

R
VEL?
A true

Thus we take a different approach. If we know that A v B is true, we
must consider two cases: A true and B true. If we can prove a conclusion
C true in both cases, then C must be true! Written as an inference rule:

u w
A true B true
AV B true C true C true
\/E'U,,’LU
C true
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Note that we use once again the mechanism of hypothetical judgments. In
the proof of the second premise we may use the assumption A true labeled
u, in the proof of the third premise we may use the assumption B true
labeled w. Both are discharged at the disjunction elimination rule.

Let us justify the conclusion of this rule more explicitly. By the first
premise we know A V B true. The premises of the two possible introduc-
tion rules are A true and B true. In case A true we conclude C' true by the
substitution principle and the second premise: we substitute the proof of
A true for any use of the assumption labeled « in the hypothetical deriva-
tion. The case for B true is symmetric, using the hypothetical derivation in
the third premise.

Because of the complex nature of the elimination rule, reasoning with
disjunction is more difficult than with implication and conjunction. As a
simple example, we prove the commutativity of disjunction.

(AV B) 3(:B v A) true

We begin with an implication introduction.

—_— U
AV B true

BV A true 5
(AV B)D(BV A) true

U

At this point we cannot use either of the two disjunction introduction
rules. The problem is that neither B nor A follow from our assumption AV
B! So first we need to distinguish the two cases via the rule of disjunction
elimination.

v w
A true B true

_ u : :
AV B true BV Atrue BV A true
BV A true 5

(AV B)D(BV A) true

\/E’U,w

u

The assumption labeled u is still available for each of the two proof obliga-
tions, but we have omitted it, since it is no longer needed.
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L2.10 Natural Deduction

Now each gap can be filled in directly by the two disjunction introduc-
tion rules.

v w
A true B true
U Vilp —— L
AV B true BV A true BV A true
\/E’U,U)
BV A true

U

DI
(AV B)D(BV A) true

This concludes the discussion of disjunction. Falsehood (written as L,
sometimes called absurdity) is a proposition that should have no proof!
Therefore there are no introduction rules.

Since there cannot be a proof of L true, it is sound to conclude the truth
of any arbitrary proposition if we know L true. This justifies the elimina-

tion rule
1 true

C true

We can also think of falsehood as a disjunction between zero alternatives.
By analogy with the binary disjunction, we therefore have zero introduc-
tion rules, and an elimination rule in which we have to consider zero cases.
This is precisely the L E rule above.

From this is might seem that falsehood it useless: we can never prove it.
This is correct, except that we might reason from contradictory hypotheses!
We will see some examples when we discuss negation, since we may think
of the proposition “not A” (written ~A) as A D L. In other words, ~A is true
precisely if the assumption A true is contradictory because we could derive
L true.

5 Natural Deduction

The judgments, propositions, and inference rules we have defined so far
collectively form a system of natural deduction. It is a minor variant of a sys-
tem introduced by Gentzen [Gen35] and studied in depth by Prawitz [Pra65].
One of Gentzen’s main motivations was to devise rules that model math-
ematical reasoning as directly as possible, although clearly in much more
detail than in a typical mathematical argument.

The specific interpretation of the truth judgment underlying these rules
is intuitionistic or constructive. This differs from the classical or Boolean in-
terpretation of truth. For example, classical logic accepts the proposition
AV (AD B) as true for arbitrary A and B, although in the system we have

LECTURE NOTES AUGUST 27, 2009



Natural Deduction L2.11

Introduction Rules Elimination Rules
A true B true A N B true A N B true
— NI ——  ANE, ——— AERg
A N B true A true B true
TI
T true no TE rule
u
A true
B t'rue AD B true A true
AD B true B true

U
A true B true

A true B true AV B true C true C true
247 — Vg v BUw
AV B true AV B true C true
1 true
no LI rule C true

Figure 1: Rules for intuitionistic natural deduction

presented so far this would have no proof. Classical logic is based on the
principle that every proposition must be true or false. If we distinguish
these cases we see that A VV (A D B) should be accepted, because in case
that A is true, the left disjunct holds; in case A is false, the right disjunct
holds. In contrast, intuitionistic logic is based on explicit evidence, and ev-
idence for a disjunction requires evidence for one of the disjuncts. We will
return to classical logic and its relationship to intuitionistic logic later; for
now our reasoning remains intuitionistic since, as we will see, it has a direct
connection to functional computation, which classical logic lacks.

We summarize the rules of inference for the truth judgment introduced
so far in Figure 1.
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6 Notational Definition

So far, we have defined the meaning of the logical connectives by their in-
troduction rules, which is the so-called verificationist approach. Another
common way to define a logical connective is by a notational definition. A
notational definition gives the meaning of the general form of a proposi-
tion in terms of another proposition whose meaning has already been de-
fined. For example, we can define logical equivalence, written A = B as
(ADB) A (BDA). This definition is justified, because we already under-
stand implication and conjunction.

As mentioned above, another common notational definition in intu-
itionistic logic is -4 = (A D L). Several other, more direct definitions of
intuitionistic negation also exist, and we will see some of them later in the
course. Perhaps the most intuitive one is to that that A true if A false, but
this requires the new judgment of falsehood.

Notational definitions can be convenient, but they can be a bit cumber-
some at times. We sometimes give a notational definition and then derive
introduction and elimination rules for the connective. It should be under-
stood that these rules, even if they may be called introduction or elimina-
tion rules, have a different status from those that define a connective.
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1 Introduction

In the verificationist definition of the logical connectives via their introduc-
tion rules we have briefly justified the elimination rules. In this section we
study the balance between introduction and elimination rules more closely.
In order to show that the two are in harmony we establish two properties:
local soundness and local completeness.
Local soundness shows that the elimination rules are not too strong: no
matter how we apply elimination rules to the result of an introduction we
cannot gain any new information. We demonstrate this by showing that we
can find a more direct proof of the conclusion of the elimination which does
not first introduce and then eliminate the connective in question. This is
witnessed by a local reduction of the given introduction and the subsequent
elimination.
Local completeness shows that the elimination rules are not too weak:
there is always a way to apply elimination rules so that we can reconsti-
tute a proof of the original proposition from the results by applying intro-
duction rules. This is witnessed by a local expansion of an arbitrary given
derivation into some eliminations followed by some introductions.
Connectives whose introduction and elimination rules are in harmony
in the sense that they are locally sound and complete are properly defined
from the verificationist perspective. If not, the proposed connective should
be viewed with suspicion. Another criterion we would like to apply uni-
formly is that both introduction and elimination rules are pure: the may
refer and employ different judgments and judgment forms, but they may
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L3.2 Harmony

not refer to other propositions which could create a dangerous dependency
of the various connectives on each other. As we present correct definitions
we will occasionally also give some counterexamples to illustrate the con-
sequences of violating the principles behind the patterns of valid inference.

In the discussion of each individual connective below we use the nota-
tion

D D’
A true =g A true

for the local reduction of a deduction D to another deduction D’ of the same
judgment A true. In fact, = g can itself be a higher level judgment relating
two proofs, D and D', although we will not directly exploit this point of
view. Similarly,
D D’
A true =g A true

is the notation of the local expansion of D to D'.

Conjunction. We start with local soundness. Since there are two elimina-
tion rules and one introduction, it turns out we have two cases to consider.
In either case, we can easily reduce.

D &
A true B true R
ANDBt
rue /\EL D
A true =—pr Atrue
D &
A true B true
— A
A N B true £
———  AFER
B true =—pr B true

Local completeness requires us to apply eliminations to an arbitrary
proof of A A B true in such a way that we can reconstitute a proof of A A B
from the results.

D D
A N B true NEL A N B true o
D A true B true AT
ANBtrue —pg AN B true
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As an example where local completeness might fail, consider the case
where we “forget” the right elimination rule for conjunction. The remain-
ing rule is still locally sound, but not locally complete because we cannot
extract a proof of B from the assumption A A B. Now, for example, we
cannot prove (A A B) D(B A A) even though this should clearly be true.

Substitution Principle. We need the defining property for hypothetical
judgments before we can discuss implication. Intuitively, we can always
substitute a deduction of A true for any use of a hypothesis A true. In
order to avoid ambiguity, we make sure assumptions are labelled and we
substitute for all uses of an assumption with a given label. Note that we
can only substitute for assumptions that are not discharged in the subproof
we are considering. The substitution principle then reads as follows:

If

u
A true

£
B true
is a hypothetical proof of B true under the undischarged hy-
pothesis A true labelled u, and

D
A true

is a proof of A true then
D

u
A true
&
B true

is our notation for substituting D for all uses of the hypothesis
labelled u in €. This deduction, also sometime written as [D/u]E
no longer depends on u.

Implication. To witness local soundness, we reduce an implication intro-
duction followed by an elimination using the substitution operation.

u
A true
&
B true N D 1 D U
A D B true A true Z’ue
DF
B true =R Btrue
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The conditions on the substitution operation is satisfied, because u is intro-
duced at the DI* inference and therefore not discharged in €.

Local completeness is witnessed by the following expansion.

D u
AD B true A true
OF
D B true u
AD B true =g AD B true

Here u must be chosen fresh: it only labels the new hypothesis A true which
is used only once.

Disjunction. For disjunction we also employ the substitution principle
because the two cases we consider in the elimination rule introduce hy-
potheses. Also, in order to show local soundness we have two possibilities
for the introduction rule, in both situations followed by the only elimina-
tion rule.

D u w
A true B true D
A true VI £ F Y U
AV B true L C true C true g ue
v E®w
C true = C( true
D u w
A true B true D
B true 7 I F Y w
AV B true R C true C true }_rue
\/Eu,w
C true —r Ctrue

An example of a rule that would not be locally sound is

AV B true

VE?
A true

and, indeed, we would not be able to reduce

AV B true
— VI
B true

R
VE?
A true L
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In fact we can now derive a contradiction from no assumption, which means
the whole system is incorrect.

TI
T true
1 VT true

R
VE;?
1 true

Local completeness of disjunction distinguishes cases on the known AV
B true, using AV B true as the conclusion.

u w
D A true B true

\/ N,
D AV B true AV B true L AV B true
AV B true —, AV B true

\/E’I.L,w

Visually, this looks somewhat different from the local expansions for con-
junction or implication. It looks like the elimination rule is applied last,
rather than first. Mostly, this is due to notation: the above represents the
step from using the knowledge of AV B true and eliminating it to obtain
the hypotheses A true and B true in the two cases.

Truth. The local constant T has only an introduction rule, but no elimi-
nation rule. Consequently, there are no cases to check for local soundness:
any introduction followed by any elimination can be reduced.

However, local completeness still yields a local expansion: Any proof
of T true can be trivially converted to one by T1.

D
T true =g T true

Falsehood. As for truth, there is no local reduction because local sound-
ness is trivially satisfied since we have no introduction rule.

Local completeness is slightly tricky. Literally, we have to show that
there is a way to apply an elimination rule to any proof of L true so that
we can reintroduce a proof of L true from the result. However, there will
be zero cases to consider, so we apply no introductions. Nevertheless, the
following is the right local expansion.

D
D 1 true

1 true = L true
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Reasoning about situation when falsehood is true may seem vacuous, but
is common in practice because it corresponds to reaching a contradiction.
In intuitionistic reasoning, this occurs when we prove A D | which is often
abbreviated as —A. In classical reasoning it is even more frequent, due to
the rule of proof by contradiction.

2 Verifications

The verificationist point of view on the meaning of a proposition is that
it is determined by its verifications. Intuitively, a verification should be a
proof that only analyzes the constituents of a propositions. This restric-
tion of the space of all possible proofs is necessary so that the definition is
well-founded. For example, if in order to understand the meaning of A, we
would have to understand ther meaning of B D A and B, the whole pro-
gram of understanding the meaning of the connectives by their proofs is
in jeopardy because B could be a proposition containing, say, A. But the
meaning of A would then in turn depend on the meaning of A, creating a
vicious cycle.

In this section we will make the structure of verifications more explicit.
We write A7 for the judgment “A has a verification”. Naturally, this should
mean that A is true, and that the evidence for that has a special form. Even-
tually we will also establish the converse: if A is true than A has a verifica-
tion.

Conjunction is easy to understand. A verification of A A B should con-
sist of a verification of A and a verification of B.

Al Bl

——— A
AAB]

We reuse here the names of the introduction rule, because this rule is strictly
analogous to the introduction rule for the truth of a conjunction.

Implication, however, introduces a new hypothesis which is not explic-
itly justified by an introduction rule but just a new label. For example, in
the proof

—_— U
A N B true

ANE
A true g
(AN B)D A true

u

the conjunction A A B is not justified by an introduction.
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The informal discussion of proof search strategies earlier, namely to use
introduction rules from the bottom up and elimination rules from the top
down contains the answer. We introduce a second judgment, A| which
means “A may be used”. A| should be the case when either A true is a
hypothesis, or A is deduced from a hypothesis via elimination rules. Our
local soundness arguments provide some evidence that we cannot deduce
anything incorrect in this manner.

We now go through the connectives in turn, defining verifications and
uses.

Conjunction. In summary of the discussion above, we obtain:

Al B1 AAB]| AAB]
— Al AN
AAB] Al B

ANER

The left elimination rule can be read as: “If we can use A A\ B we can use A”,
and similarly for the right elimination rule.

Implication. The introduction rule creates a new hypothesis, which we
may use in a proof. The assumption is therefore of the judgment A|

Al

B
AD BT

u

In order to use an implication A D B we require a verification of A. Just
requiring that A may be used would be too weak, as can be seen when
trying to prove ((AD> A) D B) D BT. It should also be clear from the fact
that we are not eliminating a connective from A.

ADB|] A7

DOF
B|
Disjunction. The verifications of a disjunction immediately follow from
their introduction rules.
Al Bl

VIf
AV Bl AV Bl

VIR
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A disjunction is used in a proof by cases, called here VE. This intro-
duces two new hypotheses, and each of them may be used in the corre-
sponding subproof. Whenever we set up a hypothetical judgment we are
trying to find a verification of the conclusion, possibly with uses of hy-
potheses. So the conclusion of VE should be a verification.

u w
Al BJ

AvB| Ct Ct
o)

\/Eu,w

Truth. The only verification of truth is the trival one.

— TI
i

A hypothesis T | cannot be used because there is no elimination rule for T.

Falsehood. There is no verification of falsehood because we have no in-
troduction rule.

We can use falsehood, signifying a contradiction from our current hy-
potheses, to verify any conclusion. This is the zero-ary case of a disjunction.

Atomic propositions. How to we construct a verification of an atomic
proposition P? We cannot break down the structure of P because there is
none, so we can only proceed if we already know P is true. This can only
come from a hypothesis, so we have a rule that lets us use the knowledge
of an atomic proposition to construct a verification.

P|

?TlT

This rule has a special status in that it represents a change in judgments
but is not tied to a particular local connective. We call this a judgmental rule
in order to distinguish it from the usual introduction and elimination rules
that characterize the connectives.
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Global soundness. Local soundness is an intrinsic property of each con-
nective, asserting that the elimination rules for it are not too strong given
the introduction rules. Global soundness is its counterpart for the whole
system of inference rules. It says that if an arbitrary proposition A has a
verification than we may use A without gaining any information. That is,
for arbitrary propositions A and C:

Al

If AT and dT then C'1.

We would want to prove this using a substitution principle, except that the
judgment AT and A| do not match. In the end, the arguments for local
soundness will help use carry out this proof later in this course.

Global completeness. Local completeness is also an intrinsic property of
each connective. It asserts that the elimination rules are not too weak, given
the introduction rule. Global completeness is its counterpart for the whole
system of inference rules. It says that if we may use A than we can construct
from this a verification of A. That is, for arbitrary propositions A:

Al

Al
Global completeness follows from local completeness rather directly by in-
duction on the structure of A.

Global soundness and completeness are properties of whole deductive
systems. Their proof must be carried out in a mathematical metalanguage
which makes them a bit different than the formal proofs that we have done
so far within natural deduction. Of course, we would like them to be cor-
rect as well, which means they should follow the same principles of valid
inference that we have laid out so far.

There are two further properties we would like, relating truth, verifica-
tions, and uses. The first is that if A has a verification then A is true. Once
we add that if A may be used then A is true, this is rather evident since we
have just specialized the introduction and elimination rules, except for the
judgmental rule |T. But under the interpretation of verification and use as
truth, this inference becomes redundant.

Significantly more difficult is the property that if A is true then A has
a verification. Since we justified the meaning of the connectives from their
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verifications, a failure of this property would be devastating to the verifi-
cationist program. Fortunately it holds and can be proved by exhibiting
a process of proof normalization that takes an arbitrary proof of A true and
constructs a verification of A.

All these properties in concert show that our rules are well constructed,
locally as well as globally. Experience with many other logical systems in-
dicates that this is not an isolated phenomenon: we can employ the verifi-
cationist point of view to give coherent sets of rules not just for constructive
logic, but for classical logic, temporal logic, spatial logic, modal logic, and
many other logics that area of interest in computer science. Taken together,
these constitute strong evidence that separating judgments from proposi-
tions and taking a verificationist point of view in the definition of the logical
connectives is indeed a proper and useful foundation for logic.

3 Derived Rules of Inference

One popular device for shortening derivations is to introduce derived rules
of inference. For example,
ADBtrue BDC true
ADC true

is a derived rule of inference. Its derivation is the following;:

u
AD B true A true

OF
B> C true B true
OF
C true
- D U
ADC true

Note that this is simply a hypothetical deduction, using the premises of
the derived rule as assumptions. In other words, a derived rule of infer-
ence is nothing but an evident hypothetical judgment; its justification is a
hypothetical deduction.

We can freely use derived rules in proofs, since any occurrence of such
a rule can be expanded by replacing it with its justification.

4 Logical Equivalences

We now consider several classes of logical equivalences in order to develop
some intuitions regarding the truth of propositions. Each equivalence has
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the form A = B, but we consider only the basic connectives and constants
(A, D,V, T, L)in Aand B. Later on we consider negation as a special case.
We use some standard conventions that allow us to omit some parentheses
while writing propositions. We use the following operator precedences

A>A>V>D>=
where A, V, and D are right associative. For example
“ADAV-—AD L
stands for
(=) 2((AV (=(=4)) > 1)

In ordinary mathematical usage, A= B = C stands for (A= B)A(B=C);in
the formal language we do not allow iterated equivalences without explicit
parentheses in order to avoid confusion with propositions such as (A =
A)=T.

Commutativity. Conjunction and disjunction are clearly commutative, while
implication is not.

(C1) ANB=DBAAtrue

(C2) Av B=BV Atrue

(C3) AD B isnotcommutative

Idempotence. Conjunction and disjunction are idempotent, while self-
implication reduces to truth.

(I1) AN A= Atrue
(I12) AV A= Atrue
(I3) ADA=T true

Interaction Laws. These involve two interacting connectives. In princi-
ple, there are left and right interaction laws, but because conjunction and
disjunction are commutative, some coincide and are not repeated here.

(L1) AN(BAC)=(ANB)AC true
(L2) ANT = A true
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(L3) AN (BDC) donot interact
(L4) AN(BVC)=(AANB)V(ANCQ) true
(L5) AN L =1 true
(L6) AV(BAC)=(AVB)A(AVC) true
(L7) AV T =T true
(L8) AV (BDC)donot interact
(L9 Av(BVvC(C)=(AVB)VC true
(L10) AV 1L = A true
(L11) AD(BAC)=(ADB)AN(ADC) true
(L12) ADT =T true
(L13) AD(BD>C)=(AAB)DC true
(L14) AD(BV C) do not interact
(L15) A > 1 do not interact
(L16) (ANB)DC =AD(BDC) true
(L17) T>C = C true
(L18) (AD B) D C do not interact
(L19) (AVB)DC =(ADC)AN(BDC) true
(L20) LD C =TT true
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Lecture Notes on
Proofs as Programs

15-317: Constructive Logic
Frank Pfenning

Lecture 4
September 3, 2009

1 Introduction

In this lecture we investigate a computational interpretation of constructive
proofs and relate it to functional programming. On the propositional frag-
ment of logic this is called the Curry-Howard isomorphism [How80]. From
the very outset of the development of constructive logic and mathematics,
a central idea has been that proofs ought to represent constructions. The
Curry-Howard isomorphism is only a particularly poignant and beautiful
realization of this idea. In a highly influential subsequent paper, Martin-
Lof [ML80] developed it further into a more expressive calculus called type
theory.

2 Propositions as Types

In order to illustrate the relationship between proofs and programs we in-
troduce a new judgment:

M:A M is a proof term for proposition A

We presuppose that A is a proposition when we write this judgment. We
will also interpret M : A as “M is a program of type A”. These dual inter-
pretations of the same judgment is the core of the Curry-Howard isomor-
phism. We either think of M as a term that represents the proof of A true, or
we think of A as the type of the program M. As we discuss each connective,
we give both readings of the rules to emphasize the analogy.
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We intend that if M : A then A true. Conversely, if A true then M : A.
But we want something more: every deduction of M : A should corre-
spond to a deduction of A true with an identical structure and vice versa.
In other words we annotate the inference rules of natural deduction with
proof terms. The property above should then be obvious.

Conjunction. Constructively, we think of a proof of A A B true as a pair
of proofs: one for A true and one for B true.

M:A N:B
Vi
(M,N): ANB

The elimination rules correspond to the projections from a pair to its
first and second elements.

M:AANB M:AANB
— T AEL — " AEg

fstM : A snd M : B

Hence conjunction A A B corresponds to the product type A x B.

Truth. Constructively, we think of a proof of T true as a unit element that
carries now information.

—— 11

(): T
Hence T corresponds to the unit type 1 with one element. There is no
elimination rule and hence no further proof term constructs for truth.

Implication. Constructively, we think of a proof of A D B true as a func-
tion which transforms a proof of A true into a proof of B true.

In mathematics and many programming languages, we define a func-
tion f of a variable x by writing f(z) = ... where the right-hand side “...”
depends on z. For example, we might write f(z) = 2%+ 2 — 1. In functional
programming, we can instead write f = A\z. 22 +x — 1, that is, we explicitly
form a functional object by A-abstraction of a variable (z, in the example).

We now use the notation of M-abstraction to annotate the rule of impli-
cation introduction with proof terms. In the official syntax, we label the ab-
straction with a proposition (writing Au:A) in order to specify the domain
of a function unambiguously. In practice we will often omit the label to
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make expressions shorter—usually (but not always!) it can be determined
from the context.

u

u: A

M:B _
M:A. M :ADB

U

The hypothesis label u acts as a variable, and any use of the hypothesis
labeled w in the proof of B corresponds to an occurrence of v in M.
As a concrete example, consider the (trivial) proof of A D A true:

u
A true
)
AD A true

If we annotate the deduction with proof terms, we obtain

u

u:A 5
(AuzA.u): ADA

IU

So our proof corresponds to the identity function id at type A which simply
returns its argument. It can be defined with id(u) = w orid = (Au:A. u).

The rule for implication elimination corresponds to function applica-
tion. Following the convention in functional programming, we write M N
for the application of the function M to argument N, rather than the more
verbose M (N).

M:A>DB N:A
MN :B

DF

What is the meaning of AD B as a type? From the discussion above
it should be clear that it can be interpreted as a function type A — B. The
introduction and elimination rules for implication can also be viewed as
formation rules for functional abstraction Au:A. M and application M N.

Note that we obtain the usual introduction and elimination rules for
implication if we erase the proof terms. This will continue to be true for
all rules in the remainder of this section and is immediate evidence for the
soundness of the proof term calculus, that is, if M : A then A true.
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As a second example we consider a proof of (A A B) D(B A A) true.

— —u

A N B true A N B true

————— ANEp ——— AEp
B true A true AL

B A A true

D
(AANB)D(B A A) true

u

When we annotate this derivation with proof terms, we obtain a function
which takes a pair (M, N) and returns the reverse pair (N, M).

— —
uw:AANB u:ANANDB
PP NERp 212 A
sndu: B fstu: A
(sndu,fstu) : BA A

(Au. (sndu, fstu)) : (AAB)D(B A A)

L

IU

Disjunction. Constructively, we think of a proof of AV B true as either
a proof of A true or B true. Disjunction therefore corresponds to a disjoint
sum type A + B, and the two introduction rules correspond to the left and
right injection into a sum type.

M:A Iy N:B in
inl” M : Av B int" N: AV B

In the official syntax, we have annotated the injections inl and inr with
propositions B and A, again so that a (valid) proof term has an unambigu-
ous type. In writing actual programs we usually omit this annotation. The
elimination rule corresponds to a case construct which discriminates be-
tween a left and right injection into a sum types.

u — W

u: A w: B

M:AVB N:C  0:C
case M of inlu = N |intw = O : C

VE®Y

Recall that the hypothesis labeled u is available only in the proof of the
second premise and the hypothesis labeled w only in the proof of the third
premise. This means that the scope of the variable u is N, while the scope
of the variable w is O.
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Falsehood. There is no introduction rule for falsehood (). We can there-
fore view it as the empty type 0. The corresponding elimination rule allows
a term of L to stand for an expression of any type when wrapped with
abort. However, there is no computation rule for it, which means during
computation of a valid program we will never try to evaluate a term of the
form abort M.
M: 1L
abort” M : C

As before, the annotation C' which disambiguates the type of abort M will
often be omitted.

1B

This completes our assignment of proof terms to the logical inference
rules. Now we can interpret the interaction laws we introduced early as
programming exercises. Consider the following distributivity law:

(L11a) (AD(BAC))D(ADB)AN(ADC) true
Interpreted constructively, this assignment can be read as:

Write a function which, when given a function from A to pairs
of type B A C, returns two functions: one which maps A to B
and one which maps A to C.

This is satisfied by the following function:
Au. ((Aw. fst (uw)), (Av. snd (uv)))

The following deduction provides the evidence:

u w u v
u: AD(BAC) w:A u: AD(BAC) v:A
DE DF
uw:BAC uv:BAC
—  N\Ep, ——F  F  AFR
fst(uvw) : B snd (uv) : C

w

) oI°
Aw. fst(uw) : ADB Av.snd (uv): ADC

(Aw. fst (uw)), (M. snd (uv))) : (ADB)A(ADCO) N
Au. {(Aw. fst(uw)), (Av. snd (uv))) : (AD(BAC))D((ADB)A(ADC(C)) o1

Programs in constructive propositional logic are somewhat uninterest-
ing in that they do not manipulate basic data types such as natural num-
bers, integers, lists, trees, etc. We introduce such data types later in this
course, following the same method we have used in the development of
logic.
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To close this section we recall the guiding principles behind the assign-
ment of proof terms to deductions.

1. For every deduction of A true there is a proof term M and deduction
of M : A.

2. For every deduction of M : A there is a deduction of A true

3. The correspondence between proof terms M and deductions of A true
is a bijection.

3 Reduction

In the preceding section, we have introduced the assignment of proof terms
to natural deductions. If proofs are programs then we need to explain how
proofs are to be executed, and which results may be returned by a compu-
tation.

We explain the operational interpretation of proofs in two steps. In the
first step we introduce a judgment of reduction M = M’, read “ M reduces
to M'”. A computation then proceeds by a sequence of reductions M =g
My =g M. .., according to a fixed strategy, until we reach a value which
is the result of the computation. In this section we cover reduction; we may
return to reduction strategies in a later lecture.

As in the development of propositional logic, we discuss each of the
connectives separately, taking care to make sure the explanations are inde-
pendent. This means we can consider various sublanguages and we can
later extend our logic or programming language without invalidating the
results from this section. Furthermore, it greatly simplifies the analysis of
properties of the reduction rules.

In general, we think of the proof terms corresponding to the introduc-
tion rules as the constructors and the proof terms corresponding to the elim-
ination rules as the destructors.

Conjunction. The constructor forms a pair, while the destructors are the
left and right projections. The reduction rules prescribe the actions of the
projections.

fst(M,N) —p M
snd (M,N) = N
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Truth. The constructor just forms the unit element, (). Since there is no
destructor, there is no reduction rule.

Implication. The constructor forms a function by A-abstraction, while the
destructor applies the function to an argument. In general, the application
of a function to an argument is computed by substitution. As a simple ex-
ample from mathematics, consider the following equivalent definitions

flz)=2?4+z—-1 f= .2’ +x -1
and the computation
fB@ =M. 22+z-1)3)=[3/z](2>+2-1)=32+3-1=11

In the second step, we substitute 3 for occurrences of z in 22 4+ — 1, the
body of the \-expression. We write [3/z](2z? +z — 1) =32 +3 — 1.

In general, the notation for the substitution of NV for occurrences of u in
M is [N/u]M. We therefore write the reduction rule as

(M:A. M)N =g [N/ulM

We have to be somewhat careful so that substitution behaves correctly. In
particular, no variable in IV should be bound in M in order to avoid conflict.
We can always achieve this by renaming bound variables—an operation
which clearly does not change the meaning of a proof term.

Disjunction. The constructors inject into a sum types; the destructor dis-
tinguishes cases. We need to use substitution again.

caseinl® M of inlu = N |intrw = O =y [M/u]N
caseint M of inlu = N |intw = O =g [M/w]O

Falsehood. Since there is no constructor for the empty type there is no
reduction rule for falsehood.

This concludes the definition of the reduction judgment. In the next sec-
tion we will prove some of its properties.
As an example we consider a simple program for the composition of
two functions. It takes a pair of two functions, one from A to B and one
from B to C and returns their composition which maps A directly to C.

comp : ((ADB)A(BDC))D(ADC)
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We transform the following implicit definition into our notation step-by-
step:
comp(f,g) (w) = g(f(w))

comp (f,g) = Aw.g(f(w))
compu = Aw. (sndu) ((fstu)(w))
comp = Au. A\w. (sndwu) ((fstu) w)

The final definition represents a correct proof term, as witnessed by the
following deduction.

U
u:(ADB)AN(BDC)
U ANE, —w
u:(ADB)AN(BDC) fstu: ADB w: A
ANER OF
sndu: BOC (fstu)w : B

(snd w) ((fstw) w) : C b

. (sndu) (fstw)w) : ASC
(\o. o (snd ) (fstw) w) - (Ao B)A(BoC) 5(AsC) o

w

u

We now verify that the composition of two identity functions reduces again
to the identity function. First, we verify the typing of this application.

(Au. Mw. (sndu) ((fstu) w)) (A\z. ), (A\y.y)) : ADA

Now we show a possible sequence of reduction steps. This is by no means
uniquely determined.

(Au. Aw. (sndu) ((fstu)w)) ((Az. ), (A\y. y))
((fst((Az. z), (Ay. y))) w)

=r Aw. (snd ((Az. x), (A\y. ¥)))

—r Aw. (Ay.y) ((fst((Az. z), (Ay. y))) w)
=r . (A\y. y) ((Az. ) w)

=r \w. (\y.y)w

=R Aw.w

We see that we may need to apply reduction steps to subterms in order
to reduce a proof term to a form in which it can no longer be reduced. We
postpone a more detailed discussion of this until we discuss the operational
semantics in full.

4 Expansion

We saw in the previous section that proof reductions that witness local
soundness form the basis for the computational interpretation of proofs.
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Less relevant to computation are the local expansions. What they tell us,
for example, is that if we need to return a pair from a function, we can al-
ways construct it as (M, N) for some M and N. Another example would
be that whenever we need to return a function, we can always construct it
as Au. M for some M.

We can derive what the local expansion must be by annotating the de-
ductions witnessing local expansions from Lecture 3 with proof terms. We
leave this as an exercise to the reader. The left-hand side of each expan-
sion has the form M : A, where M is an arbitrary term and A is a logical
connective or constant applied to arbitrary propositions. On the right hand
side we have to apply a destructor to M and then reconstruct a term of the
original type. The resulting rules can be found in Figure 3.

5 Summary of Proof Terms

Judgments.
M:A M is a proof term for proposition A, see Figure 1
M =pr M’ M reduces to M’, see Figure 2

M:A=pgpM M expands to M’, see Figure 3
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L4.10 Proofs as Programs

Constructors Destructors
M:ANB
——— AE|
M:A N:B s fstM : A
A
(M,N): AANB
M:ANB
——  ANEgp
snd M : B
— 717
(): T no destructor for T
u
u: A
M.:B M:A>DB N:A
DY OF
M:A. M :ADB MN : B
U —_w
u: A w: B
M:A .
Vg, : :
intf® M:AvVB M:AVB N:C O:C
\/E’LL,’LU
case M of inlu = N |intw = O : C
N:B
—  Vip
intf® N: AV B
M: 1
— 1F
no constructor for L abort® M : C

Figure 1: Proof term assignment for natural deduction

LECTURE NOTES SEPTEMBER 3, 2009



Proofs as Programs L4.11

fst (M,N) —p
snd (M,N) =p

==

no reduction for ()
(AM:A. M)N =g [N/ulM
caseinl® M of inlu = N |inrw = O =g [M/u]N
caseinr M of inlu = N |intrw = O =g [M/w]O

no reduction for abort

Figure 2: Proof term reductions

:ANB =g (fstM,snd M)

:ADB =—g AMu:A. Mu forunotfreein M

: =5 ()

:AVB =g caseM of inlu = inl® u | inrw = inr* w
L = abort™ M

SEERE
_|

Figure 3: Proof term expansions
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Lecture Notes on
Quantification

15-317: Constructive Logic
Frank Pfenning

Lecture 5
September 8, 2009

1 Introduction

In this lecture, we introduce universal and existential quantification. As
usual, we follow the method of using introduction and elimination rules to
explain the meaning of the connectives. An important aspect of the treat-
ment of quantifiers is that it should be completely independent of the do-
main of quantification. We want to capture what is true of all quantifiers,
rather than those applying to natural numbers or integers or rationals or
lists or other type of data. We will therefore quantify over objects of an un-
specified (arbitrary) type 7. Whatever we derive, will of course also hold
for specific domain (for example, 7 = nat). The basic judgment connecting
objects ¢ to types 7 is t : 7. We will refer to this judgment here, but not
define any specific instances until later in the course when discussing data

types.

2 Universal Quantification

First, universal quantification, written as Vz:7. A(z). Here z is a bound
variable and can therefore be renamed as discussed before. When we write
A(x) we mean an arbitrary proposition which may depend on z. We will
also say that A is predicate on elements of type 7.

For the introduction rule we require that A(a) be true for arbitrary a. In
other words, the premise contains a parametric judgment, explained in more
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detail below.

a:T

A(a) true
V7. A(z) true
It is important that a be a new parameter, not used outside of its scope,
which is the derivation between the new hypothesis a : 7 and the conclu-
sion A(a) true. In particular, it may not occur in Va:7. A(z).
If we think of this as the defining property of universal quantification,

then a verification of Vz:7. A(x) describes a construction by which an arbi-
trary ¢ : 7 can be transformed into a proof of A(t) true.

Vo, A(z) true t: 7
A(t) true

VE

We must verify that ¢ : 7 so that A(t) is a well-formed proposition.
The local reduction uses the following substitution principle for parametric

judgments:
£

a:T b
D £ [t/a]D
If J@) and t:7 then J(¢)

The right hand side is constructed by systematically substituting ¢ for a in
D and the judgments occurring in it. As usual, this substitution must be
capture avoiding to be meaningful. It is the substitution into the judgments
themselves which distinguishes substitution for parameters from substitu-
tion for hypotheses.

The local reduction for universal quantification then exploits this sub-
stitution principle.

a:T
D
A(a) true £
———vyje & t:T
Va:r. A(z) true t:t B [t/a]D
A(t) true =R A(t) true

The local expansion introduces a parameter which we can use to elimi-
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nate the universal quantifier.

D [
Vot A(z) true a: T
VE
A(a) true
D z e — vI(l
Va:r. A(x) true E Va:7. A(z) true

As a simple example, consider the proof that universal quantifiers dis-
tribute over conjunction.

u u
(Va:7. A(x) A B(x)) true a:T (Va:7. A(x) A B(z)) true b:1
VE VE
A(a) A B(a) true A(b) A B(b) true
NEL ———— NEg
A(a) true B(b) true
———— vI" ——————— v
V7. A(x) true Va:r. B(x) true
i

(Va:7. A(x)) A (Va7 B(x)) true
(Va:1. A(x) A B(z)) D(Va:7. A(x)) A (Va:r. B(x)) true

DI

3 Existential Quantification

The existential quantifier is more difficult to specify, although the introduc-
tion rule seems innocuous enough.

t:7 A(t) true
Jz:7. A(z) true

I

The elimination rules creates some difficulties. We cannot write
Jz:7. A(x) true
A(t) true

JE?

because we do not know for which ¢ is is the case that A(¢) holds. It is easy
to see that local soundness would fail with this rule, because we would
prove Jz:7. A(z) with one witness ¢ and then eliminate the quantifier using
another object ¢'.

The best we can do is to assume that A(a) is true for some new pa-
rameter a. The scope of this assumption is limited to the proof of some
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conclusion C' true which does not mention a (which must be new).

u
a:1 A(a) true

Jx:1. A(x) true C true
C true

JEe

Here, the scope of the hypotheses a and u is the deduction on the right,
indicated by the vertical dots. In particular, C' may not depend on a. We
use this crucially in the local reduction.

D & 7 Aa) true D £
t:7 A(t) true a7 (a) true — ——u
a7 F t:r  A(t) true
Jz:7. A(x) true C true g . [t/a)F
C true R C true

The reduction requires two substitutions, one for a parameter a and one for
a hypothesis w.
The local expansion is patterned after the disjunction.

D a:7 A(a) true

Jz:7. A(z) true  Jx:T. A(x) true

HEG/,'U,
—E dx:r. A(x) true

D
Jz:7. A(x) true

As an example of quantifiers we show the equivalence of Vz:7. A(z) D C
and (Jz:7. A(z)) D C, where C' does not depend on z. Generally, in our
propositions, any possibly dependence on a bound variable is indicated by
writing a general predicate A(xy,...,x,). We do not make explicit when
such propositions are well-formed, although appropriate rules for explicit
A could be given.

When looking at a proof, the static representation on the page is an in-
adequate image for the dynamics of proof construction. As we did earlier,
we give two examples where we show the various stages of proof construc-
tion.

((Fz:7. A(z)) D C) D.Vam'. (A(z) D C) true

LECTURE NOTES SEPTEMBER 8, 2009



Quantification L5.5

The first three steps can be taken without hesitation, because we can always
apply implication and universal introduction from the bottom up without
possibly missing a proof.

u w
(Fz:7. A(x)) D C true a:7 A(a) true

C t'rue 5
A(a) D C true
Va:r. A(z) D C true v
(37, A(z)) > C) > Varr. (A(z) 5 C) true

At this point the conclusion is atomic, so we must apply an elimination
to an assumption if we follow the strategy of introductions bottom-up and
eliminations top-down. The only possibility is implication elimination, since
a : 7 and A(a) true are atomic. This gives us a new subgoal.

u

w
a:17 Aa) true

U :
(Fx:7. A(z)) D C true dx:r. A(x)
C true

- D

A(a) D C true
v

Va:r. A(z) D C true
Y

((Fz:r. A(z)) D C) DVa:r. (A(x) DC) true

At this point it is easy to see how to complete the proof with an existential
introduction.

DF

w

a

u

a:7 A(a) true
u
(Fx:7. A(z)) D C true dx:7. A(x)
C true

- D

A(a) D C true
v

Va:r. A(z) D C true
D

((Fz:1. A(z)) D C) DVa:r. (A(x) DC) true

We now consider the reverse implication.

a7
OF

w

a

U

(V7. (A(z) D C)) D((3z:7. A(z)) D C) true
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From the initial goal, we can blindly carry out two implication introduc-
tions, bottom-up, which yields the following situation.

w u
Jz:7. A(x) true Va:r. A(x) D C true

C true .
(Fz:7. A(z)) D C true

(Vzer. (A(z) 5 C)) >((Fzr. Ax)) > C) tre

w

u

No we have two choices: existential elimination applied to w or universal
elimination applied to u. However, we have not introduced any terms, so
only the existential elimination can go forward.

u v
V7. A(z) D C true a:7 A(a) true

. w :
Jz:7. A(x) true C' true

C true S
(Fz:7. A(x)) D C true

(V2o (A(z) > C)) >((Fair. A(w)) > C) true

3B

w

U

At this point we need to apply another elimination rule to an assumption.
We don’t have much to work with, so we try universal elimination.

u
Va:r. A(z) D C true a:T
VE ———

A(a) D C true A(a) true

W :
Ja:1. A(x) true C true

C true 5
(Fz:7. A(z)) D C true

(Vaor. (A(2) 5 ) o((zer. A(z)) 5 C) true -

JE

w

U
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Now we can fill the gap with an implication elimination.

u
Va:r. A(x) D C true a:T
VE v
A(a) D C true A(a) true
T N, w DF
dx:1. A(x) true C true
JEa
C true w

(Fz:1. A(z)) D C true !
(Va:7. (A(z) DC)) D((Fx:7. A(x)) DC) true !

u

4 Verifications and Uses

In order to formalize the proof search strategy, we use the judgments A has
a verification (A 1) and A may be used (A |) as we did in the propositional
case. Universal quantification is straightforward:

a:T
A(o'z) 0 Ver. A(z) L t:7
—— VI¢ VE

Vo, A(z) T A(t)

We do not assign a direction to the judgment for typing objects, ¢ : 7.

Verifications for the existential elimination are patterned after the dis-
junction: we translate a usable Jz:7. A(x) into a usable A(a) with a limited
scope, both in the verification of some C.

t:m A(t) 1 Jz:r. A(x) | C‘T
— ] JEau
Jz:7. A(z) 1 O

As before, the fact that every true proposition has a verification is a kind
of global version of the local soundness and completeness properties. If we
take this for granted (since we do not prove it until later), then we can use
this to demonstrate that certain propositions are not true, parametrically.
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For example, we show that (3z:7. A(z)) D(Va:7. A(x)) is not true in
general. After the first two steps of constructing a verification, we arrive at

Jz:7. A(w)i ! a:T
Ala) 1

Va:r. A(x) 1

(Fz:1. A(z)) D(Vaur. A(z)) 1

vI®

DI

At this point we can only apply existential elimination, which leads to

dx:r. A(z) | ! Ala \
JEY
Afa) 1
— VI(I
Var. A(z) T
DI¢

(Fz:r. A(x)) D(Vair. A(x)) T

We cannot close the gap, because a and b are different parameters. We can
only apply existential elimination to assumption u again. But this only cre-
ates ¢ : 7 and A(c) | for some new ¢, so have made no progress. No matter
how often we apply existential elimination, since the parameter introduced
must be new, we can never prove A(a).
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Lecture Notes on
Natural Numbers

15-317: Constructive Logic
Frank Pfenning

Lecture 6
September 10, 2009

1 Introduction

In this lecture we discuss the type of natural numbers. They serve as a
prototype for a variety of inductively defined data types, such as lists or
trees. Together with quantification as introduced in the previous lecture,
this allow us to reason constructively about natural numbers and extract
corresponding functions. The constructive system for reasoning logically
about natural numbers is called intuitionistic arithmetic or Heyting arithmetic.

2 Induction

As usual, we think of the type of natural numbers as defined by its intro-
duction form. Note, however, that nat is a type rather than a proposition. It
is possible to completely unify these concepts to arrive at type theory, some-
thing we might explore later in this course. For now, we just specify cases
for the typing judgment ¢ : 7 that was introduced in the previous lecture
on quantification, but for which we have seen no specific instances yet. We
distinguish this from M : A which has the same syntax, but relates a proof
term to a proposition instead of a term to a type.
There are two introduction rules, one for zero and one for successor.

n : nat
natly —— natl;
0 : nat sm : nat

This definition has a different character from the previous definitions. For
example, we defined the meaning of AA B true from the meanings of A true
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and the meaning of B true, all of which are propositions. It is even differ-
ent from the proof term assignment rules where, for example, we defined
(M,N): AN Binterms of M : Aand N : B. In each case, the proposition
is decomposed into its parts.

Here, the types in the conclusion and premise of the nat/, rules are the
same, namely nat. Fortunately, the term n in the premise is a part of the
term sn in the conclusion, so the definition is not circular.

But what should the elimination rule be? We cannot decompose the
proposition into its parts, so we decompose the term instead. This is similar
to disjunction in that it proceeds by cases, accounting for the possibility that
a given n of type nat is either 0 or sz for some z.

T E——— V)
x:nat  C(z) true

n:nat C(0) true C(sx) true
C(n) true

nat oY

In words: In order to prove property C of a natural number n we have
to prove C'(0) and also C(sx) under the assumption that C(x) for a new
parameter z. The scope of z and u is just the rightmost premise of the rule.
This corresponds exactly to proof by induction, where the proof of C(0)
is the base case, and the proof of C'(sx) from the assumption C(x) is the
induction step.

We managed to state this rule without any explicit appeal to universal
quantification, using parametric judgments instead. We could, however,
write it down with explicit quantification, in which case it becomes:

Vn:nat. C(0) D(Va:nat. C(z) D C(sx)) D C(n)

for an arbitrary property C' of natural numbers. It is an easy exercise to
prove this with the induction rule above.

To illustrate this rule in action, we start with a very simple property:
every natural number is either 0 or has a predecessor. First, a detailed in-
duction proof in the usual mathematical style.

Theorem: Vz:nat. x = 0V Jy:nat. x = sy.
Proof: By induction on x.

Case: z = 0. Then the left disjunct is true.
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Case: x = sz/. Then the right disjunct is true: pick y = 2’ and
observe r = sz’ = sy.

Next we write this in the formal notation of inference rules. We sug-
gest the reader try to construct this proof step-by-step; we show only the
final deduction. We assume there is either a primitive or derived rule of
inference called refl expressing reflexivity of equality on natural numbers
(n=mn).

refl
' :nat sz’ =sa’ oy
0—=0 refl Jy:nat. sz’ =sy
\/IL ; ; \/IR
z:nat 0=0Vdy:nnat. 0 =sy s’ =0V dymnat. sz’ =sy )
natE*“

r =0V dy:nat. x =sy

vI®

Vz:nat. x = 0V Jy:nat. x = sy
This is a simple proof by cases and does not use the induction hypothesis,
which would have been labeled w.

In the application of the induction rule natE we used the property C(z),
which is a proposition with the free variable = of type nat. To write it out
explicitly:

C(z) = (z =0V Jymat. x = sy)
While getting familiar with formal induction proofs it may be a good idea
to write out the induction formula explicitly.

As a second example we specify a function which tests if its argument is

even or odd. For this purpose we assume a doubling function 2 x . Equality
is decided by an oracle.

Theorem: Va:nat. (Jy. x =2 x y) V (2. 2 =s(2 X 2)).
Proof: By induction on z.

Case: = 0. Then pick y = 0 since 0 = 2 x 0.
Case: = = sa’. By induction hypothesis we have either Jy. 2’ =
2 x yor Jz. 2/ = s(2 x z). We distinguish these two cases.
Case: Jy. #’ = 2 x y. Then the second disjunct holds because
we can pick z = y: x = sz’ =s(2 x y).
Case: Jz. 2/ =s(2 x z). Then the first disjunct holds because
wecanpicky =sz:x =sz’ =s(s(2 x 2)) =2 x (sz)
by properties of 2 x .
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We start the transcription of this proof.

u
!

' :nat (Fy.2' =2xy)V (3Fz. 2’ =s(2x2))

0=2x0V...
a1

(Jy.0=2xy) V... (Fy.sa' =2xy)V (Iz.sz' =s(2 x 2)) )
natE® -

(Fy.z=2xy)V(Tz. 2 =5(2 x 2))

vI*
Va:nat. (Jy. z =2 x y) V(Iz. 2 =s(2 X 2))

From here, we proceed by an VE applied to u, followed by an 3E in
each branch, naming the y and z that are known to exist. Unfortunately,
the 2-dimensional notation for natural deductions which is nice and direct
for describing and reasoning about the rules, is not so good for writing
actual formal deductions.

3 Local Proof Reduction

We check that the rules are locally sound and complete. For soundness, we
verify that no matter how we introduce the judgment n : nat, we can find a
more direct proof of the conclusion. In the case of natlj this is easy to see,
because the second premise already establishes our conclusion.

—u
x:nat  C(z) true
natly € F
0: nat C(0) true C(sx) true
U £
natF —
C(0) true R C(0) true

The case where n = sn’ is more difficult. Intuitively, we should be using
the deduction of the second premise for this case.
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—u
,D x:nat  C(x) true
n’ :nat natIS E F
sn' : nat C(0) true C(sx) true
natE®"
C(sn') true
—u
x:nat  C(z) true
D & F
n' :nat C(0) true C(sx) true
D natE*"
n’ : nat C(n') true
[n'/a)
—R C(sn') true

It is difficult to see in which way this is a reduction: D is duplicated, £ per-
sists, and we still have an application of natE. The key is that the term we
are eliminating with the applicaton of natE becomes smaller: from sn’ to
n’. In hindsight we should have expected this, because the term is also the
only component getting smaller in the second introduction rule for natural
numbers.

The computational content of this reduction is more easily seen in a
different context, so we move on to discuss primitive recursion.

The question of local expansion does not make sense in our setting. The
difficulty is that we need to show that we can apply the elimination rules in
such a way that we can reconstitute a proof of the original judgment. How-
ever, the elimination rule we have so far works only for the truth judgment,
so we cannot really reintroduce n : nat. The next section will give us the
tool.

4 Primitive Recursion

Reconsidering the elimination rule for natural numbers, we can notice that
we exploit the knowledge that n : nat, but we only do so when we are try-
ing to establish the truth of a proposition, C'(n). However, we are equally
justified in using n : nat when we are trying to establish a judgment of the

LECTURE NOTES SEPTEMBER 10, 2009



Le6.6 Natural Numbers

form t : 7. The rule then becomes

X : nat rTiT

n:nat {y: 7 ts: T

R(n,to,x.r.ts) : T

IETT

Here, R is a new term constructor,! ¢, is the case where n = 0, and t,
captures the case where n = sn/. In the latter case x is a new parameter
introduced in the rule that stands for »n’. r stands for the result of the func-
tion R when applied to n’, which corresponds to an appeal to the induction
hypothesis.

The local reduction rules may help explain this. We first write then
down just on the terms, where they are computation rules.

R(O,tg,:c.r.ts) —r 1o
R(sn/,to,x.r.ts) =g [R(N, to,x.7.ts)/r][n /]| ts

These are still quite unwieldy, so we consider a more readable schematic
form, called the schema of primitive recursion. If we write

f0) = to
f(sx) = ts(z, f(x))

where the only occurence of f on the right-hand side is applied to z, then
we could have defined f explicitly with

f=Xx.R(x,tg,x.r. ts(z, 7).

To verify this, apply f to 0 and apply the reduction rules and also apply f
to sn for an arbitrary n and once again apply the reduction rules.

f(0) =g R(0,tg,z.7r.ts(z,7))
=R to

and
f(sn) =g R(sn,ty,z.r.ts(x,r))
= pr ts(n,R(n,to,z. 7. ts(x,1)))

= ts(n, f(n))

! R suggests recursion
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The last equality is justified by a (meta-level) induction hypothesis, because
we are trying to show that f(n) = R(n, to, z. 7. ts(x, 1))

To be completely formal, we would also have to define the function
space on data, which comes from the following pair of introduction and
elimination rules for 7 — o. Since they are completely analogous to impli-
cation, except for using terms instead of proof terms, we will not discuss
them further

T:T
S0 s:T—o t:T
—_— =] _— F

ALT.S:T—0 st:o

The local reduction is
(A\r:T.s)t =g [t/x]s
Now we can define double via the schema of primitive recursion.

double(0) = 0
double(sz) = s(s(doublex))

We can read off the closed-form definition if we wish:
double = An. R(n,0,x.7r.s(s7))

From now on we will be content with using the schema of primitive
recursion. We define addition and multiplication, as exercises.

plus(0) = My.y

plus(sz) = Ay.s((plusz)y)
times(0) = Ay.0
times(sz) = MAy. (plus ((timesz)y))y

5 Proof Terms
With proof terms for primitive recursion in place, we can revisit and make

a consistent proof term assignment for the elimination form with respect to
the truth of propositions.
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u

x:nat  w:C(x) true

n:nat My : C(0) true My : C(sx) true
R(n, My, z.u. My) : C(n) true

natE*"

The local reduction we discussed before also works for these terms, be-
cause they are both derived from slightly different variants of the elimina-
tion rules (one with proof terms, one with data terms).

R(O,Mo,.’I}.’U,.Ms) =R MO
R(sn', My, x.u. Ms) =g [R(n/, My, z.u. My)/u][n'/z] M

We can conclude that proofs by induction correspond to functions de-
fined by primitive recursion, and that they compute in the same way.

Returning to the earlier example, we can now write the proof terms,
using _ for proofs of equality (whose computational content we do not care
about).

Theorem: Vz:nat. x = 0V Jy:nat. x = sy.
Proof: By induction on z.

Case: = = 0. Then the left disjunct is true.

Case: = sz’. Then the right disjunct is true: pick y = z’ and
observe x = sx’ =sy.

The extracted function has the form
pred = Az:nat. R(z,inl _, z. 7 inr(z, ))

More easily readable is the ML version, where we have eliminated the com-
putationally irrelevant parts from above.

datatype nat = 2 | S of nat;
datatype nat_option = Inl | Inr of nat

(» pred : nat -> nat_option x)
fun pred Z = Inl
| pred (S x) = Inr x
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Theorem: Va:nat. (Jy. x =2 x y) V (Jz. x =s(2 X 2)).
Proof: By induction on z.

Case: = 0. Then pick y = 0 since 0 = 2 x 0.

Case: = = sa’. By induction hypothesis we have either Jy. 2/ =
2 x yor Jz. 2/ = s(2 x z). We distinguish these two cases.

Case: Jy. z’ = 2 x y. Then the second disjunct holds because
wecan pick z = y: x = sz’ =s(2 x y).

Case: Jz. 2’ = s(2 x z). Then the first disjunct holds because
wecan picky =sz:z =saz’ =s(s(2x 2)) =2 x (sz)
by properties of 2 x .

half = Az:nat. R(z,inl(0, _),
xz.r.caser of inlu = let (y,_) =wu in inr(y,_)
| inrw = let (2, ) =w in inl(sz, )

or, in ML, where half (2 x n) returns Even (n) and half (2 x n + 1)
returns 0dd (n) .

datatype nat = 2 | S of nat;
datatype parity = Even of nat | 0Odd of nat
(» half : nat —-> parity x)
fun half Z = Even Z
| half (S x) = (case half x
of Even y => 0dd y
| Odd z => Even (S z))

6 Local Expansion

Using primitive recursion, we can now write a local expansion.

x . nat
D natly — " natl,
D n:nat 0:nat sz : nat
—5 natE*"
n : nat

n . nat

A surprising observation about the local expansion is that it does not
use the recursive result, 7, which corresponds to a use of the induction
hypothesis. This reflects that simple proof-by-cases would also be locally
sound and complete.
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This is a reflection of the fact that the local completeness property we
have does not carry over to a comparable global completeness. The diffi-
culty is the well-known property that in order to prove a proposition A by
induction, we may have to first generalize the induction hypothesis to some
B, prove B by induction and also prove B D A. Such proofs do not have the
subformula property, which means that our strict program of explaining
the meaning of propositions from the meaning of their parts breaks down
in arithmetic. In fact, there is a hierarchy of arithmetic theories, depending
on which propositions we may use as induction formulas.

7 Equality

With primitive recursion we have sufficient expressive power to define
functions like double, and also addition, multiplication, exponentiation, and
many others. But what about predicates such as equality or inequality?
Fortunately, our method of using introduction and elimination rules works
as before.

n =n' true

S =R g
0 =0 true 00 sn=sn true

If we take this as our definition of equality on natural numbers, how can we
use the knowledge that n = n'? If n and n’ are both zero, we cannot learn
anything. If both are successors, we know their argument must be equal.
Finally, if one is a successor and the other zero, then this is contradictory
and we can derive anything.

0 =sn true sn =0 true sn =sn’ true g
—L0s =Lus0 —Ligs
no rule Eyg C true C true n =n' true

Local soundness is very easy to check, but what about local complete-
ness? It turns out we cannot really write it without implication, which is
further testimony to some inherent incompleteness in arithmetic.
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Classical Logic

15-317: Constructive Logic
William Lovas

Lecture 7
September 15, 2009

1 Introduction

In this lecture, we design a judgmental formulation of classical logic. To
gain an intuition, we explore various equivalent notions of the essence of
classical reasoning including the Law of the Excluded Middle and Double-
Negation Elimination. Throughout the discussion a common theme is the
indirectness and “dishonesty” of classical proofs, an idea which will later
be key to understanding their computational interpretation. Eventually,
we arrive at a judgmentally parsimonious system based on the principle of
Proof by Contradiction and founded on two new forms of judgment: A is
false (written A false) and contradiction (written #).

2 Example

Classical reasoning is pervasive in classical mathematics, so we begin with
a typical example of a theorem proven using classical methods.

Theorem: Ja, b € R. irrational(a) A irrational(b) A rational(a®)

Proof: Consider \@ﬂ: this number is either rational or irra-
tional. Suppose it is rational: then a = V2, b =+2 gives the

required result. Suppose it is not: then a = \/Qﬁ, b= /2 gives
the required result, as a® = (\/iﬂ)‘/5 = \/iﬁﬁ =(v2)? =2
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Although this claims to be a proof of an existential theorem, it gives the
reader no grasp on what numbers actually witness the result—it offers two
possible choices but no further guidance as to which one is correct.

A slightly whimsical characterization of the proof offers a glimpse into
the computational content of classical reasoning. Imagine a prominent
mathematician delivering the above proof aloud as part of a lecture be-
fore a large audience. Initially, he delivers only the first half, saying, “Let
a = /2 and b = v/2; then a and b are irrational while a’ is rational—trust
me.” Amidst some mumbling, the audience nods and accepts the proof; af-
ter all, he is a very prominent mathematician, and he probably knows what
he’s talking about. But then, halfway through the lecture, a student from
the back suddenly leaps up and exclaims, “His proof is no good—I have

a proof that \/5\/§ is irrational!”!. The audience gasps and a murmur runs
through the crowd, but before anyone else can speak, the mathematician
calmly responds, “May I see your proof?” After checking it over, the math-
ematician addresses the crowd again: “My apologies—I misspoke earlier.

What I meant to say was this: Let a = \/5\/5 and b = v/2; then a and b are
irrational—I have this proof, if you don’t believe mel—while a® = 2 and is
therefore rational.”

The poor student at the back thought she could attain fame and fortune
by debunking the prominent mathematician, but in fact, the mathematician
stole the glory by leveraging her proof for his own ends. Classical proofs
exhibit a similar time-traveling behavior when executed, as we’ll see in the
next lecture.

3 What s classical logic?

Classical logic can be characterized by a number of equivalent axioms:

Proof by Contradiction

Law of the Excluded Middle: AV —A

Double-Negation Elimination: ~—A4 > A

Peirce’s Law: (ADB)DA)D A

We might consider making the logic we’ve seen so far classical by adding
one or more rules that correspond to these axioms. For instance, we might

Tt is, in fact, though the proof is non-trivial.
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add:

——A true

—FF  LEM DNE.
AV —A true or A true

Of course, we need only add one or the other, and not both, since they are
interderivable. First, let’'s show how we can derive DNE from LEM:

——A true —A true
1 true
AV A true LEM A true " A true
A true

VE®Y

As you can see, it is precisely the power of having the middle excluded that
lets us turn our proof of =—A true into a proof of L true, and thus a proof
of A true as required.

Using DNE also allows us to derive LEM. Note that since the LEM
rule has no premises, this will have to be a completely closed derivation.
To help elucidate the thought process of a classical prover, we’ll do a step-
by-step derivation. We start bottom up from the conclusion:

AV —A true

If we were to attempt to proceed as we’ve done previously, we would now
have to apply a disjunction-introduction rule, but we have no way of de-
ciding which injection to choose: merely positing all propositions to be true
or not does nothing to make apparent which is the case. We know that this
classical tautology is unprovable intuitionistically, anyhow, so we have no
hope but to begin by employing our classical rule, double-negation elimi-
nation.

—=(AV —A) true
AV —A true

DNE
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Since —A is notationally defined to mean A D L, we can take the usual no-
brainer step of applying implication introduction:

u

—(AV —A) true

1 true 5
—=(AV —A) true
DNE
AV —A true

U

Now we are tasked with proving falsity true: a difficult task, to be sure, but
a glimmer of hope shines through in our sole assumption u. Perhaps by ap-
plying it to an appropriate argument, we can conclude _L true as required:

u
—(AV —A) true

u :
—(AV —A) true AV —A true

1 true 5
—=(AV —A) true
DNE
AV —A true

DF

u

At this point, if we were not being careful, we might throw up our hands
and quit. We're right back to where we started, trying to prove AV —A true!
But now we have an extra hypothesis to help us. Undaunted, we pause to
consider: which shall we prove, A or —A? Since we know nothing of the
structure of A, we have no hope of proving it unless an assumption can
yield it, but nothing seems appropriate. So instead, we try for the right
disjunct, -A. We can also go ahead and apply implication introduction
without thinking twice, this time attaining an assumption v that A true.

u v
—(AV —A) true - Atrue

1 true

—A true
U —— VIg
—(AV —A) true AV —A true
OF
1 true
D u
—=(AV —A) true
DNE
AV —A true
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This situation is familiar once again: to prove L true, we must use an as-
sumption, and u still seems to be the only one that can help. So we carry
out another implication elimination, feeling only the slightest sense of deja
vU. ..

u v
—(AV —A) true - Atrue

” :
—(AV —A) true AV —A true
OF
L true
- A true
U — Vlp
—(AV —A) true AV —A true
DF
1 true
D u
——(AV —A) true
DNE
AV A true

Once more we are faced with our great adversary, the tertium non datur him-
self! But now the tables are turned: no longer must we cower in fear behind
our security blanket of negation. No, now we can prove A true itself, by the
very assumption we hypothesized to prove — A true! The derivation is now
complete.

v
A true

u
—(AV —A) true AV —A true
L true
- A true
u — F VIg
—(AV —A) true AV —A true
DF
L true
D
—=(AV —-A) true

DNE
AV —A true

253
DF

U

An interesting point to note about this proof is that, save for the last line, it
is a perfectly valid intuitionistic proof. Only at the very end—or beginning,
as we’ve told the story—did we need to appeal to classical reasoning in the
form of DNE. In fact, this observation hints at a more general one: there is
a double-negation translation, discussed in the next lecture, that translates
any classical theorem into one that is intuitionistic valid.
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From the intuitionistic portion of the deduction, we can read off a proof
term, the analysis of which will begin to reveal the nature of the computa-
tional interpretation of classical proofs.

fn (u:-(AV-A)) = u(inr (fn (v: A) = u (inlv)))

It begins by supposing a proof u of —(AV —A)—i.e., a refutation of AV ~A—
and then proceeds to debunk that refutation, showing that it must have
been mistaken by driving it to a contradiction. There are two choices of
how to do so: prove A or prove —A. First, it chooses to show that, in fact,
—A is the case. Its proof of —A proceeds as usual, supposing a proof of A
and deriving contradiction. But that contradiction is produced precisely by
changing its mind, saying that the refutation u is mistaken because, in fact,
A is the case! This time-travelling mind-changing behavior is essential to
classical reasoning, and we’ll see in the next lecture how this corresponds
to programming with continuations.

Although it should be clear that adding either of LEM or DNE would
suffice to make our logic classical, such rules violate the aesthetic princi-
ples we’ve adhered to thus far: both rules contain connectives, but they
are neither introducing nor eliminating any single connective, and both
rules contain multiple instances of a connective, suggesting a certain non-
orthogonality of principles. Must our logic include negation and disjunc-
tion in order to become classical? Perhaps just negation? Or, since negation
as we've seen it has been defined as implying falsehood, perhaps implica-
tion and falsehood are the important characteristics.

In fact, we can characterize what it means for a logic to be classical with-
out appealing to any connectives at all, using purely judgmental notions.
This is what we shall now endeavor to do.

4 Towards a better proof theory

Our proof theory for classical logic will be based on the idea of proof by
contradiction. Proof by contradiction is closely related to double-negation
elimination: If we take the rule DNE and require that its premise be proven
by implication-introduction (as we know we may), we find that we could
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replace it by a rule that looks like this:

—A true

?PBC"
A true

If an assumption that —A is true can lead to a proof of falsehood, we may
conclude (classically, anyhow) that A must be true.

But we should keep in mind the design principles that keep our logics
clear and easy to reason about: at most one connective should occur in
a given rule, with all other notions being at the level of judgments. The
proposed rule above still contains two connectives, = and L, and does not
read like an introduction or elimination rule, so we would like to replace
it with a rule that appeals only to judgmental notions. We achieve this by
inventing two new judgment forms, A false and # (contradiction):

k
A false

k
A true PBC

By convention we use letters like £ and / to denote hypotheses of falsity.
Now, of course, we must explain the meaning of the new judgment
forms A false and #. We understand these judgments through certain prin-
ciples analogous to the Substitution Principle we posited for hypotheses of
the form A true before. First, we require that contradiction yield anything:

D D
Contradiction Principle: If #, then J.

In this principle, J stands for any judgment.

The false judgment is treated somewhat specially: we derive its meaning
from the meaning of true. We take A false as a conclusion to be a judgment-
level notational definition:

A true

Afalse := #

To prove a proposition false, we assume it true and derive a contradiction.
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We still require hypotheses of the form A false, since they appear in our
classical rule PBC*. To explain the meaning of hypotheses of A false, we
derive a substitution principle from the definition above.

D
—_— k
A true YA false A false
D £ £

Falsity Substitution Principle: If # and J  then J

The final deduction in the above no longer depends on the hypothesis &
nor on the hypothesis w.

There’s an important difference between this substitution principle and
the one for true hypotheses: we took that substitution principle as a given,
since it arose directly from the meaning of the hypothetical judgment. Here,
though, since we did not directly define A false as a conclusion, we are not
substituting proofs that conclude A false for hypotheses of A false. There-
fore, this substitution principle is one we must prove of our rules. We defer
any further discussion until later when we learn rule induction.

We have one more thing to define before the system is complete, and
that is how to derive contradiction! With the rules given above, there are
currently no ways to do so. Contradiction means the same thing is both
true and false, so we take the following rule:

A false A true
J

contra

Note that we do not suppose the rule to conclude # directly, since we wish
to ensure that the Contradiction Principle above remains true. Instead, we
allow the rule to conclude any judgment .J, including #.

This concludes the discussion of the judgments A false and #. There
is one remaining important technical matter to deal with, though: since
we have introduced one new judgment that may appear as a conclusion,
#, we must revisit any rules we previously defined that were supposed to
conclude an arbitrary conclusion. In particular, the rules VE** and LE
must be extended to allow a conclusion of any judgment, and not merely
one of the form C true:

u v
A true B true

AV B true J J 1 true
7 vV EwY 7 1F
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To show an example of these rules in action, we derive Peirce’s Law,
one of the characterizations of classical logic mentioned above. We show
only the final deduction, but it has a flavor very similar to the derivation of
AV —A from DNE.

k )
A false A true

contra
B true
u — DOJY
(ADB)D Atrue AD B true
k DF
A false A true
contra
k
A true PBC

u

(ASB)>A)>A ~

Note the two uses of the hypotheses k that A false, which is similar to the
two uses of the refutation of AV —A4 in the derivation of LEM above. Notice
also the two uses of the rule contra to conclude two different judgments.

Negation revisited. Armed with our new judgmental notions, we can
now give a direct definition of negation rather than one that simply defines
it in terms of implication and falsehood. The new rules are as follows:

u k
A true A false
# —A true J
—J ———— -E
—A true J

The introduction rule essentially amounts to saying, “—A true if A false,”
but replacing A false with its judgmental definition. The elimination rule
lets you extract A false from a proof of —A true, but since we only allow
A false as a hypothesis, the rule introduces a new scope with an extra as-
sumption rather than simply concluding A false directly.

This elimination rule is locally sound, as witnessed by the following
local reduction, which makes use of the Falsity Substitution Principle:

u
A true i
D A false D L
# _Ju & A false
—A true J i P
J e A
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It is also locally complete; we can expand an arbitrary deduction of — A true
in two ways:

k u
Afalse  Atrue

contra
D LA
D —A true —A true 5
~Atrue ~F —A true -
k U
A false A true
AD 4 contra
—A true gk
D *
—A true E —A true

Note how the elim rule can be used to conclude either # or — A true.
To illustrate the use of negation, we give one final example deduction,
a proof of the inverse contrapositive:

k w
B false B true

4 contra
T - _‘Iw € v
—B DA true B true Afalse A true
1 OF 4 contra
—A true gt
k
B true PBC
P :) v
AD B true

u

D)
(nBD>-A)DAD B true

The rules for classical logic are summarized in Figure 1. It is worth not-
ing that the only rule which makes this logic actually classical is the rule
of proof-by-contradiction, PBC k_ All of the other rules, including the new,
direct explanation of negation, are perfectly valid from an intuitionistic per-
spective: intuitionists still deal with falsehood and contradiction, just in a
more controlled fashion.
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Judgmental Definitions

A true
: A false A true
) —_— 15
Afalse := # J conira
Classical Rule
k
A false
k
A true PBC
Rules for Negation
k
u
A true A false
# —A true J
I - _FE
- A true J

Figure 1: Rules for classical natural deduction
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Lecture Notes on
Classical Computation

15-317: Constructive Logic
Ronald Garcia

Lecture 8
September 17, 2009

1 Introduction

In the last lecture, we talked about how to alter our system of logic to sup-
port classical reasoning. To do so, we introduced two new judgments: #
signifying contradiction, and A false. In this lecture, we explore a computa-
tional interpretation of this new system.

2 Proof Terms

We begin by associating proof terms with each of our new rules. The rule
of contradiction follows:

k: Afalse M : A true

contra
throw” k M : J

Since contradiction can produce any judgment whatsoever, we annotate
the proof term constructor as throw” so that it precisely captures the proof.
We will omit this annotation when it’s clear from the context.

The proof term assignment for proof by contradiction is as follows:

—k
k: A false
PBC*

Ck.E : A true
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As with proof terms for implication introduction, we annotate the proof
term variable as Ck:A.E to disambiguate the proof.

We will study these two rules and their associated proof terms to see
how classical logic corresponds to computation.

As you know from last time, AV —A, often called the law of the excluded
middle (LEM), is true in classical logic but not in intuitionistic logic. Here
is a proof of LEM annotated with terms:

——— )
v: Atrue
ko VI
k: AV A false inlv: AV A true
contra
throw £ (inl v) : L true
DIY

Av.throw k (inl v) : A true
k i
k: AV —A false inr (A\v.throw £ (inl v)) : AV —A true
contra
throw £ (inr (Av.throw k (inl v))) : #
: : PBC*
Ck.throw k (inr (Av.throw k (inl v))) : AV —A true

In this lecture —A is once again notation for A D L. Observe that v is a
proof of A true, while Av.throw k (inl v) is a proof of —=A true. Notice as
well that throw is used to produce two separate judgments. Once it yields
L true, which we need to produce a proof of = A true, and once it yields
a contradiction #, which is used in a proof by contradiction. Finally, notice
that here we’re using judgments as types not just propositions as types. Since
our proof terms represent more judgments than A true, it’s not sufficient to
simply give A as the type: we must capture whether A is true or false, or if
we have produced a contradiction.

Figure 1 proves that (AD BV C) D(AD B) V (ADC) using excluded
middle as a lemma:

LEM = Ck:AV —A.throw" k (int? (\v:A.throw' k (inl™* v)))
The proof term that corresponds to this proof is as follows:

Af.case LEM of
inl z = case f x of
inl u = inl (A_.u)
inr w = inr (\_.w)
inr y = inl (Az.abort(y z))

For a final example, consider Peirce’s Law, ((A D> B) D A) D A.
In a previous class, we tried to write a function with this type, but found
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— Y — z
w w —-A A
B c R DFE
f — =z DI DI- — 1E
ADBVC A ADB ADC B
DFE VI VI SI*
BvC (ADB)V(ADCO) (ADB)V(ADCO) ADB
Y2 e e —
LEM : AV -A (ADB)V(ADCO) (ADB)V(ADO)

VE®Y
(ADB)V(ADCO)

(ADBVC)D(ADB)V(ADC)

Figure 1: Classical proof using the law of the excluded middle.

that it was not possible because it’s not intuitionistically true. Now using
classical logic, we can both prove it and program it!

k u
A false A true

contra
- D U
(ADB)D A true AD B true
k o F
A false A true
contra

k
A true PBC

f

DI
((ADB)DA)D Atrue

Observe the boxed B. The contradiction rule concludes B true out of thin
air and uses it to conclude that A D B true thereby discharging our assump-
tion of A true. We can then use this A D B true to eliminate

((AD B) D A) D A true and conclude A without ever having a real proof of
Al Then we use proof by contradiction to discharge our assumption that
A false. The proof term for Pierce’s law is:

Af.Ck.throw k (f (Au.throw k u))

Notice that it throws & twice: once to produce a type that we need out of
thin air, (via contradiction) and once to judge # so that the variable k can be
bound using C. The proof of LEM does the same thing. This is a common
pattern for proofs (and programs) that depend on classical logic.

LECTURE NOTES SEPTEMBER 17, 2009



L8.4 Classical Computation

3 Reduction

Adding proof by contradiction to our logic changes the meaning of all of
our connectives because there are now new ways to introduce each of them:
the introduction rules are no longer the sole means.

Having changed our system, it’s now necessary to check that local sound-
ness and local completeness still hold for each connective. Local complete-
ness still holds exactly the same way: given a proof of say A A B, one can
still use the original elimination and introduction rules to perform a local
expansion.

On the other hand, local soundness must be shown to apply for ev-
ery combination of introduction and elimination rules. In our new system,
proof by contradiction can be used to introduce every propositional con-
nective, so we must show that proof-by-contradiction followed by an elim-
ination can be reduced.

Looking at the rules of the system, it’s not necessarily obvious how one
could reduce a proposition introduced by contradiction. Let’s demonstrate
how using implication as an example:

i D
AD B false AD B true

contra

I — k &
A D B true PBC A true
> F

B true =R

D E
, AD B true A true
OF

B false B true

contra

Observe how the local reduction behaves. The PBC rule introduced an
implication A D B true, which was immediately eliminated. To reduce this
rule, the elimination rule is pushed up to the point in the proof where the
contra rule is applied to the assumption A D B false which was labeled k.
Furthermore, the contra rule is now applied to an assumption B false which
is now labeled with £/, and the PBC rule now discharges this new assump-
tion (the variable name doesn’t have to change, but it can; from here on we
often keep it the same).
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Referring to the corresponding proof terms, the reduction looks like the
following:

(Ck.throw k M) N = Ck.throw k (M N)

Here, M is the proof term for D and N is the proof term for £.
Local reduction operates similarly in the case of conjunction:

snd (Ck.throw k M) =g Ck.throw k (snd M)

In this case, M is a proof term for A A\ B true, and the entire term is a proof
of B true.

The two examples above can be generalized to describe how local re-
ductions involving Ck.E behave. Each elimination rule is associated with
some operation: fst and snd for conjunction, case for disjunction, and abort
for false. Whenever one of these operations is applied to a proof by con-
tradiction, the reduction rule “steals” the operation and copies it to every
location where the abstracted variable k is thrown in its body. For example:

snd (Ck.E) =g CK'.[K' (snd O)/k|E

The syntax [k’ (snd OJ)/k]E stands for a new kind of substitution, structural

substitution into the body of E. Roughly speaking, in the body of E, every

instance of throw k£ M is replaced with throw k' (snd M). The box O

stands for the “hole” where the old argument to throw, M, gets placed.

The label &’ corresponds to the proposition proved by the elimination rule.
The full set of rules are as follows:

(Ck.throw k M) N =g Ck.throw k (M N)

fst (Ck.E) —r CK.[K (fstO)/k|E

snd (Ck.E) — g CK.[K' (snd O)/k|E

case (Ck.E) of case [J of
inlu=>M —r CK. inlu=>M / k| E
intrv=>N intrv=>N

abort (Ck.E) —gr CK.[K (abortO)/k|E

Not only can proof-by-contradiction introduce any logical connective,
but plain ole” contradiction, which we associate with the throw operator,
can as well! As we saw earlier, this was critical in proving Peirce’s law and
the law of the excluded middle. It turns out that a contradiction followed
by an elimination can also be reduced. Here is an example using implica-

LECTURE NOTES SEPTEMBER 17, 2009



L8.6 Classical Computation

tion:
k D
C false Ctrue
contra g
A D B true A true
> F
B true =R
k D
C false Ctrue
contra
B true

In this case, the local reduction annihilates the elimination rule, and now the
contra rule simply concludes what the elimination rule used to. Here is the
reduction written using proof terms:

(throw” 2B k M) N = (throw® k M)
Just like for C, this reduction generalizes to the other elimination rules:

fst (throw""\B | M) —p throw” k M
snd (throw”"\Z k M) —p throw” k M
case (throw”V? k M) of
inlu=>M =5 throw® k M
intrv=>N
abort® (throw' k M) —p throw" k£ M

In each case, throw eats any attempt to eliminate it, and like a chameleon,
dresses itself up to look like what it should have been eliminated into! In
the case of disjunction elimination, C' is the proposition that is proved by
both M and N.

To see these reductions in action, let’s revisit our proof that
(ADBVC)D(ADB)V(ADC(C). To keep things somewhat manageable, we
will only consider reductions on its proof term which is:

Af.case LEM of
inl x = case f z of
inl v = inl (A_.u)
inr w = inr (\_.w)
inr y = inl (Az.abort(y 2))

where
LEM = (Ck.throw k (inr (Av.throw k (inl v)))

LECTURE NOTES SEPTEMBER 17, 2009



Classical Computation L8.7

We can perform local reductions wherever a rule applies. We'll try to be
systematic, working our way from the outside in. First, the case operator is
eliminating the C inside of LE M, which introduces A V —A, so we can use
our “steal and copy” reduction rule:

= Af.Ck.throw k (case (inr (Av.throw k£ (case (inl v) of
inl x = case f x of
inl v = inl (A_.u)
inr w = inr (/\7 w)
inr y = inl (\z.abort(y 2)))
of
inl x = case f x of
inl v = inl (A_.u)
inr w = inr (A\_.w)

inr y = inl (\z.abort(y 2))

The case operation has been absorbed into the C operator, and wrapped
around the second argument to both throw expressions.

Now, the second argument to the first throw is a case applied to an inr.
Recall that before this case was “stolen”, it was eliminating the law of the
excluded middle, A V =4, and here it finds out that our evidence is really
(wink wink) a proof of —A4, since it’s wrapped in an inr. We can reduce
this disjunction introduction (inr) and elimination (case) by substituting
the content of the inr into the corresponding branch of the case expression:

=g Af.Ck.throw k
inl (\z.abort((\v.throw k (case (inl v) of
inl x = case f z of
inl v = inl (A_.u)
inr w = inr (A 7w)
inr y = inl (Az.abort(y 2)))) 2))

Next, in the argument to abort, \v... is applied to z so we can substitute
z for v:

=g Af.Ck.throw k
inl (\z.abort(throw £ (case (inl z) of
inl x = case [ = of
inl v = inl (A_.u)
inrw = inr (A_.w)

inr y = inl (\z.abort(y 2)))))
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Now there is an abort applied to a throw. According to our new local
reductions, throw can eat abort (how tragic!):

=g Af.Ck.throw k
inl (\z.throw £k (case (inl z) of
inl x = case f z of
inl v = inl (A_.u)
inr w = inr (\_.w)
inr y = inl (Az.abort(y 2))))

Now we’re back at the same case statement that we started with! It
seems like we’ve gone back in time and have to resolve this case all over
again, but this time the case expression is eliminating an inl, i.e. a proof of
A! We can reduce it using the same strategy, but substituting into the other
branch of the case statement:

= Af.Ck.throw k
inl (\z.throw £k case f z of
inl v = inl (A_.u)
inr w = inr (\_.w)

At this point, we’ve performed all of the local reductions that we can.
What are we left with? Figure 2 is the proof tree corresponding to this term.
It’s a proof of the same theorem, (AD BV C) D(AD B)V (ADC) true, but
this one uses proof by contradiction directly instead of assuming the law of
the excluded middle.
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#
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k
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Figure 2: Direct proof of (AD BV C)D(ADB)V (ADC) true
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Looking at how we arrived at this proof, you can see how the classical
operators:

1. lie about what they are proofs of;
2. steal any attempt to apply elimination rules to them; and

3. send you through time warps so you can repeat the same work but
make different choices each time.

4 Relating Classical Logic to Intuitionistic Logic

Let’s write I' . A true for classical truth and I' +; A true for intuitionistic
truth, where we put a context I' of hypotheses in the judgment form rather
than using the two-dimensional notation for hypotheses.

It’s easy to prove that:

IfT'+; Atruethen T . A true.

This says that if an intuitionist asserts A, a classicist will believe him, in-
terpreting A classically. Informally, the move from intuitionistic to classical
logic consisted of adding new inference rules, so whatever is true intuition-
istically must be true classically. This can be formalized as a proof by rule
inductionon I' ; A true.

Of course, the opposite entailment does not hold (take A to be the law of
the excluded middle, or double-negation elimination). However, it is possi-
ble to translate propositions in such a way that, if a proposition is classically
true, then its translation is intuitionistically true. That is, the intuitionist
does not believe what the classicist says at face value, but he can figure out
what the classicist really meant to say, by means of a double-negation transla-
tion. The translation inserts enough double-negations into the proposition
A that the classical uses of the DN E rule are intuitionistically permissible.

We will use the “Godel-Gentzen negative translation”, which is defined
by a function A* = A’ from classical propositions to intuitionistic proposi-
tions. On the intuitionistic side, we use the usual notational definition of
—-A= (A D J_).

(m: =T

(L) = L
(ANB)" = A*AB*
(AVB)" = —=(A"V B")
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(A> B)* = (4* > BY)
(ﬁA)* _ ﬁA*
(P) = —~P

That is, the classicist and the intuitionistic agree about the meaning of
all of the connectives except V and atomic propositions P. From an in-
tuitionistic point of view, when a classicist says A V B, he really means
—=(A* v B¥), an intuitionistically weaker statement. Thus, intuitionistic
logic is more precise, because you can say A V B, if that’s the case, or
- (A V B) if you need classical reasoning to do the proof. There is no way
to express intuitionistic disjunction in classical logic. If an intuitionist says
A to a classicist, and then the classicist repeats it back to him, it will come
back as a weaker statement A*.

On the other hand, the translation has the property that A and A* are
classically equivalent. If a classicist says something to an intuitionist, and
then the intuitionist repeats it back to him, the classicist won’t know the
difference: intuitionistic logic makes finer distinctions.

As an aside, there are several other ways of translating classical logic
into intuitionistic logic, which make different choices about where to in-
sert double-negations. Different translations do different things to proofs,
which turns out to have interesting consequences for programming.

The following statement captures what we mean when we say that this
translation “does the right thing”.

[ JifT* = J*.

5 Programming with Classical Logic: Continuations
Earlier we showed the proof term for Peirce’s Law:
Af.Ck.throw k (f (Au.throw k u))

This proof of ((AD B) > A) D A corresponds to a powerful programming
language construct. Peirce’s law is the type of “call with current continua-
tion” or callcc, a powerful operator that appears in the Scheme program-
ming language and in Standard ML of New Jersey. Thinking operationally,
callcc gives you a copy of the current call stack of a program that you
can hold on to. Then later, after the program has done some more work
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and the stack has changed, you can replace the current stack with your old
stack, in a sense turning back the sands of time to an old program state.
The callcc operator has an immediately-binding variant called letcc:

letcc(k.M) = Ck.throw k M

With callcc in Scheme, the throw operation is wrapped up inside of a
function (Au.throw k w), so you can just call the continuation like any other
function. The letcc operator requires you to explicitly throw the continu-
ation £, just like with the C operator. Notice that both callcc and letcc
immediately throw the continuation that they capture.

As an example of programming with continuations, consider a function
that multiples all the integers in a list. In writing this code, we’ll assume
that int1list and int are propositions, like they would be in ML, and that
we can write pattern-matching functions over them. Here’s a first version:

mult’ : intlist => int
mult’ [] = 1
mult’ (x :: xs) = x * mult’ xs

The multiplication of the empty listis 1, and the multiplicationof x :: xs
is the head times the multiplication of the tail.

What happens whenwe callmult’ [1,2,3,0,4,5,....] wherethe

. is 700 billion! more numbers? It does a lot more work than necessary
to figure out that the answer is 0. Here’s a better version:

mult’ : intlist => int

mult’ [] =1

mult’” (0 :: xs) = 0

mult’ (x :: xs) = x * mult’ xs

This version checks for 0, and returns 0 immediately, and therefore does
better on the list [1,2,3,0,4,5,....1.

But what about the reverse list [...,5,4,0,1,2,3]? This version
still does all 700 billion multiplications on the way up the call chain, which
could also be skipped.

We can do this using continuations:

mult xs = letcc k in
let

!this week’s trendy really-large number to pull out of thin air

LECTURE NOTES SEPTEMBER 17, 2009



Classical Computation L8.13

mult’ : intlist => int

mult’” [] =1

mult’” (0 :: xs) = throw k O
mult’ (x :: xs) = X * (mult’ xs)

in throw k (mult’ xs)

The idea is that we grab a continuation k standing for the evaluation
context in which mult is called. Whenever we find a 0, we immediately
jump back to this context, with no further multiplications. If we make it
through the list without finding a zero, we throw the result of mult’ to
this continuation, returning it from mult. Note that we could have just
returned this value since letcc k hasa throw k built-in.

In this program, continuations have been used simply to jump to the
top of a computation. Other more interesting programs use continuations
to jump out and then back in to a computation, resuming where you left
off.

6 Continuation-Passing Style: double-negation trans-
lation for Programs

Continuations are a powerful programming language feature for classical
functional programs, but what if you only have an intuitionistic functional
programming language? Well, recall that there are several kinds of double-
negation transformations which can embed classical logic propositions into
intuitionistic logic. It turns out that this same strategy can be applied to
programs: we can translate classical programs into intuitionistic programs.
The process is called a continuation-passing style transformation, or CPS for
short, and just as there are several different double-negation translations,
there are several different CPS’s.

For the moment, let’s limit ourselves to a logic with only implication D
and falsehood L. Another translation A* is defined as follows:

pP* = P
(ADB)* = (A*D>—-=BY)

and has the property that A holds classically iff ~—A* intuitionistically.
A corresponding program translation M takes a program of type A to a
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program of type (A* D> 1) D L:

T = Xk
Ax.M = M.k (\z.M)
M N = Me.M\f.NQAz.f z k)

letcc ko.M (M. M k)[(Ma.\k.k a)/ko]
throw ko M = ko M

So CPS will turn a program of type intlist -> int into a program
of type (intlist -> (int -> ’0) -> ‘o) -> ‘o —-> 'owhere’o
is some type that plays the role of 1. As it turns out, ’ o ends up being the
type of the whole program.

To give some flavor for this translation, let’s look at our mult function
after CPS:

mult-k : intlist -> (int -> 'o0) —> 'o
mult-k xs k0O =
let k = k0 in

let
mult-k’ : intlist -> (int -> 1int) -> 1int
mult-k’” [] k1 = k1 1
mult-k’ (0 :: xs) kl =k O
mult-k’ (x xs) k1 = (mult-k’ xs (fn v => k1l (x * Vv)))
in (mult-k’ xs k)
mult-cps : (intlist -> (int -> '0) -> '0) -> "o -> 'o

mult-cps = fn k => k mult

The functions above are a simplified version of the output of CPS, so there
are not as many fn k =>... functions as would come out of the literal
translation. The function mult-cps is the CPS counterpart of the original
mult function.

To simplify matters, we’ll work directly with mult-k. In contrast to
the original mult function, this one takes an extra argument, k0 of type
int -> ’o. This is a function-based representation of the current contin-
uation, all of the work that’s left to be done. The first line in the function
stores a copy of this continuation in a variable k. This is the counterpart to
letcc from the classical program.

Now instead of throwing k, we can simply call the function k and pass
it a value. Notice how everywhere in mult-k’ that used to simply return
a value, it now passes that value to the current continuation. Also, where it
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used tosay x * (mult’ xs) now calls the functionmult-k’ and passes
it a bigger continuation that accepts a value v, the result of mult-k’ xs,
multiplies that value by x, then calls the continuation k1. This is how the
stack grows. Any time there used to be more work to do after a function
call returns, it has now been rolled into the continuation that is passed to
that function.

Finally notice that the 0 case of mult-k’ ignores its current continua-
tion k1 and instead calls the continuation that was captured at the top of
mult-k. So how do we get a value back from this program? Well, we can
pass it a continuation that simply returns whatever it gets:

id : int -> int
id x = x

mult-k big-list id

Now we’ve substituted the type int for the indeterminate type ’ o, and
when the computation is completed, it will call this initial continuation id
which returns the answer.

The CPS transformation is not simply an academic exercise. Some com-
pilers use CPS internally while translating programs into executables. This
makes it really easy to provide support for language features like letcc and
similar operators.
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Lecture Notes on
Sequent Calculus

15-317: Constructive Logic
Frank Pfenning

Lecture 9
September 24, 2009

1 Introduction

In this chapter we develop the sequent calculus as a formal system for
proof search in natural deduction. The sequent calculus was originally
introduced by Gentzen [Gen35], primarily as a technical device for prov-
ing consistency of predicate logic. Our goal of describing a proof search
procedure for natural deduction predisposes us to a formulation due to
Kleene [Kle52] called Gs.

Our sequent calculus is designed to exactly capture the notion of a ver-
ification, introduced in Lecture 3. Recall that verifications are constructed
bottom-up, from the conclusion to the premises using introduction rules,
while uses are constructed top-down, from hypotheses to conclusions us-
ing elimination rules. They meet in the middle, where an assumption may
be used as a verification for an atomic formula. In the sequent calculus,
both steps work bottom-up, which will allows us to prove global versions
of the local soundness and completeness properties foreshadowed in Lec-
ture 3.

2 Sequents

When constructing a verification, we are generally in a state of the follow-
ing form
Al e Anl

ct
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L9.2 Sequent Calculus

where Ay, ..., A, are all assumptions we may use, while C'is the conclusion
we are trying to verify. A sequent is just a local notation for such a partially
complete verification. We write

Aqleft, ..., A, left = C right

where the judgments A left and C'right correspond to A| and CT, respec-
tively. The judgments on the left are assumptions called antecedents, the
judgment on the right is the conclusion called the succedent.

The rules that define the A left and A right judgment are systematically
constructed from the introduction and elimination rules, keeping in mind
their directions in terms of verifications and uses. Introduction rules are
translated to corresponding right rules. Since introduction rules already
work from the conclusion to the premises, this mapping is straightforward.
Elimination rules work top-down, so they have to be flipped upside-down
in order to work as sequent rules, and are turned into left rules. Pictorially:

—— Hypotheses
Eliminations
17 ~ Initial Sequents
Introductions Left Rules Right Rules

(~ Elims™!) (~ Intros)

We now proceed connective by connective, constructing the right and
left rules from the introduction and elimination rules. When writing a se-
quent, we can always tell which propositions are on the left and which are
on the right, so we omit the judgments left and right for brevity. Also, we
abbreviate a collection of antecedents A; left,..., A, left by I'. The order
of the antecedents does not matter, so we will allow them to be implicitly
reordered.

Conjunction. We recall the introduction rule first and show the corre-
sponding right rule.
AT BT N I'—=A I'—=B8B
ANBT '= AAB
The only difference is that the antecedents I' are made explicit. Both premises

have the same antecedents, because any assumption can be used in both
subdeductions.

AR
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There are two elimination rules, so we two corresponding left rules.
Since the letters L and R are used to denote the type of rule in the sequent
calculus, we index the rules as first and second conjunction left rule.

AAB| T, ANB,A—sC
ANET, ALq

Al I AAB— C

AAB] T AAB,B—C
AER ALso

Bl T,AANB — C

We preserve the principal formula A A B of the left rule in the premise. This
is because we are trying to model proof construction in natural deduction
where assumptions can be used multiple times. If we temporarily ignore
the copy of AA B in the premise, it is easier to see how the rules correspond.

Truth. Truthis defined just by an introduction rule and has no elimination
rule. Consequently, there is only a right rule in the sequent calculus and no
left rule.

— 11 —= TR

m =T

Implication. Again, the right rule for implication is quite straightforward,
because it models the introduction rule directly.

Al
B7 INA=—a_hB
oY — DR
ADB] I'= ADB

We see here one advantage of the sequent calculus over natural deduc-
tion: the scoping for additional assumptions is simple. The new antecedent
A left is available anywhere in the deduction of the premise, because in the
sequent calculus we only work bottom-up. Moreover, we arrange all the
rule so that antecedents are persistent: they are always propagated from the
conclusion to all premises.

The elimination rule is trickier, because it involves a more complicated
combination of verifications and uses.

ADB| A7 'N''A>B— A T''ADB,B—C

DF DL
B| I'N'A>DB=C
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In words: in order to use A D B we have to produce a verification of 4,
in which case we can use B. The antecedent A D B is carried over to both
premises to maintain persistence. Note that the premises of the left rule are
reversed, when compared to the elimination rule to indicate that we do not
want to make the assumption B unless we have already established A.

In terms of provability, there is some redundancy in the DL rule. For ex-
ample, once we know B, we no longer need A D B, because B is a stronger
assumption. As stressed above, we try to maintain the correspondence to
natural deductions and postpone these kinds of optimization until later.

Disjunction. The right rules correspond directly to the introduction rules,
as usual.

AT r— A
VI, _— VR
AV B1 I — AVB
Bi
VIg =25 VR,
AV Bl I— AVB

The disjunction elimination rule was somewhat odd, because it intro-
duced two new assumptions, one for each case of the disjunction. The left
rule for disjunction actually has a simpler form that is more consistent with
all the other rules we have shown so far.

— U —w
Al B
AVB| C1 1 IMAVB,A=C T,AVB,B=C .
vV E®W V
1 I,AVDB=C

As for implication, scoping issues are simplified because the new assump-
tions A and B in the first and second premise, respectively, are available
anywhere in the deduction above.

Falsehood. Falsehood has no introduction rule, and therefore no right
rule in the sequent calculus. To arrive at the left rule, we need to pay atten-
tion to the distinction between uses and verifications, or we can construct
the 0-ary case of disjunction from above.

— L
1 I,L—C
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Atomic propositions. Recall that we cannot use an introduction rule to
verify atomic propositions P because they cannot be broken down further.
The only possible verification of P is directly via a use of P. This turns into
a so-called initial sequent.

Pl .
?T lT @ nit

This rule has a special status in that it does not break down any proposition,
but establishes a connection between two judgments. In natural deduction,
it is the connection between uses and verifications; in sequent calculus, it is
the connection between the left and right judgments.

As a simple example, we consider the proof of (A V B) D(B V A).

- -
AVB,A— A" AVB,B— B
VR,

VR
AVB,A— BVA > AVB,B— BV A
VL

AVB= BV A 5
= (AVB)D(BVA)

3 Observations on Sequent Proofs

We have already mentioned that antecedents in sequent proofs are persis-
tent: once an assumption is made, it is henceforth usable above the infer-
ence that introduces it. Sequent proofs also obey the important subformula
property: if we examine the complete or partial proof above a sequent, we
observe that all sequents are made up of subformulas of the sequent itself.
This is consistent with the design criteria for the verifications: the verifica-
tion of a proposition A may only contain subformulas of A. This is impor-
tant from multiple perspectives. Foundationally, we think of verifications
as defining the meaning of the propositions, so a verification of a proposi-
tion should only depend on its constituents. For proof search, it means we
do not have to try to resort to some unknown formula, but can concentrate
on subformulas of our proof goal.

If we trust for the moment that a proposition A is true if and only if it
has a deduction in the sequent calculus (as = A), we can use the sequent
calculus to formally prove that some proposition can ot be true in general.
For example, we can prove that intuitionistic logic is consistent.
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Theorem 1 (Consistency) It is not the case that — L.

Proof: No left rule is applicable, since there is no antecedent. No right rule
is applicable, because there is no right rule for falsehood. Therefore, there
cannot be a proof of — L. O

Theorem 2 (Disjunction Property) If = AV B then either = Aor —
B.

Proof: No left rule is applicable, since there is no antecedent. The only
right rules that are applicable are VR, and VRy. In the first case, we have
=—> A, in the second — B. O

Theorem 3 (Failure of Excluded Middle) It is not the case that =— AV —A
for arbitrary A.

Proof: From the disjunction property, either — A or — —A. For the
tirst sequent, no rule applies. For the second sequent, only DR applies and
we would have to have a deduction of A = L. But for this sequent no
rule applies. O

There are other simple observations that are important for some appli-
cations. The first is called weakening, which means that we can add an arbi-
trary proposition to a derivable sequent and get another derivable sequent
with a proof that has the same structure.

Theorem 4 (Weakening) IfI' — C then I', A = C with a structurally iden-
tical deduction.

Proof: Add A to every sequent in the given deduction of I' = C, but
never use it. The result is a structurally identical deduction of I', A = C.
O

Theorem 5 (Contraction) If I')A,A = C then I'| A = C with a struc-
turally identical deduction.

Proof: Pick one copy of A. Wherever the other copy of A is used in the
given deduction, use the first copy of A instead. The result is a structurally
identical deduction with one fewer copy of A. O
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The proof of contraction actually exposes an imprecision in our presen-
tation of the sequent calculus. When there are two occurrences of a propo-
sition A among the antecedents, we have no way to distinguish which one
is being used, either as the principal formula of a left rule or in an initial
sequent. It would be more precise to label each antecedent with a unique
label and then track labels in the inferences. We may make this precise
at a later stage in this course; for now we assume that occurrences of an-
tecedents can be tracked somehow so that the proof above, while not for-
mal, is at least somewhat rigorous.

Now we can show that double negation elimination does not hold in
general

Theorem 6 (Failure of Double Negation Elimination) It is not the case that
= ——A D A for arbitrary A.

Proof: Assume we have the shortest proof of = ——=A D A. There is only
one rule that could have been applied (DR), so we must also have a proof
of =—A = A. Again, only one rule could have been applied,

A= A A L= A

DL
—A = A

We can prove the second premise, but not the first. If such a proof existed,
it must end either with the DR or DL rules.

Case: The proof proceeds with DR.

—A A= 1

DR

Now only DL could have been applied, and it premises must have

been
—AA— A ——AA1l— 1

—AA= 1

DL

Again, the second premise could have been deduced, but not the first.
If it had been inferred with DR and, due to contraction, we would
end up with another proof of a sequent we have already seen, and
similarly if DL had been used. In either case, it would contradict the
assumption of starting with a shortest proof.
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Case: The proof proceeded with DL.

DL

The first premise is identical to the conclusion, so if there were a de-
duction of that, there would be one without this rule, which is a con-
tradiction to the assumption that we started with the shortest deduc-
tion.

0

4 Identity

We permit the init rule only for atomic propositions. However, the version
of this rule with arbitrary propositions A is admissible, that is, each instance
of the rule can be deduced. We call this the identity theorem because it shows
that from an assumption A we can prove the identical conclusion A.

Theorem 7 (Identity) For any proposition A, we have A = A.

Proof: By induction on the structure of A. We show several representative
cases and leave the remaining ones to the reader.

Case: A = P. Then

init

Case: A = A; A Ay. Then

By i.h. on A4; and weakening By ih. on A; and weakening

Al/\AQ,A1:>Al Al/\AQ,A2:>A2

ANLq ALo

AT NAy — A Al NAy — Ay R
AN

AL NAy = A1 N Ay

Case: A= A;D As. Then

By ih. on A; and weakening By i.h. on A; and weakening
A1 DA Al = Ay A1 DAy Ay, Ay = Ao
A1 D) AQ, A1 — A2
Al D) A2 — Al D) A2

DL

DR
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Case: A= 1. Then
1L

O

The identity theorem is the global version of the local completeness
property for each individual connective. One can recognize the local ex-
pansion as embodied in each case of the inductive proof of identity.

In the next lecture we will see a new theorem, called cut, which is the
global analogue of local soundness.

References

[Gen35] Gerhard Gentzen. Untersuchungen iiber das logische Schliefien.
Mathematische Zeitschrift, 39:176-210, 405—431, 1935. English trans-
lation in M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen,
pages 68-131, North-Holland, 1969.

[Kle52] Stephen Cole Kleene. Introduction to Metamathematics. North-
Holland, 1952.

LECTURE NOTES SEPTEMBER 24, 2009



Lecture Notes on
Cut Elimination

15-317: Constructive Logic
Frank Pfenning

Lecture 10
September 29, 2009

1 Introduction

The identity theorem of the sequent calculus exhibits one connection be-
tween the judgments A left and A right: If we assume A left we can prove
A right. In other words, the left rules of the sequent calculus are strong
enough so that we can reconstitute a proof of A from the assumption A. So
the identity theorem is a global version of the local completeness property
for the elimination rules.

The cut theorem of the sequent calculus expresses the opposite: if we
have a proof of A right we are licensed to assume A left. This can be in-
terpreted as saying the left rules are not too strong: whatever we can do
with the antecedent A [eft can also be deduced without that, if we know
A right. Because A right occurs only as a succedent, and A left only as an
antecedent, we must formulate this in a somewhat roundabout manner: If
I' = A right and I', A left = J then I' = J. In the sequent calculus for
pure intuitionistic logic, the only conclusion judgment we are considering
is C' right, so we specialize the above property.

Because it is very easy to go back and forth between sequent calculus
deductions of A right and verifications of A7, we can use the cut theorem
to show that every true proposition has a verification, which establishes a
fundamental, global connection between truth and verifications. While the
sequent calculus is a convenient intermediary (and was conceived as such
by Gentzen [Gen35]), this theorem can also be established directly using
verifications.
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2 Admissibility of Cut

The cut theorem is one of the most fundamental properties of logic. Because
of its central role, we will spend some time on its proof. In lecture we
developed the proof and the required induction principle incrementally;
here we present the final result as is customary in mathematics. The proof
is amenable to formalization in a logical framework; details can be found
in a paper by the instructor [Pfe00].

Theorem 1 (Cut) IfI' = Aand ', A = C then I' = C.

Proof: By nested inductions on the structure of A, the derivation D of
I' = Aand £ of ', A = C. More precisely, we appeal to the induction
hypothesis either with a strictly smaller cut formula, or with an identical
cut formula and two derivations, one of which is strictly smaller while the
other stays the same. The proof is constructive, which means we show how
to transform

D E F
r—= 4 and NA=—~C to I'=~<~C

The proof is divided into several classes of cases. More than one case
may be applicable, which means that the algorithm for constructing the
derivation of I' = C from the two given derivations is naturally non-
deterministic.

Case: D is an initial sequent.

=_——— init
I'P— P
r={,pP) This case
I'P,P—=—C Deduction £
I'P=—C By Contraction (see Lecture 9)
'=C By equality

Case: £ is an initial sequent using the cut formula.

E=—— init
[,P=—1P
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A=P=C This case
I'—= A Deduction D

Case: £ is an initial sequent not using the cut formula.

£=—————nit
I",P,A— P
r={,pP) This case
I'°P=— P By rule init
'=r By equality

Case: A is the principal formula of the final inference in both D and €&.
There are a number of subcases to consider, based on the last infer-
ence in D and £. We show some of them.

Subcase:
D, Dy

. I' = A1 I' = A2
I'=—= A1 N Ay

D

AR

&
g_F,Al/\AQ,Al = C

INAANA, — C

and ALy

I'NA, —C By ih.on A1 A Ay, D and &;
I'=~C By i.h. on Ay, Dy, and previous line

Actually we have ignored a detail: in the first appeal to the in-
duction hypothesis, £ has an additionaly hypothesis, A;, and
therefore does not match the statement of the theorem precisely.
However, we can always weaken D to include this additional
hypothesis without changing the structure of D (see the Weak-
ening Theorem in Lecture 9) and then appeal to the induction
hypothesis. We will not be explicit about these trivial weaken-
ing steps in the remaining cases.
Subcase:

Dy
A4 —=4A4
D 1 2

=—F DR
I'= A1 DA
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L10.4

Cut Elimination

51 52

F,A13A2:>A1 F,AQDAQ,A2:>C
and &= DL
F,AlDAQ = C

I' = Al By i.h.on A1 D) AQ, D and 51
I' = A; By i.h. on A; from above and D,
F,AQ = C By i.h. on A1 DAQ,Dand 52
Ir=~0C By i.h. on A5 from above

Case: Aisnot the principal formula of the last inference in D. In that case D

must end in a left rule and we can appeal to the induction hypothesis
on one of its premises. We show some of the subcases.

Subcase:

Subcase:

D,
F/, BiANBy, B — A
D= ALy

F/, BiANBy,— A
I' = (I",B1 A Bs) This case
F/,Bl NBy, By — C By ih.on A, Dy and £
I", By ANBy=—C By rule ALy
'=C By equality

Dl DQ
F,,Bl DBy — B F,,BlDBg,BQZA
D= DL

F/, By DBy — A
I' = (I, By D By) This case
I",B1 D> By, By — C Byih.on A, Dy and £
I, By D> By = C By rule DL on D; and above
'=C By equality

Case: Aisnot the principal formula of the last inference in £. This overlaps

with the previous case, since A may not be principal on either side. In
this case, we appeal to the induction hypothesis on the subderivations
of £ and directly infer the conclusion from the results. We show some
of the subcases.
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Subcase:
& &
NA=—C, T A= (Cy
&= AR
I''A— C1 ANCy
C=CiNCy This case
I'=C4 By ih.on A, D and &
I' = (Cy By ih.on A4, D and &
I'= Ci{ NCy By rule AR on above
Subcase:
&
I",By ABy,Bj,A=—C
F/,Bl ANBy, A— C
I'=(I",B1 A Bg) This case
IY,Bi AN By, By = C Byih.on A4, D and &
I",Bi AN By = C By rule AL; from above

O

3 Cut Elimination

Gentzen’s original presentation of the sequent calculus included an infer-
ence rule for cut. The analogue in our system would be

I'=A IN'A=~0C
r==0C

cut

The advantage of this calculus is that it more directly corresponds to nat-
ural deduction in its full generality, rather than verifications. The disad-
vantage is that it cannot easily be seen as capturing the meaning of the
connectives by inference rules, because with the rule of cut the meaning of
C might depend on the meaning of any other proposition A (possibly even
including C' as a subformula).

In order to clearly distinguish between the two kinds of calculi, the
one we presented is sometimes called the cut-free sequent calculus, while
Gentzen’s calculus would be a sequent calculus with cut. The theorem con-
necting the two is called cut elimination: for any deduction in a sequent
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calculus with cut, there exists a cut-free deduction of the same sequent.
The proof is a straightforward induction on the structure of the deduction,
appealing to the cut theorem in one crucial place.

Theorem 2 (Cut Elimination) If D is a deduction of I' = C' possibly using
the cut rule, then there exists a cut-free deduction D' of ' = C.

Proof: By induction on the structure of D. In each case, we appeal to the
induction hypothesis on all premises and then apply the same rule to the
result. The only interesting case is when a cut rule is encountered.

Case:
Dy Dy
r=A4 IN'A=~C
D= cut
I'=~<C
I' = A without cut By i.h. on Dy
I''A = C without cut By i.h. on D,
'=C By the Cut Theorem

O

Similarly, Gentzen also allowed initial sequents with a non-atomic prin-
cipal formula. It is a straightforward exercise to show that any deduction
that uses non-atomic initial sequents can be expanded into one that uses
only atomic ones.

4 Quantification in Sequent Calculus

In natural deduction, we had two forms of hypotheses: A true and ¢ : 7
for parameters c. The latter form was introduced into deductions by the VI
and 3F rules. In the sequent calculus we make all assumptions explicit on
the left-hand side of sequents. In order to model parameters we therefore
need a second kind of judgment on the left that reads c : 7. It is customary
to collect all such hypotheses in a different context, denoted X for signature.
A sequent then has the form

C1iT1y .oy CmiTm 5 A1 left, ..., A, left = C' right
by T
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We assume that all parameters declared in a signature X are distinct. Some-
times this requires us to choose a parameter with a name that has not yet
been used. When writing down a sequent X;I" = C we presuppose that
all parameters in I' and C' are declared in X. In the bottom-up construction
of a deduction we make sure to maintain this.

The typing judgment for terms, ¢ : 7, can depend on the signature ¥ but
not on logical assumptions A left. We therefore write X + ¢ : 7 to express
that term ¢ has type 7 in signature X.

In all the propositional rules we have so far, the signature ¥ is propa-
gated unchanged from the conclusion of the rule to all premises. In order
to derive the rules for the quantifiers, we reexamine verifications for guid-
ance, as we did for the propositional rules in Lecture 9.

Universal quantification. We show the verification on the left and with
the corresponding right rule.

c:T
A(e)l Y, eI = Ac)
— VI°¢ VR

Var. A(z)T ;I = V. A(x)

Our general assumption that the signature declares every parameter at
most once means that ¢ cannot occur in ¥ already or the rule would not
apply. Also note that > declares all parameters occurring in I', so ¢ cannot
occur there, either.

The elimination rule that uses a universally quantified assumption cor-
responds to a left rule.

Vo, A(z)] t:7 Sht:m X0, Vaur. A(z), A(t) = C
VE VL
A(t)] 50, Vor. A(z) = C

Existential quantification. Again, we derive the sequent calculus rules
from the introduction and eliminatinon rules.

t:m AT YhHt:r 5T = A(t)
— I iR
Jz:7. A(x)] ;I = i1, A(x)
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L10.8 Cut Elimination

As for disjunction elimination, the natural deduction rule already has some-
what of the flavor of the sequent calculs.

u
c:t  Alo)l

dx:r. Ax)] 1 Y, er I 3er. A(z), A(e) = C
HEC,'LL
c? %0, 3zt A(x) = C

5 Cut Elimination with Quantification

The proof of the cut theorem extends to the case when we add quantifiers.
A crucial property we need is substitution for parameters, which corre-
sponds to a similar substitution principle on natural deductions: If X - ¢ : 7
and X,c¢: ;' F A then X; [t/c]T" F [t/c]A. This is proved by a straightfor-
ward induction over the structure of the second deduction, appealing to
some elementary properties such as weakening where necessary.

We show only one case of the extended proof of cut, where an existential
formula is cut and was just introduced on the right and left, respectively.

Subcase:
T Dy
YHt:7 ;7 = Ai(t)
D= IR
T = Jxir. A4 ()
&
Y, er I 3xr. Ai(x), Ai(c) = C
and & = L

0 3T Al(z) = C
50, 3. Ar(2), Ai1(t) = C By substitution [t/c]&;
5TA(t) = C By ih.on 3z. Ai(x), D, and [t/c]&;
»WI=C By i.h. on A, (t), D1, and above

The induction requires that A, (¢) is considered smaller than Jz. A;(z).
Formally, this can be justified by counting the number of quantifiers
and connectives in a proposition and noting that the term ¢ does not
contain any. A similar remark applies to check that [t/c]&; is smaller
than £. Also note how the side condition that ¢ must be a new param-
eter in the L rule is required in the substitution step to conclude that
[t/c]l' =T, [t/c]Ai(c) = A(t) = [t/x]A1(z), and [t/c]C = C.
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Lecture Notes on
Inversion

15-317: Constructive Logic
Frank Pfenning

Lecture 11
October 6, 2009

1 Introduction

The sequent calculus we have introduced so far maintains a close corre-
spondence to natural deductions or, more specifically, to verifications. One
consequence is persistence of antecedents: once an assumption has been intro-
duced in the course of a deduction, it will remain available in any sequent
above this point. While this is appropriate in a foundational calculus, it is
not ideal for proof search since rules can be applied over and over again
without necessarily making progress. We therefore develop a second se-
quent calculus and then a third in order to make the process of bottom-up
search for a proof more efficient.

2 A More Restrictive Sequent Calculus

Ideally, once we have applied an inference rule during proof search (that is,
bottom-up), we should not have to apply the same rule again to the same
antecedent. Since all rules decompose formulas, if we had such a sequent
calculus, we would have a simple and clean decision procedure. As it turns
out, there is a fly in the ointment, but let us try to derive such a system.

We write I' — C for a sequent whose deductions try to elimination
principal formulas as much as possible. We keep the names of the rules,
since they are largely parallel to the rules of the original sequent calculus,
'=~C.
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Conjunction. The right rule works as before; the left rule extracts both
conjuncts so that the conjunction itself is no longer needed.

' —A T'—B raA,B—=C
AR AN
' —AAB rAnB —C

L

Observe that for both rules, all premises have smaller sequents than the
conclusion if one counts the number of connectives in a sequent.

It is easy to see that these rules are sound with respect to the ordinary
sequent calculus rules. Soundness here is the property that if ' — C' then
I' = C'. Completeness if generally more difficult. What we want to show
is that if ' = C then also I' — C, where the rules for the latter sequents
are conceived as more restrictive. The proof of this would proceed by in-
duction on the structure of the given deduction D and appeal to lemmas on
the restrictive sequent calculus. For example:

Case: (of completness proof)

D,
INANB,A=C
D= NLq

INAANB=C
I'ANB,A—C By i.h. on Dy
I'NA,B— A By identity for —
I'AANB — A By AL
IAANB — C By cut for —

We see that identity and cut for the restricted sequent calculus is needed to
show completness in the sense described above. Fortunately, they hold (see
further notes at the end of the lecture). We will not formally justify many
of the rules, but give informal justifications or counterexamples.

Truth. There is a small surprise here, in that we can have a left rule for
T, which eliminates it from the antecedents. It is analogous to the zero-ary
case of conjunction.

I —C
—— TR — 7L
r—T I,T—C
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Inversion L11.3

Atomic propositions. They are straightforward, since the initial sequents
do not change.

——— init
r,P— P

Disjunction. The right rules to do not change; in the left rule we can elim-
inate the principal formula.

r— A r —B A—cC I'B—C
————— VR, ———— VR, VL
I' —AVB I' —AvVB ravB —C

Intuitively, the assumption A V B can be eliminated from the ordinary se-
quent rules because the new assumption A is stronger. More formally:

Case: (of completness proof)

Dy Dy
I''AvB,A=C T',AVB,B=C
D= VL
INNAvB=~C
INAvB,A—C By i.h. on Dy
rA—A By identity for —
I'NA— AV B By VR
raA—=c¢ By cut for —
I''B— B By identity for —
I''B— AVB By VR,
rB—C By cut for —
I'AvB —C By rule VL

Falsehood. There is norightrule, and the left rule has no premise to trans-
fers directly.

— 1L
no LR rule L —C

Implication. In all the rules so far, all premises have fewer connectives
than the conclusion. For implication, we will not be able to maintain this

property.

IA— B I A>B—A I,B—C

— DR DL
I' —-ADB raA>B —~C
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Here, the assumption A D B persists in the first premise but not in the
second. Unfortunately, A D> B may be needed again in that branch of the
proof. An example which requires the implication more than once is —
——(AV —-A), where -A = AD L as usual.

At this point, all rules have smaller premises (if one counts the number
of logical constants and connectives in them) except for the DL rule. We
will address this in the next lecture.

Nevertheless, we can interpret the rules as a decision procedure if we
make the observation that in bottom-up proof search we are licensed to
fail a branch if along we have a repeating sequent. If there were a deduc-
tion, we would be able to find it applying a different choice at an earlier
sequent, lower down in the incomplete deduction. But if we apply contrac-
tion (which is admissible in the restricted sequent calculus) then there are
only finitely many sequents because antecedents and succedents are com-
posed only of subformulas of our original proof goal. One can be much
more efficient in loop checking than this [How98, Chapter 4], but just to see
that intuitionistic propositional calculus is decidable, this is sufficient. In
fact, we could have made this observation on the original sequent calculus,
although it would be even further from a realistic implementation.

3 Invertible Rules

The restrictive sequent calculus in the previous section is a big improve-
ment, but if we use it directly to implement a search procedure it is hope-
lessly inefficient. The problem is that for any goal sequent, any left or right
rule might be applicable. But the application of a rule changes the sequent
just a little—most formulas are preserved and we are faced with the same
choices at the next step. Eliminating this kind of inefficiency is crucial for a
practical theorem proving procedure.

The first observation, to be refined later, is that certain rules are invert-
ible, that is, the premises hold iff the conclusion holds. This is powerful,
because we can apply the rule and never look back and consider any other
choice.

As an example, consider AR. For this to be invertible means that if
the conclusion holds than both premises hold. In other words, we have to
show: IfI' — A AN B then’ — Aand I' — B, which is the opposite of
what the rule itself expresses. Fortunately, this follows easily by but, since
I AAB — AandT, AN B — B.

In order to formalize the strategy of applying inversions eagerly, with-
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out backtracking over the choices of which invertible rules to try, we refine
the restricted sequent calculus further into two, mutually dependent forms
of sequents.

r-o-% ¢ Decompose C' on the right
Q- ¢t Decompose Q2 on the left

Here, 2 is an ordered context (say, a stack) that we only access at the right
end. I'” is a context restricted to those formulas whose left rule are not
invertible, and C'* is a formula whose right rule is not invertible. Both of
these can also contain atoms. After we have developed the rules we will
summarize the forms of I'" and C'*.

Rather than organizing the presentation by connective, we will follow
the judgments, starting on the right.

Right inversion. We decompose conjunction, truth, and implication ea-
gerly on the right and on the left, because both rules are invertible and can
easily be checked.

oA ro0fB r-.0,4-%p
AR Y DR
_ R _ _ R
Ir—Q—AAB Q=T r-;Q@—Ao>B

If we encounter an atomic formula, we succeed if it is among the antecedents;
otherwise we switch to left inversion.

Perl- Pgr- 10 p
— it LRp
% p o % p

If we encounter disjunction or falsehood, we also switch to left inversion.

0% AvB 0% 0
LR\/ LRJ_
0% AvB 0% 0

Left inversion. The next phase performs left inversion at the right end of
the ordered context 2. Note that for each logical connective or constant,
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there is exactly one rule to apply.

.0, A4 B -5 ot r-.0-L ot
AL TL
Q0 AAB -2 ot 071 -2 ot

0,4 ct 1.0 B-5 Cct

VL 1L
0, AvB %ot -0, 1 2ot

For atomic formulas, we look to see if it matches the right-hand side and, if
s0, succeed. Otherwise, we move itintoI'".

P—C+ F_,P;QLC"'
init shiftp
r-:.,pP-L ot QP ct

Finally, in the inversion phase, if the formula on the left is an implication,
which can not be inverted.

I, A>B;Q -2 ct

shift
I, A>B -1 o+

The search process described so far is deterministic and ether succeeds
finitely with a deduction, or we finally have to make a decision we might
regret. This is the case when the ordered context has become empty. At this
point either one of the VR or DL rules must be tried.

r—. %A r—.. % p I~,A>B;- A 1B % ot
VR, V Ry oL
r—.. 2 AvB . % AvB I, A>B:- X o+
References
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Lecture Notes on
Propositional Theorem Proving

15-317: Constructive Logic
Frank Pfenning

Lecture 12
October 8, 2009

1 Introduction

The inversion calculus from the last lecture constitutes a significant step
forward, but it still has the problem that in the DL rule, the principal for-
mula has to be copied to the first premise. Therefore, the first premise may
not be smaller than the conclusion.

We now have two basic choices. One is to refine the idea of loop-
checking and make it as efficient as possible. We will not pursue this option
here, although it can be done fruitfully [How98, Chapter4].

The second choice is to refine our analysis of the rules to see if we can
design a calculus were all premises are smaller than the conclusion in some
well-founded ordering. For this purpose we return to the restrictive se-
quent calculus and postpone for the moment a discussion of inversion.
Dyckhoff [Dyc92] noticed that we can make progress by considering the
possible forms of the antecedent of the implication. In each case we can
write a special-purpose rule for which the premises are smaller than con-
clusion. The result is a beautiful calculus which Dyckhoff calls contraction-
free because there is no rule of contraction, and, furthermore, the principal
formula of each left rule is consumed as part of the rule application rather
than copied to any premise.

We repeat the rules of the restrictive sequent calculus here for reference.
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—— init
rp—2~P
r —A I' —B I''A,B—C
AR AL
' —AAB I''AANB —C
— TR IT=C 4
r—mT rLT—C
—— VR, ——  VRy VL
' — AVB I' — AVB I'AvB —C
— 1L
no 1 R rule r.—cC
I'A—B rAoB—A I''B—C
— DR DL
' —ADB I'N'A>B —C

2 Refining the Left Rule for Implication

We consider each possibility for the antecedent of the implication in turn.

Truth. Consider a sequent
rTOB—C.

Can we find a simpler proposition expressing the same as T D B? Yes,
namely just B, since (T D B) = B. So we can propose the following spe-
cialized rule:

I'B—C

IToO0B—C

TOL

Falsehood. Consider a sequent
I1>B-—C.
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Can we find a simpler proposition expressing the same contents? Yes,
namely T, since (L D B) = T. But T on the left-hand side can be elimi-
nated by T L, so we can specialize the general rule as follows:

r —«C
rt1>B—C

1oL

Disjunction. Now we consider a sequent
I'(DvE)DB —C.

Again, we have to ask if there is a simpler equivalent formula we can use
instead of (C' vV D) D B. If we consider the VL rule, we might consider
(DD B) A (ED B). Alittle side calculation confirms that, indeed,

(DVE)DB)=((D>B)AN(EDB))
We can exploit this, playing through the rules as follows
I''DoB,EDB—C
A
I,(D>B)A(EDB) —C
equiv
I, (DVE)>DB—C

L

This suggests the specialized rule
ID>B,E>B —
I(DVE)DB —C

VDL

The question is whether the premise is really smaller than the conclusion
in some well-founded measure. We note that both D > B and £ D B are
smaller than the original formula (D Vv E) D B. Replacing one element in
a multiset by several, each of which is strictly smaller according to some
well-founded ordering, induces another well-founded ordering on multi-
sets. So, the premise is indeed smaller in the multiset ordering.

Conjunction. Next we consider
I'N(DANE)DB —C.
In this case we can create an equivalent formula by currying.

I''D>(EDB) —C
I(DNE)DB — C

ADL
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This formula is not strictly smaller, but we can make it so by giving con-
junction a weight of 2 while counting implications as 1. Fortunately, this
weighting does not conflict with any of the other rules we have.

Atomic propositions. How do we use an assumption P D B? We can con-
clude if we also know P, so we restrict the rule to the case where P is al-
ready among the assumption.
Pel’ T'B—C
rPoB—C

P>L
Clearly, the premise is smaller than the conclusion.

Implication. Last, but not least, we consider the case
I''(DODE)DB —C.

We start by playing through the left rule for this particular case because,
as we have already seen, implication on the left does not simplify when
interacting with another implication.
I'N(D>DFE)DB,D — E
DR
IN(DoE)DB— DDE IB—C
I'(DoE)DB—C

DL

The second premise is smaller and does not require any further attention.
For the first premise, we need to find a smaller formula that is equivalent
to ((D D E)D B) A D. The conjunction here is a representation of two dis-
tinguished formulas in the context. Fortunately, we find

(DODE)YDB)AD=(ED>DB)AD
which can be checked easily. This leads to the specialized rule

ILE>B,D-—E T.,B—C
I''(DODE)DB —C

DODL

This concludes the presentation of the specialized rules. The complete
set of rule is summarized in Figure 1.
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———— init
r,P—P

r——A I —B I'NA,B—C
AR A\
I —AAB ILAANB —C

L

I —C
— TR — TL
r—T IL,T—C

r— A r — B ra—cac¢ IB—=C
— VR, — VRy VL
r —AvVB ' —AVB rAve —C

— 1L
no LR rule r.—~°C

raA—a=nB

— DR
' —A>DB

Pell I''B—C
rpPoB—C

POL

D>(EDB)— C IB—C

ADL TDOL
IN(DNE)DB — C I''TODB—C

I'DODB,EDB — I —0C
VDL 1DL
IN(DVE)DB—C 'L>B—C

I E>B,D—F T,B—C
I'N(DODE)DB —C

DODL

Figure 1: Contraction-free sequent calculus
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3 Asynchronous Decomposition

At this point we need to reexamine the question from last lecture: where do
we really need to make choices in this sequent calculus? We ask the ques-
tion slight differently this time, although the primary tool will still be the
invertibility of rules. The question we want to ask this time: if we consider
a formula on the right or on the left, can we always apply the correspond-
ing rule without considering other choices? The difference between the two
question becomes clear, for example, in the PO L rule.

Pell I'B—C
rpPoB—C

POL

This rule is clearly invertible, because P A (P D B) = P A B. Nevertheless,
when we consider P D B we cannot necessarily apply this rule because P
may not be in the remaining context I'.

Formulas whose left or right rules can always be applied are called left
or right asynchronous, respectively. We can see by examining the rules and
considering the equivalences above and the methods from the last lecture,
that the following formulas are asynchrounous:

Right asynchronous AAB,T,ADB
Left asynchronous ANB,T,AV B, 1,
(DNE)DB, T>B,(DVE)DB,1L>B

This leaves

Right synchronous P, AV B, L
Left synchronous P,P>B,(DDE)DB

Proof search now begins by breaking down all asynchronous formulas,
leaving us with a situation where we have a synchronous formula on the
right and only synchronous formulas on the left. We now check if init or
PDL can be applied and use them if possible. Since these rules are invert-
ible, this does not require a choice. When no more of these rules are ap-
plicable, we have to choose between VR, VRy or DDL, if the opportunity
exists; if not we fail and backtrack to the most recent choice point.

This strategy is complete and efficient for many typical examples, al-
though in the end we cannot overcome the polynomial-space completeness
of the intuitionistic propositional logic [Sta79].

The metatheory of the contraction-free sequent calculus has been inves-
tigated separately from its use as a decision procedure by Dyckhoff and
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Negri [DNOO]. The properties there could pave the way for further ef-
ficiency improvements by logical considerations, specifically in the treat-
ment of atoms.

An entirely different approach to theorem proving in intuitionistic propo-
sitional logic is to use the inverse method [MP08] which is, generally speak-
ing, more efficient on difficult problems, but not as direct on easier prob-
lems. We will discuss this technique in a later lecture.
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1 Computation vs. Deduction

Logic programming is a particular way to approach programming. Other
paradigms we might compare it to are imperative programming or func-
tional programming. The divisions are not always clear-cut—a functional
language may have imperative aspects, for example—but the mindset of
various paradigms is quite different and determines how we design and
reason about programs.

To understand logic programming, we first examine the difference be-
tween computation and deduction. To compute we start from a given ex-
pression and, according to a fixed set of rules (the program) generate a
result. For example, 15+ 26 — (1 +2+ 1)1 — (3 + 1)1 — 41. To deduce
we start from a conjecture and, according to a fixed set of rules (the axioms
and inference rules), try to construct a proof of the conjecture. So computa-
tion is mechanical and requires no ingenuity, while deduction is a creative
process. For example, a™ + b" # ¢" forn > 2, ... 357 years of hard work .. .,
QED.

Philosophers, mathematicians, and computer scientists have tried to
unify the two, or at least to understand the relationship between them for
centuries. For example, George Boole! succeeded in reducing a certain class
of logical reasoning to computation in so-called Boolean algebras. Since the
fundamental undecidability results of the 20th centuries we know that not
everything we can reason about is in fact mechanically computable, even if
we follow a well-defined set of formal rules.
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In this course we are interested in a connection of a different kind. A
tirst observation is that computation can be seen as a limited form of de-
duction because it establishes theorems. For example, 15 + 26 = 41 is both
the result of a computation, and a theorem of arithmetic. Conversely, de-
duction can be considered a form of computation if we fix a strategy for
proof search, removing the guesswork (and the possibility of employing
ingenuity) from the deductive process.

This latter idea is the foundation of logic programming. Logic program
computation proceeds by proof search according to a fixed strategy. By
knowing what this strategy is, we can implement particular algorithms in
logic, and execute the algorithms by proof search.

2 Judgments and Proofs

Since logic programming computation is proof search, to study logic pro-
gramming means to study proofs. We adopt here the approach by Martin-
Lof [3]. Although he studied logic as a basis for functional programming
rather than logic programming, his ideas are more fundamental and there-
fore equally applicable in both paradigms.

The most basic notion is that of a judgment, which is an object of knowl-
edge. We know a judgment because we have evidence for it. The kind of
evidence we are most interested in is a proof, which we display as a deduc-
tion using inference rules in the form

Jy..oJdn

R
J

where R is the name of the rule (often omitted), J is the judgment estab-
lished by the inference (the conclusion), and Ji, ..., J, are the premisses of
the rule. We can read it as

If Jy and - - - and J,, then we can conclude J by virtue of rule R.

By far the most common judgment is the truth of a proposition A, which
we write as A true. Because we will be occupied almost exclusively with
the thruth of propositions for quite some time in this course we generally
omit the trailing “true”. Other examples of judgments on propositions are
A false (A is false), A true at t (A is true at time ¢, the subject of temporal
logic), or K knows A (K knows that A is true, the subject of epistemic logic).

To give some simple examples we need a language to express propo-
sitions. We start with terms ¢ that have the form f(¢1,...,t,) where f is a
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function symbol of arity n and t1,. .., t, are the arguments. Terms can have
variables in them, which we generally denote by upper-case letters. Atomic
propositions P have the form p(t1,...,t,) where p is a predicate symbol of ar-
ity nand t,...,t, are its arguments. Later we will introduce more general
forms of propositions, built up by logical connectives and quantifiers from
atomic propositions.

In our first set of examples we represent natural numbers 0,1,2,... as
terms of the form 0,s(0),s(s(0)), . . ., using two function symbols (0 of arity
0 and s of arity 1).2 The first predicate we consider is even of arity 1. Its
meaning is defined by two inference rules:

even(NV)
evz ————————— evs

even(0) even(s(s(N)))

The first rule, evz, expresses that 0 is even. It has no premiss and therefore is
like an axiom. The second rule, evs, expresses that if NV is even, then s(s(V))
is also even. Here, N is a schematic variable of the inference rule: every
instance of the rule where N is replaced by a concrete term represents a
valid inference. We have no more rules, so we think of these two as defining
the predicate even completely.

The following is a trivial example of a deduction, showing that 4 is even:

evz
even(0)

even(s(s(0))
evs
even(s(s(s(s(0)))))

Here, we used the rule evs twice: once with N = 0 and once with N =

s(s(0)).

€vs

3 Proof Search

To make the transition from inference rules to logic programming we need
to impose a particular strategy. Two fundamental ideas suggest them-
selves: we could either search backward from the conjecture, growing a
(potential) proof tree upwards, or we could work forwards from the ax-
ioms applying rules until we arrive at the conjecture. We call the first one

’This is not how numbers are represented in practical logic programming languages
such as Prolog, but it is a convenient source of examples.



goal-directed and the second one forward-reasoning. In the logic program-
ming literature we find the terminology top-down for goal-directed, and
bottom-up for forward-reasoning, but this goes counter to the direction in
which the proof tree is constructed. Logic programming was conceived
with goal-directed search, and this is still the dominant direction since it
underlies Prolog, the most popular logic programming language. Later in
the class, we will also have an opportunity to consider forward reasoning.

In the first approximation, the goal-directed strategy we apply is very
simple: given a conjecture (called the goal) we determine which inference
rules might have been applied to arrive at this conclusion. We select one of
them and then recursively apply our strategy to all the premisses as sub-
goals. If there are no premisses we have completed the proof of the goal.
We will consider many refinements and more precise descriptions of search
in this course.

For example, consider the conjecture even(s(s(0))). We now execute the
logic program consisting of the two rules evz and evs to either prove or
refute this goal. We notice that the only rule with a matching conclusion is
evs. Our partial proof now looks like

eveﬁ(O)
even(s(s(0)))

evs
with even(0) as the only subgoal.

Considering the subgoal even(0) we see that this time only the rule evz
could have this conclusion. Moreover, this rule has no premisses so the
computation terminates successfully, having found the proof

evz

even(0)
even(s(s(0)))

evs.
Actually, most logic programming languages will not show the proof in
this situation, but only answer yes if a proof has been found, which means
the conjecture was true.

Now consider the goal even(s(s(s(0)))). Clearly, since 3 is not even, the
computation must fail to produce a proof. Following our strategy, we first
reduce this goal using the evs rule to the subgoal even(s(0)), with the in-
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complete proof

even(.s(O)) eve
even(s(s(s(0))))

At this point we note that there is no rule whose conclusion matches the
goal even(s(0)). We say proof search fails, which will be reported back as
the result of the computation, usually by printing no.

Since we think of the two rules as the complete definition of even we
conclude that even(s(0)) is false. This example illustrates negation as failure,
which is a common technique in logic programming. Notice, however, that
there is an asymmetry: in the case where the conjecture was true, search
constructed an explicit proof which provides evidence for its truth. In the
case where the conjecture was false, no evidence for its falsehood is imme-
diately available. This means that negation does not have first-class status
in logic programming.

4 Answer Substitutions

In the first example the response to a goal is either yes, in which case a
proof has been found, or no, if all attempts at finding a proof fail finitely. It
is also possible that proof search does not terminate. But how can we write
logic programs to compute values?

As an example we consider programs to compute sums and differences
of natural numbers in the representation from the previous section. We
start by specifying the underlying relation and then illustrate how it can be
used for computation. The relation in this case is plus(m, n, p) which should
hold if m 4+ n = p. We use the recurrence

(m+1)+n = (m+n)+1
0+n = n

as our guide because it counts down the first argument to 0. We obtain
plus(M, N, P)

ps —_

plus(s(M), N,s(P)) plus(0, N, N)

pz.

Now consider a goal of the form plus(s(0),s(0), R) where R is an un-
known. This represents the question if there exists an R such that the rela-
tion plus(s(0),s(0), R) holds. Search not only constructs a proof, but also a
term ¢ for R such that plus(s(0),s(0), ¢) is true.



For the original goal, plus(s(0),s(0), R), only the rule ps could apply be-
cause of a mismatch between 0 and s(0) in the first argument to plus in the
conclusion. We also see that the R must have the form s(P) for some P,
although we do not know yet what P should be.

plus(0, ;(0), P)
plus(s(0),s(0), R)

ps with R =s(P)
For the subgoal only the pz rule applies and we see that P must equal s(0).

pz with P =s(0)

plus(0,s(0), P
(0,5(0), ) ps with R =s(P)

plus(s(0),s(0), R)

If we carry out the substitutions we obtain the complete proof

pz
plus(0,s(0),s(0))

plus(s(0),s(0),s(s(0)))

which is explicit evidence that 1 + 1 = 2. Instead of the full proof, imple-
mentations of logic programming languages mostly just print the substitu-
tion for the unknowns in the original goal, in this case R = s(s(0)).

Some terminology of logic programming: the original goal is called the
query, its unknowns are logic variables, and the result of the computation is
an answer substitution for the logic variables, suppressing the proof.

ps

5 Backtracking

Sometimes during proof search the goal matches the conclusion of more
than one rule. This is called a choice point. When we reach a choice point we
pick the first among the rules that match, in the order they were presented.
If that attempt at a proof fails, we try the second one that matches, and so
on. This process is called backtracking.

As an example, consider the query plus(}M,s(0),s(s(0))), intended to
compute an m such that m + 1 = 2, thatis, m = 2 — 1. This demon-
strates that we can use the same logic program (here: the definition of the
plus predicate) in different ways (before: addition, now: subtraction).
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The conclusion of the rule pz, plus(0, N, V), does not match because the
second and third argument of the query are different. However, the rule ps
applies and we obtain

plus(Mq, 's(O), s(0))
plus(M,s(0),s(s(0)))

At this point both rules, ps and pz, match. We use the rule ps because it is
listed first, leading to

ps with M = s(M;)

pIus(Mgz, s(0),0)
plus(M1,s(0),s(0))
plus(M,s(0),s(s(0)))

ps with M; = s(M>)
ps with M =s(M;)

At this point no rule applies at all and this attempt fails. So we return to
our earlier choice point and try the second alternative, pz.

pz with M; =0

plus(M,5(0),5(0)) ps with M = s(M)

plus(M,s(0),s(s(0)))

At this point the proof is complete, with the answer substitution M = s(0).
Note that with even a tiny bit of foresight we could have avoided the
failed attempt by picking the rule pz first. But even this small amount of in-
genuity cannot be permitted: in order to have a satisfactory programming
language we must follow every step prescribed by the search strategy.

6 Subgoal Order

Another kind of choice arises when an inference rule has multiple premises,
namely the order in which we try to find a proof for them. Of course, log-
ically the order should not be relevant, but operationally the behavior of a
program can be quite different.

As an example, we define times(m, n, p) which should hold if m xn = p.
We implement the recurrence

0xn = 0
(m+1)xn = (mxn)+n



in the form of the following two inference rules.

times(M, N, P) plus(P, N, Q)
—— 1z
times(0, N, 0) times(s(M), N, Q)

As an example we compute 1 x 2 = Q. The first step is determined.

times(0,s(s(0)), P) plus(P,s(s(0)), Q)
times(s(0),s(s(0)), Q)

ts

Now if we solve the left subgoal first, there is only one applicable rule
which forces P = 0

ts (P = 0) :
times(0,s(s(0)), P) plus(P;s(s(0)), Q)

times(s(0),s(s(0)), Q)

ts

Now since P = 0, there is only one rule that applies to the second subgoal
and we obtain correctly

times(0.5(:0). 2) = pus(ps(s(o)). @) @ TS

times(s(0),s(s(0)), Q)

ts.

On the other hand, if we solve the right subgoal plus(P,s(s(0)), Q) first
we have no information on P and @, so both rules for plus apply. Since ps
is given first, the strategy discussed in the previous section means that we
try it first, which leads to

: plus(Py,s(s(0)), Q1)
) P - P y =
times(0,s(s(0)), P)  plus(P,s(s(0)), Q) ps ( s(P1),Q =s(Q1))

times(s(0),s(s(0)), Q)

Again, rules ps and ts are both applicable, with ps listed first, so we con-
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tinue:

plus(P2,s(s(0)), Q2)
plus(P1,5(s(0)), Q1) ps (P1 =s(P%), Q1 = s((2))

E P=s(P),Q=
times(0,s(s(0)), P)  plus(P,s(s(0)), Q) ps ( s(P1),Q =s(Q1))

times(s(0),s(s(0)), Q)

It is easy to see that this will go on indefinitely, and computation will not
terminate.

This examples illustrate that the order in which subgoals are solved can
have a strong impact on the computation. Here, proof search either com-
pletes in two steps or does not terminate. This is a consequence of fixing
an operational reading for the rules. The standard solution is to attack the
subgoals in left-to-right order. We observe here a common phenomenon
of logic programming: two definitions, entirely equivalent from the logical
point of view, can be very different operationally. Actually, this is also true
for functional programming: two implementations of the same function
can have very different complexity. This debunks the myth of “declarative
programming”—the idea that we only need to specify the problem rather
than design and implement an algorithm for its solution. However, we can
assert that both specification and implementation can be expressed in the
language of logic. As we will see later when we come to logical frame-
works, we can integrate even correctness proofs into the same formalism!

7 Prolog Notation

By far the most widely used logic programming language is Prolog, which
actually is a family of closely related languages. There are several good
textbooks, language manuals, and language implementations, both free
and commercial. A good resource is the FAQ? of the Prolog newsgroup*
For this course we use GNU Prolog® although the programs should run in
just about any Prolog since we avoid the more advanced features.

The two-dimensional presentation of inference rules does not lend itself

*nttp://www.cs.kuleuven.ac.be/ remko/prolog/faq/files/faq.html
‘news://comp.lang.prolog/
Shttp://gnu-prolog.inria.fr/



to a textual format. The Prolog notation for a rule

o FR

R
J

is
J—J, . .

where the name of the rule is omitted and the left-pointing arrow is ren-
dered as “: -’ in a plain text file. We read this as

Jif Jyand - - - and J,,.

Prolog terminology for an inference rule is a clause, where J is the head of
the clause and Ji, ..., J, is the body. Therefore, instead of saying that we
“search for an inference rule whose conclusion matches the conjecture”, we say
that we “search for a clause whose head matches the goal”.

As an example, we show the earlier programs in Prolog notation.

even (z) .
even(s(s(N))) :— even(N).
plus(s(M), N, s(P)) :—- plus(M, N, P).

plus(z, N, N).

times(z, N, z).

times(s (M), N, Q) :-—
times (M, N, P),
plus (P, N, Q).

Clauses are tried in the order they are presented in the program. Subgoals
are solved in the order they are presented in the body of a clause.

8 Unification

One important operation during search is to determine if the conjecture
matches the conclusion of an inference rule (or, in logic programming ter-
minology, if the goal unifies with the head of a clause). This operation is
a bit subtle, because the the rule may contain schematic variables, and the
the goal may also contain variables.

As a simple example (which we glossed over before), consider the goal
plus(s(0),s(0), R) and the clause plus(s(M), N,s(P)) + plus(M, N, P). We
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need to find some way to instantiate M, N, and P in the clause head and R
in the goal such that plus(s(0),s(0), R) = plus(s(M ), N,s(P)).

Without formally describing an algorithm yet, the intuitive idea is to
match up corresponding subterms. If one of them is a variable, we set it
to the other term. Here we set M = 0, N = s(0), and R = s(P). P is
arbitrary and remains a variable. Applying these equations to the body of
the clause we obtain plus(0, s(0), P) which will be the subgoal with another
logic variable, P.

In order to use the other clause for plus to solve this goal we have to
solve plus(0,s(0), P) = plus(0, N, N) which sets N = s(0) and P = s(0).

This process is called unification, and the equations for the variables we
generate represent the unifier. There are some subtle issues in unification.
One is that the variables in the clause (which really are schematic variables
in an inference rule) should be renamed to become fresh variables each time
a clause is used so that the different instances of a rule are not confused
with each other. Another issue is exemplified by the equation N = s(s(NV))
which does not have a solution: the right-hand side will have have two
more successors than the left-hand side so the two terms can never be
equal. Unfortunately, Prolog does not properly account for this and treats
such equations incorrectly by building a circular term (which is definitely
not a part of the underlying logical foundation). This could come up if we
pose the query plus(0, N,s(N)): “Is there an n such that 0 +n =n+ 1.”

We discuss the reasons for Prolog’s behavior later in this course (which
is related to efficiency), although we do not subscribe to it because it sub-
verts the logical meaning of programs.

9 Beyond Prolog

Since logic programming rests on an operational interpretation of logic,
we can study various logics as well as properties of proof search in these
logics in order to understand logic programming. In this way we can push
the paradigm to its limits without departing too far from what makes it
beautiful: its elegant logical foundation.

Ironically, even though logic programming derives from logic, the lan-
guage we have considered so far (which is the basis of Prolog) does not
require any logical connectives at all, just the mechanisms of judgments
and inference rules.
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10 Historical Notes

Logic programming and the Prolog language are credited to Alain Colmer-
auer and Robert Kowalski in the early 1970s. Colmerauer had been work-
ing on a specialized theorem prover for natural language processing, which
eventually evolved to a general purpose language called Prolog (for Pro-
grammation en Logique) that embodies the operational reading of clauses
formulated by Kowalski. Interesting accounts of the birth of logic pro-
gramming can be found in papers by the Colmerauer and Roussel [1] and
Kowalski [2].

We like Sterling and Shapiro’s The Art of Prolog [4] as a good introduc-
tory textbook for those who already know how to program and we recom-
mends O’Keefe’s The Craft of Prolog as a second book for those aspiring to
become real Prolog hackers. Both of these are somewhat dated and do not
cover many modern developments, which are the focus of this course. We
therefore do not use them as textbooks here.

11 References
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In this lecture we introduce some simple data structures such as lists, and
simple algorithms on them such as as quicksort or mergesort. We also in-
troduce some first considerations of types and modes for logic programs.

1 Lists

Lists are defined by two constructors: the empty list nil and the constructor
cons which takes an element and a list, generating another list. For exam-
ple, the list a, b, c would be represented as cons(a, cons(b, cons(c, nil))). The
official Prolog notation for nil is [ ], and for cons(h,t)is . (h, t), overload-
ing the meaning of the period “.” as a terminator for clauses and a binary
function symbol. In practice, however, this notation for cons is rarely used.
Instead, most Prolog programs use [/ |t] for cons(h,t).

There is also a sequence notation for lists, so that a, b, c can be written
as [a, b, c]. It could also be writtenas [a | [b | [c | []1]]] or
[a, b | [c, [1]1]. Note that all of these notations will be parsed into
the same internal form, using nil and cons. We generally follow Prolog list
notation in these notes.

2 Type Predicates

We now return to the definition of plus from the previous lecture, except
that we have reversed the order of the two clauses.



plus(z, N, N).
plus(s(M), N, s(P)) :—- plus(M, N, P).

In view of the new list constructors for terms, the first clause now looks
wrong. For example, with this clause we can prove

plus(s(z), [a, b, c], s(la, b, c])).

This is absurd: what does it mean to add 1 and a list? What does the term
s([a, b, c]) denote? Itis clearly neither a list nor a number.

From the modern programming language perspective the answer is
clear: the definition above lacks types. Unfortunately, Prolog (and tradi-
tional predicate calculus from which it was originally derived) do not dis-
tinguish terms of different types. The historical answer for why these lan-
guages have just a single type of terms is that types can be defined as unary
predicates. While this is true, it does not account for the pragmatic advan-
tage of distinguishing meaningful propositions from those that are not. To
illustrate this, the standard means to correct the example above would be
to define a predicate nat with the rules

nat(NV)
nz ———ns

nat(0) nat(s(IV))

and modify the base case of the rules for addition

nat(V) plus(M, N, P)
pz

plus(0, N, N) plus(s(M), N,s(P)) P

One of the problems is that now, for example, plus(0, nil, nil) is false, when it
should actually be meaningless. Many problems in debugging Prolog pro-
grams can be traced to the fact that propositions that should be meaningless
will be interpreted as either true or false instead, incorrectly succeeding or
failing. If we transliterate the above into Prolog, we get:

nat (z) .
nat (s (N)) :— nat (N).

plus(z, N, N) :— nat (N).
plus(s (M), N, s(P)) :—= plus(M, N, P).

No self-respecting Prolog programmer would write the plus predicate this
way. Instead, he or she would omit the type test in the first clause leading
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to the earlier program. The main difference between the two is whether
meaningless clauses are false (with the type test) or true (without the type
test). One should then annotate the predicate with the intended domain.

% plus(m, n, p) iff m + n = p for nat numbers m, n,
plus(z, N, N).
plus(s(M), N, s(P)) :- plus(M, N, P).

It would be much preferable from the programmer’s standpoint if this
informal comment were a formal type declaration, and an illegal invocation
of plus were a compile-time error rather than leading to silent success or
failure. There has been some significant research on types systems and type
checking for logic programming languages [5] and we will talk about types
more later in this course.

3 List Types

We begin with the type predicates defining lists.

list ([1).
list ([X|Xs]) :— list(Xs).

Unlike languages such as ML, there is no test whether the elements of a list
all have the same type. We could easily test whether something is a list of
natural numbers.

natlist ([]) .
natlist ([N|Ns]) :— nat(N), natlist (Ns).

The generic test, whether we are presented with a homogeneous list, all of
whose elements satisfy some predicate P, would be written as:

plist (P, []).
plist (P, [X[|Xs]) :—= P(X), plist (P, Xs).

While this is legal in some Prolog implementations, it can not be justi-
tied from the underlying logical foundation, because P stands for a pred-
icate and is an argument to another predicate, plist. This is the realm
of higher-order logic, and a proper study of it requires a development of
higher-order logic programming [3, 4]. In Prolog the goal P (X) is a meta-call,
often written as call (P (X) ). We will avoid its use, unless we develop
higher-order logic programming later in this course.
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4 List Membership and Disequality

As a second example, we consider membership of an element in a list.

member(X,Y's)
member (X, cons(X,Ys)) member (X, cons(Y,Y's))

In Prolog syntax:

o

% member (X, Ys) 1ff X is a member of list Ys
member (X, [X|Ys]).
member (X, [Y|Ys]) :— member (X, Ys).

Note that in the first clause we have omitted the check whether Ys is a
proper list, making it part of the presupposition that the second argument
to member is a list.

Already, this very simple predicate has some subtle points. To show
the examples, we use the Prolog notation 2~ A. for a query A. After pre-
senting the first answer substitution, Prolog interpreters issue a prompt to
see if another solution is desired. If the user types ‘;” the interpreter will
backtrack to see if another solution can be found. For example, the query

?- member (X, [a,b,a,c]).
has four solutions, in the order

= a;
= b;
= a;
= cC.

XXX

Perhaps surprisingly, the query
?—- member (a, [a,b,a,c]).

succeeds twice (both with the empty substitution), once for the first occur-
rence of a and once for the second occurrence.

If member is part of a larger program, backtracking of a later goal could
lead to unexpected surprises when member succeeds again. There could
also be an efficiency issue. Assume you keep the list in alphabetical order.
Then when we find the first matching element there is no need to traverse
the remainder of the list, although the member predicate above will always
do so.



So what do we do if we want to only check membership, or find the first
occurrence of an element in a list? Unfortunately, there is no easy answer,
because the most straighforward solution

X #Y member(X,Ys)
member(X, cons(X,Y's)) member(X, cons(Y,Y's))

requires disequality which is problematic in the presence of variables. In
Prolog notation:

memberl (X, [X|Ys]).
memberl (X, [Y|Ys]) :— X \= Y, memberl (X, Ys).

When both arguments are ground, this works as expected, giving just one
solution to the query

?— memberl (a, [a,b,a,c]).
However, when we ask
?— memberl (X, [a,b,a,c]).

we only get one answer, namely X = a. The reason is that when we come
to the second clause, we instantiate Y to a and Ys to [b, a, c], and the
body of the clause becomes

X \= a, memberl (X, [b,a,cl).

Now we have the problem that we cannot determine if X is different from
a, because X is still a variable. Prolog interprets s # t as non-unifiability,
that is, s # ¢ succeeds if s and t are not unifiable. But X and a are unifiable,
so the subgoal fails and no further solutions are generated.'

There are two attitudes we can take. One is to restrict the use of dis-
equality (and, therefore, here also the use of member1) to the case where
both sides have no variables in them. In that case disequality can be easily
checked without problems. This is the solution adopted by Prolog, and one
which we adopt for now.

The second one is to postpone the disequality s # ¢ until we can tell
from the structure of s and ¢ that they will be different (in which case we

!One must remember, however, that in Prolog unification is not sound because it omits
the occurs-check, as hinted at in the previous lecture. This also affects the correctness of
disequality.



succeed) or the same (in which case the disequality fails). The latter so-
lution requires a much more complicated operational semantics because
some goals must be postponed until their arguments become instantiated.
This is the general topic of constructive negation® [1] in the setting of con-
straint logic programming [2, 6].

Disequality is related to the more general question of negation, because
s # t is the negation of equality, which is a simple predicate that is either
primitive, or could be defined with the one clause X = X.

5 Simple List Predicates

Now let’s explore some other list operations. We start with prefix(xs, ys)
which is supposed to hold when the list s is a prefix of the list ys. The
definition is relatively straightforward.

prefix ([], ¥Ys).
prefix ([X[|Xs], [X|Ys]) :— prefix(Xs, ¥Ys).

Conversely, we can test for a suffix.

suffix (Xs, Xs).
suffix(Xs, [Y|Ys]) :— suffix(Xs, Ys).

Interestingly, these predicates can be used in a variety of ways. We can
check if one list is a prefix of another, we can enumerate prefixes, and we
can even enumerate prefixes and lists. For example:

?—- prefix(Xs, [a,b,c,d]).

Xs = [1;

Xs = [al;

Xs = [a,bl];
Xs = [a,b,c];
Xs = [a,b,c,d]

enumerates all prefixes, while

The use of the word “constructive” here is unrelated to its use in logic.



?— prefix (Xs,¥Ys).

Xs = []r

Xs = [A]

Ys = [Al_];

Xs = [A,B]

Ys = [A,B|_];

Xs = [A,B,C]

Ys = [AIB/C|_];
Xs = [A,B,C,D]

Ys = [A,B,C,DI_];

enumerates lists together with prefixes. Note that 2, B, C, and D are vari-
ables, as is the underscore _ so that for example [A|_] represents any list
with at least one element.

A more general prediate is append(zs, ys, zs) which holds when zs is
the result of appending xs and ys.

append ([], Ys, Ys).
append ([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).

append can also be used in different directions, and we can also employ it
for alternative definitions of prefix and suffix.

prefix2 (Xs, Ys) :— append(Xs, _, Ys).
suffix2 (Xs, ¥Ys) :— append(_, Xs, ¥Ys).

Here we have used anonymous variables °_". Note that when several un-
derscores appear in a clauses, each one stands for a different anonymous
variable. For example, if we want to define a sublist as a suffix of a pre-
fix, we have to name the intermediate variable instead of leaving it anony-
mous.

sublist (Xs, Ys) :— prefix(Ps, Ys), suffix(Xs, Ps).



6 Sorting

As a slightly larger example, we use a recursive definition of quicksort.
This is particularly instructive as it clarifies the difference between a speci-
fication and an implemention. A specification for sort(zs, ys) would simply
say that ys is an ordered permutation of xs. However, this specification is
not useful as an implementation: we do not want to cycle through all pos-
sible permutations until we find one that is ordered.

Instead we implement a non-destructive version of quicksort, modeled
after similar implementations in functional programming. We use here the
built-in Prolog integers, rather than the unary representation from the pre-
vious lecture. Prolog integers can be compared with n =< m (n is less
or equal to m) and n > m (n is greater than m) and similar predicates,
written in infix notation. In order for these comparisons to make sense, the
arguments must be instantiated to actual integers and are not allowed to be
variables, which constitute a run-time error. This combines two conditions:
the first, which is called a mode, is that =< and < require their arguments to
be ground upon invocation, that is not contain any variables. The second
condition is a type condition which requires the arguments to be integers.
Since these conditions cannot be enforced at compile time, they are signaled
as run-time errors.

Quicksort proceeds by partitioning the tail of the input list into those
elements that are smaller than or equal to its first element and those that
are larger than its first element. It then recursively sorts the two sublists
and appends the results.

quicksort ([1, [1).

quicksort ([X0|Xs], Ys) :—
partition(Xs, X0, Ls, Gs),
quicksort (Ls, Ysl),
quicksort (Gs, Ys2),
append (Y¥sl, [X0]Ys2], Ys).

Partitioning a list about the pivot element X0 is also straightforward.

partition([], _, [1, [1).
partition([X]|Xs], X0, [X|Ls], Gs) :—

X =< X0, partition(Xs, X0, Ls, Gs).
partition([X]|Xs], X0, Ls, [X|Gs]) :-

X > X0, partition(Xs, X0, Ls, Gs).



Note that the second and third case are both guarded by comparisons. This
will fail if either X or X0 are uninstantiated or not integers. The predicate
partition(zs, xg, ls, gs) therefore inherits a mode and type restric-
tion: the first argument must be a ground list of integers and the second
argument must be a ground integer. If these conditions are satisfied and
partition succeeds, the last two arguments will always be lists of ground
integers. In a future lecture we will discuss how to enforce conditions of
this kind to discover bugs early. Here, the program is small, so we can get
by without mode checking and type checking.

It may seem that the check X > X0 in the last clause is redundant.
However, that is not the case because upon backtracking we might select
the second clause, even if the first one succeeded earlier, leading to an in-
correct result. For example, without this guard the query

?— quicksort ([2,1,3], Ys)

would incorrectly return Ys = [2,1, 3] as its second solution.

In this particular case, the test is trivial so the overhead is acceptable.
Sometimes, however, a clause is guarded by a complicated test which takes
a long time to evaluate. In that case, there is no easy way to avoid evaluat-
ing it twice, in pure logic programming. Prolog offers several ways to work
around this limitation which we discuss in the next section.

7 Conditionals

We use the example of computing the minimum of two numbers as an ex-
ample analogous to partition, but shorter.

minimum(X, Y, X) :— X =< Y.
minimum(X, Y, Y) := X > Y.

In order to avoid the second, redundant test we can use Prolog’s condi-
tional construct, written as

A -—> B ; C

which solves goal A. If A succeeds we commit to the solution, removing all
choice points created during the search for a proof of A and then solve B.
If A fails we solve C instead. There is also a short form 2 -> B which is
equivalentto2A -> B ; fail where fail is a goal that always fails.
Using the conditional, minimum can be rewritten more succinctly as

9



minimum(X, Y, Z2) :—= X =<Y —> Z =X ; Z =Y.

The price that we pay here is that we have to leave the realm of pure logic
programming.

Because the conditional is so familiar from imperative and functional
program, there may be a tendency to overuse the conditional when it can
easily be avoided.

8 Cut

The conditional combines two ideas: commiting to all choices so that only
the first solution to a goal will be considered, and branching based on that
tirst solution.

A more powerful primitive is cut, written as “!’, which is unrelated to
the use of the word “cut” in proof theory. A cut appears in a goal position
and commits to all choices that have been made since the clause it appears
in has been selected, including the choice of that clause. For example, the
following is a correct implementation of minimum in Prolog.

minimum(X, Y, 72) :—= X =<Y, !, Z = X.
minimum(X, Y, Y).

The first clause states that if z is less or equal to y then the minimum is equal
to z. Moreover, we commit to this clause in the definition of minimum and
on backtracking we do not attempt to use the second clause (which would
otherwise be incorrect, of course).

If we permit meta-calls in clauses, then we can define the conditional
A -> B ; Cusing cut with

if_then_else(pA, B, C) :— A, !, B.
if_then_else(A, B, C) :— C.

The use of cut in the first clause removes all choice points created during
the search for a proof of A when it succeeds for the first time, and also
commits to the first clause of 1f_then_else. The solution of B will create
choice points and backtrack as usual, except when it fails the second clause
of if then_ else will never be tried.

If A fails before the cut, then the second clause will be tried (we haven't
committed to the first one) and C will be executed.

Cuts can be very tricky and are the source of many errors, because their
interpretation depends so much on the operational behavior of the pro-
gram rather than the logical reading of the program. One should resist the
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temptation to use cuts excessively to improve the efficiency of the program
unless it is truly necessary.

Cuts are generally divided into green cuts and red cuts. Green cuts are
merely for efficiency, to remove redundant choice points, while red cuts
change the meaning of the program entirely. Revisiting the earlier code for
minimum we see that it is a red cut, since the second clause does not make
any sense by itself, but only because the the first clause was attempted be-
fore. The cutin

minimum(X, Y, 72) :— X =<Y, !, 72 = X.
minimum(X, Y, Y) :—= X > Y.

is a green cut: removing the cut does not change the meaning of the pro-
gram. It still serves some purpose here, however, because it prevents the
second comparison to be carried out if the first one succeeds (although it is
still performed redundantly if the first one fails).

A common error is exemplified by the following attempt to make the
minimum predicate more efficient.

\

% THIS IS INCORRECT CODE
minimum(X, Y, X) :—= X =<Y, !.
minimum(X, Y, Y).

At first this seems completely plausible, but it is nonetheless incorrect.
Think about it before you look at the counterexample at the end of these
notes—it is quite instructive.

9 Negation as Failure

One particularly interesting use of cut is to implement negation as finite
failure. That is, we say that A is false if the goal A fails. Using higher-order
techniques and we can implement \+ (2) with

\+(A) :— A, !, fail.
\+ (A7) .

The second clause seems completely contrary to the definition of negation,
so we have to interpret this program operationally. To solve \+ (A) we first
try to solve A. If that fails we go the second clause which always succeeds.
This means that if A fails then \+ (A4) will succeed without instantiating
any variables. If A succeeds then we commit and fail, so the second clause

11



will never be tried. In this case, too, no variables are instantiated, this time
because the goal fails.

One of the significant problem with negation as failure is the treatment
of variables in the goal. That is, \+ (A) succeeds if there is no instance of
A that is true. On the other hand, it fails if there is an instance of A that
succeeds. This means that free variables may not behave as expected. For
example, the goal

?- \+(X = a).

will fail. According the usual interpretation of free variables this would
mean that there is no term ¢ such that ¢ # a for the constant a. Clearly, this
interpretation is incorrect, as, for example,

?2— \+(b = a).

will succeed.

This problem is similar to the issue we identified for disequality. When
goals may not be ground, negation as failure should be viewed with dis-
trust and is probably wrong more often than it is right.

There is also the question on how to reason about logic programs con-
taining disequality, negation as failure, or cut. I do not consider this to be a
solved research question.

10 Prolog Arithmetic

As mentioned and exploited above, integers are a built-in data type in Pro-
log with some predefined predicates such as =< or >. You should consult
your Prolog manual for other built-in predicates. There are also some built-
in operations such as addition, subtraction, multiplication, and division.
Generally these operations can be executed using a special goal of the form
t is e which evaluates the arithmetic expression e and unifies the result
with term ¢. If e cannot be evaluated to a number, a run-time error will re-
sult. As an example, here is the definition of the length predicate for Prolog
using built-in integers.

% length(Xs, N) iff Xs is a list of length N.
length([], 0).
length ([X]|Xs], N) :- length(Xs, N1), N is N1+1.

As is often the case, the left-hand side of the is predicate is a variable, the
right-hand side an expression.

12



11 Answer

The problem is that a query such as
?— minimum(5,10,10).

will succeed because it fails to match the first clause head.

The general rule of thumb is to leave output variables (here: in the third
position) unconstrained free variables and unify it with the desired output
after the cut. This leads to the earlier version of minimum using cut.
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Lecture Notes on
Bottom-Up Logic Programming

15-317: Constructive Logic
Frank Pfenning

Lecture 21
November 12, 2009

1 Introduction

In this lecture we return to the view that a logic program is defined by a
collection of inference rules for atomic propositions. But we now base the
operational semantics on reasoning forward from facts, which are initially
given as rules with no premisses. Every rule application potentially adds
new facts. Whenever no more new facts can be generated we say forward
reasoning saturates and we can answer questions about truth by examining
the saturated database of facts. We illustrate bottom-up logic program-
ming with several programs, including graph reachability, CKY parsing,
and liveness analysis.

2 Bottom-Up Inference

We now return the very origins of logic programming as an operational
interpretation of inference rules defining atomic predicates. As a reminder,
consider the definition of even.

even(N)

evz - evss
even(0) even(s(s(V)))

This works very well on queries such as even(s(s(s(s(0))))) (which suc-
ceeds) and even(s(s(s(0)))) (which fails). In fact, the operational reading of
this program under goal-directed search constitutes a decision procedure
for ground queries even(n).
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L21.2 Bottom-Up Logic Programming

This specification makes little sense under an alternative interpretation
where we eagerly apply the inference rules in the forward direction, from
the premisses to the conclusion, until no new facts can be deduced. The
problem is that we start with even(0), then obtain even(s(s(0))), and so on,
but we never terminate.

It would be too early to give up on forward reasoning at this point. As
we have seen many times, even in backward reasoning a natural specifica-
tion of a predicate does not necessarily lead to a reasonable implementa-
tion. We can implement a test whether a number is even via reasoning by
contradication. We seed our database with the claim that n is not even and
derive consequences from that assumption. If we derive a contradictory
fact we know thate even(n) must be true. If not (and our rules are com-
plete), then even(n) must be false. We write odd(n) for the proposition that
n is not even. Then we obtain the following specification

odd(s(s(NV)))
odd(N)

to be used for forward reasoning. This single rule obviously saturates be-
cause the argument to odd becomes smaller in every rule application.

What is not formally represented in this program is how we initial-
ize our database (we assume odd(n)), and how we interpret the saturated
database (we check if odd(0) was deduced). In a later lecture we will see
that it is possible to combine forward and backward reasoning to makes
those aspects of an algorithm also part of its implementation.

The strategy of this example, proof by contradiction, does not always
work, but there are many cases where it does. One should check if the
predicate is decidable as a first test.

We can also try to stick with the original predicate for even, but add an-
other argument which is a bound to guarantee saturation. We count the
bound down, two at a time, while the first argument computes even num-
bers.

even(N,s(s(B)))

even(s(s(N)), B)

When trying to check if a number n is even, we seed the database with
even(0,n)

which expresses that 0 is considered even no matter what the bound (n in
this case). Operationally, n is the bound, while 0 is the first even number.

LECTURE NOTES NOVEMBER 12, 2009
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After saturation, which is guaranteed to happen after |n/2| steps, we
check if some fact of the form

even(n, -)

is the database.

By an invariant of this algorithm, all deduced facts even(b, n) have the
same sum b + n, so we actually know that if n is even we must actually
have even(n, 0) at the end, and even(n — 1,s(0)) if n is odd. This can be used
to eliminate the first argument, arriving at more or less the code for odd
shown above, but with a different justification.

3 Graph Reachability

Assuming we have a specification of edge(z, y) whenever there is an edge
from node x to node y, we can specify reachability path(z, y) with the rules

edge(X,Y) edge(X,Y) path(Y,Z2)
path(X,Y) path(X, Z)

During bottom-up inference these rules will saturate when they have con-
structed the transitive closure of the edge relation. During backward rea-
soning these rules may not terminate (if there are cycles), or be very ineffi-
cient (if there are many paths compared to the number of nodes).

In the forward direction the rules will always saturate. We can also give,
just from the rules, a complexity analysis of the saturation algorithm.

4 Complexity Analysis

McAllester [McA02] proved a so-called meta-complexity result which al-
lows us to analyze the structure of a bottom-up logic program and obtain
a bound for its asymptotic complexity. We do not review the result or its
proof in full detail here, but we sketch it so it can be applied to several of
the programs we consider here. Briefly, the result states that the complexity
of a bottom-up logic program is O(|R(D)|+|Pr(R(D))|), where R(D) is the
saturated database (writing here D for the initial database) and Pr(R(D))
is the set of prefix firings of rules R in the saturated database.

The number prefix firings for a given rule is computed by analyzing the
premisses of the rule from left to right, counting in how many ways it could

LECTURE NOTES NOVEMBER 12, 2009



L21.4 Bottom-Up Logic Programming

match facts in the saturated database. Matching an earlier premiss will
fix its variables, which restricts the number of possible matches for later
premisses.

For example, in the case of the transitive closure program, assume we
have e edges and n vertices. Then in the completed database there can be
at most n? facts path(z,y), while there are always exactly e facts edge(z, y).
The first rule

edge(X,Y)
path(X,Y)

can therefore always match in e ways in the completed database. We ana-
lyze the premisses of the second rule

edge(X,Y) path(Y,2)
path(X, Z)

from left to right. First, edge(X,Y’) can match the database in O(e) ways,
as before. This match fixes Y, so there are now O(n) ways that the sec-
ond premiss could match a fact in the saturated database (each vertex is a
candidate for Z). This yields O(e - n) possible prefix firings.

The size of the saturated database is O(e+n?), and the number of prefix
firings of the two rules is O(e + e - n). Therefore the overall complexity is
O(e - n + n?). Since there are up to n? edges in the graph, we get a less
informative bound of O(n3) expressed entirely in the number of vertices n.

5 CKY Parsing

Another excellent example for bottom-up logic programming and com-
plexity analysis is a CKY parsing algorithm. This algorithm assumes that
the grammar is in Chomsky-normal form, where productions all have the
form

r = yz

r = a

where z, y, and z stand for non-terminals and a for terminal symbols. The
idea of the algorithm is to use the grammar production rules from right to
left to compute which sections of the input string can be parsed as which
non-terminals.

We initialize the database with facts rule(x, char(a)) for every grammar
production = a and rule(z, jux(y, z)) for every production z = yz. We
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further represent the input string a; .. . a,, by assumptions string(i, a;). For
simplicity, we represent numbers in unary form.

Our rules will infer propositions parse(x, i, j) which we will deduce if
the substring a; ...a; can be parsed as an x. Then the program is repre-
sented by the following two rules, to be read in the forward direction:

rule(X, jux(Y, Z))

rule(X, char(A)) parse(Y, I, J)
string(1, A) parse(Z, s(J), K)
parse(X, I, 1) parse(X, I, K)

After saturating the database with these rules we can see if the whole string
is in the language generated by the start symbol s by checking if the fact
parse(s,s(0), n) is in the database.

Let g be the number of grammar productions and n the length of the
input string. In the completed database we have g grammar rules, n facts
string(i, a), and at most O(g - n?) facts parse(z, i, j).

Moving on to the rules, in the first rule there are O(g) ways to match
the grammar rule (which fixes A) and then n ways to match string(I, A),
so we have O(g - n). The second rule, again we have O(g) ways to match
the grammar rule (which fixes X, Y, and Z) and then O(n?) ways to match
parse(Y, I, J). In the third premiss now only K is unknown, giving us O(n)
way to match it, which means O(g - n?) prefix firings for the second rule.

These considerations give us an overall complexity of O(g - n®), which
is also the traditional complexity bound for CKY parsing.

6 Liveness Analysis

We consider an application of bottom-up logic programming in program
analysis. In this example we analyze code in a compiler’s intermediate
language to find out which variables are live or dead at various points in
the program. We say a variable is live at a given program point [ if its
value will be read before it is written when computation reaches [. This
information can be used for optimization and register allocation.

Every command in the language is labeled by an address, which we
assume to be a natural number. We use [ and k& for labels and w, z, v,
and z for variables, and op for binary operators. In this stripped-down
language we have the following kind of instructions. A representation of
the instruction as a logical term is given on the right, although we will
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continue to use the concrete syntax to make the rules easier to read.

x = op(y,z) inst(l,assign(z, op,y, z))
if z gotok  inst(l,if(z, k))

goto k inst(l, goto(k))

halt inst(Z, halt)

o~ o~ o~ o~

We use the proposition = # y to check if two variables are distinct and write
s(l) for the successor location to [ which contains the next instruction to be
executed unless the usual control flow is interrupted.

We write live(w, ) if we have inferred that variable w is live at {. This is
an over-approximation in the sense that live(w, [) indicates that the variable
may be live at [, although it is not guaranteed to be read before it is written.
This means that any variable that is not live at a given program point is def-
initely dead, which is the information we want to exploit for optimization
and register allocation.

We begin with the rules for assignment « = op(y, z). The first two rules
just note the use of variables as arguments to an operator. The third one
propagates liveness information backwards through the assignment oper-
ator. This is sound for any variable, but we would like to achieve that x
is not seen as live before the instruction x = op(y, z), so we verify that
W # X.

L:X=0p,2)

live(W,s(L))
L:X=0pY,2) L:X=0pY,2) W #X
live(Y, L) live(Z, L) live(W, L)

The rules for jumps propagate liveness information backwards. For uncon-
ditional jumps we look at the target; for conditional jumps we look both
at the target and the next statement, since we don’t analyze whether the
condition may be true or false.

L : goto K L:if X goto K L:if X goto K
live(W, K) live(W, K) live(W,s(L))
live(W, L) live(W, L) live(W, L)

Finally, the variable tested in a conditional is live.
L:if X goto K
live(X, L)
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For the complexity analysis, let n be the number of instructions in the
program and v be the number of variables. The size of the saturated data-
base is O(v - n), since all derived facts have the form live(X, L) where X
is a variable and L is the label of an instruction. The prefix firings of all 7
rules are similarly bounded by O(v - n): there are n ways to match the first
instruction and then at most v ways to match the second premiss (if any).
Hence the overall complexity is bounded by O(v - n).

7 Variable Restrictions

Bottom-up logic programming, as considered by McAllester, requires that
every variable in the conclusion of a rule also appears in a premiss. This
means that every generated fact will be ground. This is important for sat-
uration and complexity analysis because a fact with a free variable could
stand for infinitely many instances.

Nonetheless, bottom-up logic programming can be generalized in the
presence of free variables, but we will not discuss this further in this course.

8 Historical Notes

The bottom-up interpretation of logic programs goes back to the early days
of logic programming. See, for example, the paper by Naughton and Ra-
makrishnan [NR91].

There are at least three areas were logic programming specification with
a bottom-up semantics has found significant applications: deductive data-
bases, decision procedures, and program analysis. Unification, as present
in the next lecture, is an example of a decision procedure for unifiability.
Liveness analysis is an example of program analysis first formulated in
this fashion by McAllester [McA02], who was particularly interested in de-
scribing program analysis algorithms at a high level of abstraction so their
complexity would be self-evident. This was later refined by Ganzinger and
McAllester [GMO01, GM02] by allowing deletions in the database. We treat
this in a later lecture where we generalize bottom-up inference to linear
logic.
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9 Exercises

Exercise 1 Write a bottom-up logic program for addition (plus/3) on numbers
in unary form and then extend it to multiplication (t imes/3).

Exercise 2 Consider the following variant of graph reachability.
edge(X,Y) path(X,Y) path(Y,Z2)
path(X,Y") path(X, Z)

Perform a McAllester-style complexity analysis and compare the infered complex-
ity with the one given in lecture.

Exercise 3 The set of prefix firings depends on the order of the premisses. Give an
example to demonstrate this.

Exercise 4 Extend the bottom-up evaluation semantics for \-terms by adding
rules to compute the substitutions e(v/x). You may assume that v is closed, and
that the necessary tests on variable names can be performed.

Exercise 5 Relate the bottom-up and top-down version of evaluation of A-terms
to each other by an appropriate pair of theorems.

Exercise 6 Add pairs to the evaluation semantics, together with first and second
projections. A pair should only be a value if both components are values, that is,
pairs are eagerly evaluated.

Exercise 7 Give an example which shows that saturation of evaluation for -
terms may fail to terminate.
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