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BDDs in a nutshell

Typically mean Reduced Ordered Binary Decision Diagrams (ROBDDs)

Canonical representation of Boolean formulas

Often substantially more compact than a traditional normal form

Can be manipulated very efficiently

• Conjunction, Disjunction, Negation, Existential Quantification

R. E. Bryant. Graph-based algorithms for boolean function manipulation. 
IEEE Transactions on Computers, C-35(8), 1986.
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Running Example: Comparator

Comparator

a1 a2 b1 b2

f = 1 , a1 = b1 Æ a2 = b2
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Conjunctive Normal Form

(: a1 Ç b1 ) Æ (: b1 Ç a1) Æ (: a2 Ç b2 ) Æ (: b2 Ç a2)

a1 = b1 Æ a2 = b2

a1 ) b1 Æ b1 ) a1      Æ a2 ) b2 Æ b2 ) a2

(: b1 Ç a1 ) Æ (: a1 Ç b1) Æ (: a2 Ç b2 ) Æ (: b2 Ç a2)

Not Canonical

f
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Truth Table (1)
a1 b1 a2 b2 f

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

Still Not Canonical
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Truth Table (2)
a1 a2 b1 b2 f

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

Canonical if you fix variable order.

But always exponential in # of variables. Let’s try to fix this.
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Shannon’s /  Boole’s Expansion

Every Boolean formula f(a0, a1, …, an) can be written as 

(a0 Æ f(true, a1, …, an)) Ç (:a0 Æ f(false, a1, …, an))

or, simply, 

ITE (a0, f(true, a1, …, an), f(false, a1, …, an))

where ITE stands for If-Then-Else

The formula f(true, a1, …, an) is called the cofactor of f w.r.t. a0

The formula f(false, a1, …, an) is called the cofactor of f w.r.t. :a0
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Representing a Truth Table using a Graph

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0 0 0 0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1

0

0

0

0 1

1

10

Binary Decision Tree (in this case ordered)
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Binary Decision Tree: Formal Definition

Balanced binary tree. Length of each path = # of variables

Leaf nodes labeled with either 0 or 1

Internal node v labeled with a Boolean variable var(v)

• Every node on a path labeled with a different variable

Internal node v has two children: low(v) and high(v)

Each path corresponds to a (partial) truth assignment to variables

• Assign 0 to var(v) if low(v) is in the path, and 1 if high(v) is in the path

Value of a leaf is determined by:

• Constructing the truth assignment for the path leading to it from the root

• Looking up the truth table with this truth assignment
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Binary Decision Tree

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0 0 0 0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1

0

0

0

0 1

1

10

v

low(v)
high(v)

var(v) = a1
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Binary Decision Tree

a1

b1

a2

b2

0

0

1

0

The truth assignment corresponding to the path to this leaf is:

a1 = ? b1 = ? a2 = ? b2 = ?
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Binary Decision Tree

a1

b1

a2

b2

0

0

1

0

The truth assignment corresponding to the path to this leaf is:

a1 = 0 b1 = 0 a2 = 1 b2 = 0

a1 b1 a2 b2 f

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1
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Binary Decision Tree

a1

b1

a2

b2

0

0

1

0

The truth assignment corresponding to the path to this leaf is:

a1 = 0 b1 = 0 a2 = 1 b2 = 0

a1 b1 a2 b2 f

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1
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Binary Decision Tree

a1

b1

a2

b2

0

0

0

1

0

The truth assignment corresponding to the path to this leaf is:

a1 = 0 b1 = 0 a2 = 1 b2 = 0

a1 b1 a2 b2 f

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 0 1 1 1

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1
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Binary Decision Tree (BDT)

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0 0 0 0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1

0

0

0

0 1

1

10

Canonical if you fix variable order (i.e., use ordered BDT)

But still exponential in # of variables. Let’s try to fix this.
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Reduced Ordered BDD

Conceptually, a ROBDD is obtained from an ordered BDT (OBDT) by 
eliminating redundant sub-diagrams and nodes

Start with OBDT and repeatedly apply the following two operations as 
long as possible:

1. Eliminate duplicate sub-diagrams. Keep a single copy. Redirect edges 
into the eliminated duplicates into this single copy.

2. Eliminate redundant nodes. Whenever low(v) = high(v), remove v and 
redirect edges into v to low(v).

• Why does this terminate?

ROBDD is often exponentially smaller than the corresponding OBDT
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0 0 0 0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0 0 0 0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1

Duplicate sub-

diagram
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0 0 0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1



20

Binary Decision Diagrams 

Arie Gurfinkel, March 2014

© 2014 Carnegie Mellon University

OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0 0 0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0 0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0 0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1 0 0 1

b2 b2

0

a2 a2

b2 b2

0 0 0 0

b2 b2

1 0 0 1
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1

b2 b2

0

a2 a2

b2 b2 b2 b2
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1

b2 b2

0

a2 a2

b2 b2 b2 b2

Redundant 

node



26

Binary Decision Diagrams 

Arie Gurfinkel, March 2014

© 2014 Carnegie Mellon University

OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1

b2

0

a2 a2

b2 b2 b2 b2
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

1

b2

0

a2 a2

b2 b2 b2 b2



28

Binary Decision Diagrams 

Arie Gurfinkel, March 2014

© 2014 Carnegie Mellon University

OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

10

a2 a2

b2 b2 b2 b2
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OBDT to ROBDD

a1

b1 b1

a2 a2

b2 b2

10

a2 a2

b2 b2 b2 b2
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OBDT to ROBDD

a1

b1 b1

a2

b2 b2

10

a2 a2

b2 b2 b2 b2

If a1 = 0 and b1 = 1 then f = 0 

irrespective of the values of a2

and b2

If a1 = 0 and b1 = 1 then f = 0 

irrespective of the values of a2

and b2
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OBDT to ROBDD

a1

b1 b1

a2

b2 b2

10

a2

b2 b2
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OBDT to ROBDD

a1

b1 b1

a2

b2 b2

10

a2

b2 b2



33

Binary Decision Diagrams 

Arie Gurfinkel, March 2014

© 2014 Carnegie Mellon University

OBDT to ROBDD

a1

b1 b1

a2

b2

10

a2

b2 b2
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OBDT to ROBDD

a1

b1 b1

a2

b2

10

a2

b2 b2
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OBDT to ROBDD

a1

b1 b1

a2

b2

10

a2

b2
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OBDT to ROBDD

a1

b1 b1

a2

b2

10

a2

b2
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OBDT to ROBDD

a1

b1 b1

b2

10

a2

b2

Let’s move things 

around a little bit so 

that the BDD looks 

nicer.

Let’s move things 

around a little bit so 

that the BDD looks 

nicer.
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OBDT to ROBDD

a1

b1 b1

b2

10

a2

b2

Bryant gave a linear-time 

algorithm (called Reduce) to 

convert OBDT to ROBDD.

In practice, BDD packages don’t 

use Reduce directly. They apply 

the two reductions on-the-fly as 

new BDDs are constructed from 

existing ones. Why?

Bryant gave a linear-time 

algorithm (called Reduce) to 

convert OBDT to ROBDD.

In practice, BDD packages don’t 

use Reduce directly. They apply 

the two reductions on-the-fly as 

new BDDs are constructed from 

existing ones. Why?
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ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas

• f1 = f2 , ?
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ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas

• f1 = f2 , BDD(f1) and BDD(f2) are isomorphic

• f is unsatisfiable , ?
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ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas

• f1 = f2 , BDD(f1) and BDD(f2) are isomorphic

• f is unsatisfiable , BDD(f) is the leaf node “0”

• f is valid , ?
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ROBDD (a.k.a. BDD) Summary

BDDs are canonical representations of Boolean formulas

• f1 = f2 , BDD(f1) and BDD(f2) are isomorphic

• f is unsatisfiable , BDD(f) is the leaf node “0”

• f is valid , BDD(f) is the leaf node “1”

• BDD packages do these operations in constant time

Logical operations can be performed efficiently on BDDs

• Polynomial in argument size

BDD size depends critically on the variable ordering

• Some formulas have exponentially large sizes for all ordering

• Others are polynomial for some ordering and exponential for others
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ROBDD and variable ordering

a1

a2 a2

b1 b1

b2 b2

1 0 0 0

b2 b2

0 1 0 0

b1 b1

b2 b2

0 0 1 0

b2 b2

0 0 0 1
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ROBDD and variable ordering

a1

a2 a2

b1 b1

b2 b2 b2 b2

1 0

b1 b1

b2 b2 b2 b2
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ROBDD and variable ordering

a1

a2 a2

b1 b1

b2 b2

1 0

b1 b1

b2 b2



46

Binary Decision Diagrams 

Arie Gurfinkel, March 2014

© 2014 Carnegie Mellon University

ROBDD and variable ordering

a1

a2 a2

b1 b1

b2 b2

1 0

b1 b1

b2 b2
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ROBDD and variable ordering

a1

a2 a2

b1 b1

b2

1 0

b1 b1

b2 b2
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ROBDD and variable ordering

a1

a2 a2

b1 b1

b2

1 0

b1 b1

b2 b2
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ROBDD and variable ordering

a1

a2 a2

b1 b1

b2

1 0

b1 b1

b2

Let’s move things 

around a little bit so 

that the BDD looks 

nicer.

Let’s move things 

around a little bit so 

that the BDD looks 

nicer.
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ROBDD and variable ordering

a1

a2 a2

b1 b1

b2

1 0

b1 b1

b2

a1

b1 b1

b2

10

a2

b2

11 nodes11 nodes8 nodes8 nodes

a1 < a2 < b1 < b2a1 < a2 < b1 < b2a1 < b1 < a2 < b2a1 < b1 < a2 < b2
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ROBDD and variable ordering

a1

an an

b1 b1

bn

1 0

b1 b1

bn

a1

b1 b1

bn

10

an

bn

? £ 2n – 1 

nodes

? £ 2n – 1 

nodes

? £ n + 2 

nodes

? £ n + 2 

nodes

a1 < … < an < b1 < … < bna1 < … < an < b1 < … < bna1 < b1 < … < an < bna1 < b1 < … < an < bn
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ROBDD and variable ordering

a1

an an

b1 b1

bn

1 0

b1 b1

bn

a1

b1 b1

bn

10

an

bn

3 £ 2n – 1 

nodes

3 £ 2n – 1 

nodes

3 £ n + 2 

nodes

3 £ n + 2 

nodes

a1 < … < an < b1 < … < bna1 < … < an < b1 < … < bna1 < b1 < … < an < bna1 < b1 < … < an < bn
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BDD Operations

True : BDD(TRUE)

False: BDD(FALSE)

Var : v  BDD(v)

Not : BDD(f)  BDD(:f)

And : BDD(f1) £ BDD(f2)  BDD(f1 Æ f2)

Or : BDD(f1) £ BDD(f2)  BDD(f1 Ç f2)

Exists : BDD(f) £ v  BDD(9 v. f)
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Basic BDD Operations

True False

Var(v)

1 0

10

v
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BDD Operations: Not

1 00 1

10

v

O(1)O(1) O(1)O(1)
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BDD Operations: Not

1 00 1

01

v

Swap “0” and “1”

O(1)O(1) O(1)O(1)

O(n)O(n)
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BDD Operations: And

vWhat formula 

does this 

represent?

What formula 

does this 

represent?

What formula 

does this 

represent?

What formula 

does this 

represent?

Suppose this is 

the BDD for f 

Suppose this is 

the BDD for f 
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BDD Operations: And

v
fv=0fv=0

Suppose this is 

the BDD for f 

Suppose this is 

the BDD for f 

fv=1fv=1

fv=0 and fv=1 are known as the co-factors of f w.r.t. v fv=0 and fv=1 are known as the co-factors of f w.r.t. v 

f = (X Æ fv=0) Ç (Y Æ fv=1)f = (X Æ fv=0) Ç (Y Æ fv=1)
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BDD Operations: And

v
fv=0fv=0

Suppose this is 

the BDD for f 

Suppose this is 

the BDD for f 

fv=1fv=1

fv=0 and fv=1 are known as the co-factors of f w.r.t. vfv=0 and fv=1 are known as the co-factors of f w.r.t. v

f = (: v Æ fv=0) Ç (v Æ fv=1)f = (: v Æ fv=0) Ç (v Æ fv=1)
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BDD Operations: And (Simple Cases)

And (f,        ) =  0 0

And (f,        ) =  1 f

And (        ,f ) =  1 f

And (        ,f ) =  0 0
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BDD Operations: And (Complex Case)

v1

f0 f1

v2

g0 g1

(: v
1

Æ f0) Ç (v1 Æ f1)(: v
1

Æ f0) Ç (v1 Æ f1) (: v
2

Æ g0) Ç (v2 Æ g1)(: v
2

Æ g0) Ç (v2 Æ g1)

Æ

Æ
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BDD Operations: And (Complex Case 1)

v1

f0 f1

v1

g0 g1

(: v
1

Æ f0) Ç (v1 Æ f1)(: v
1

Æ f0) Ç (v1 Æ f1) (: v
1

Æ g0) Ç (v1 Æ g1)(: v
1

Æ g0) Ç (v1 Æ g1)

Æ

Æ

v1 = v2v1 = v2
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BDD Operations: And (Complex Case 1)

(: v
1

Æ f0) Ç (v1 Æ f1)(: v
1

Æ f0) Ç (v1 Æ f1) (: v
1

Æ g0) Ç (v1 Æ g1)(: v
1

Æ g0) Ç (v1 Æ g1)Æ

v1 = v2v1 = v2

(: v
1

Æ X) Ç (v1 Æ Y)(: v
1

Æ X) Ç (v1 Æ Y)
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BDD Operations: And (Complex Case 1)

(: v
1

Æ f0) Ç (v1 Æ f1)(: v
1

Æ f0) Ç (v1 Æ f1) (: v
1

Æ g0) Ç (v1 Æ g1)(: v
1

Æ g0) Ç (v1 Æ g1)Æ

v1 = v2v1 = v2

(: v
1

Æ (f0 Æ g0)) Ç (v1 Æ (f1 Æ g1))(: v
1

Æ (f0 Æ g0)) Ç (v1 Æ (f1 Æ g1))

Compute recursivelyCompute recursivelyCompute recursivelyCompute recursively
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BDD Operations: And (Complex Case 1)

(: v
1

Æ f0) Ç (v1 Æ f1)(: v
1

Æ f0) Ç (v1 Æ f1) (: v
1

Æ g0) Ç (v1 Æ g1)(: v
1

Æ g0) Ç (v1 Æ g1)Æ

v1 = v2v1 = v2

(: v
1

Æ (f0 Æ g0)) Ç (v1 Æ (f1 Æ g1))(: v
1

Æ (f0 Æ g0)) Ç (v1 Æ (f1 Æ g1))

v1

f0 Æ g0 f1 Æ g1

What if f0 Æ g0 = f1 Æ g1 ?What if f0 Æ g0 = f1 Æ g1 ?

Return f0 Æ g0Return f0 Æ g0
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BDD Operations: And (Complex Case 2)

v1

f0 f1

v2

g0 g1

(: v
1

Æ f0) Ç (v1 Æ f1)(: v
1

Æ f0) Ç (v1 Æ f1) (: v
2

Æ g0) Ç (v2 Æ g1)(: v
2

Æ g0) Ç (v2 Æ g1)

Æ

Æ

v1 < v2v1 < v2

v1 appears before 

v2 in the variable 

ordering

v1 appears before 

v2 in the variable 

ordering

gg
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BDD Operations: And (Complex Case 2)

(: v
1

Æ f0) Ç (v1 Æ f1)(: v
1

Æ f0) Ç (v1 Æ f1) ggÆ

v1 < v2v1 < v2

(: v
1

Æ (f0 Æ g)) Ç (v1 Æ (f1 Æ g))(: v
1

Æ (f0 Æ g)) Ç (v1 Æ (f1 Æ g))

v1

f0 Æ g f1 Æ g

What if f0 Æ g = f1 Æ g ?What if f0 Æ g = f1 Æ g ?

Return f0 Æ gReturn f0 Æ g

O(n1 £ n2)O(n1 £ n2)
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BDD Operations: And
BDD bddAnd (BDD f, BDD g)
if (f == g || f == True) return g
if (g == True) return f
if (f == False || g == False) return False

v = (var(f) < var(g)) ? var(f) : var(g)
f0 = (v == var(f)) ? low(f) : f
f1 = (v == var(f)) ? high(f) : f

g0 = (v == var(g)) ? low (g) : g
g1 = (v == var(g)) ? high (g) : g

T = bddAnd (f1, g1); E = bddAnd (f0, g0)
if (T == E) return T

return mkUnique (v, T, E)

returns unique BDD 

for ite(v,T,E)
returns unique BDD 

for ite(v,T,E)
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BDD Operations: Or

Or(f,g)

=

Not ( And ( Not(f), Not(g) ) )

Or(f,g)

=

Not ( And ( Not(f), Not(g) ) )

O(n1 £ n2)O(n1 £ n2)
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BDD Operations: Exists

Exists(“0”,v) = ?Exists(“0”,v) = ?
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BDD Operations: Exists

Exists(“0”,v) = “0”

Exists(“1”,v) = ?

Exists(“0”,v) = “0”

Exists(“1”,v) = ?
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BDD Operations: Exists

Exists(“0”,v) = “0”

Exists(“1”,v) = “1”

Exists((: v Æ f) Ç (v Æ g) , v) = ? 

Exists(“0”,v) = “0”

Exists(“1”,v) = “1”

Exists((: v Æ f) Ç (v Æ g) , v) = ? 
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BDD Operations: Exists

Exists(“0”,v) = “0”

Exists(“1”,v) = “1”

Exists((: v Æ f) Ç (v Æ g) , v) = Or(f,g)

Exists((: v’ Æ f) Ç (v’ Æ g) , v) = ? 

Exists(“0”,v) = “0”

Exists(“1”,v) = “1”

Exists((: v Æ f) Ç (v Æ g) , v) = Or(f,g)

Exists((: v’ Æ f) Ç (v’ Æ g) , v) = ? 
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BDD Operations: Exists

Exists(“0”,v) = “0”

Exists(“1”,v) = “1”

Exists((: v Æ f) Ç (v Æ g) , v) = Or(f,g)

Exists((: v’ Æ f) Ç (v’ Æ g) , v) =

(: v’ Æ Exists(f,v)) Ç (v’ Æ Exists(g,v)) 

Exists(“0”,v) = “0”

Exists(“1”,v) = “1”

Exists((: v Æ f) Ç (v Æ g) , v) = Or(f,g)

Exists((: v’ Æ f) Ç (v’ Æ g) , v) =

(: v’ Æ Exists(f,v)) Ç (v’ Æ Exists(g,v)) 

O(n2)O(n2)

But f is SAT iff 9 V. f is not “0”. So why doesn’t this imply P = NP? But f is SAT iff 9 V. f is not “0”. So why doesn’t this imply P = NP? 

Because the BDD size changes!Because the BDD size changes!
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BDD Applications

SAT is great if you are interested to know if a solution exists

BDDs are great if you are interested in the set of all solutions

• How many solutions are there?

• How do you do this on a BDD?

BDDs are great for  computing a fixed points

• Set of nodes reachable from a given node in a graph
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Graph Reachability

0

1

2

3

4

5

6

7

Which nodes are reachable from “7”?Which nodes are reachable from “7”?

{2,3,5,6,7}{2,3,5,6,7}

But what if the graph has trillions of nodes?But what if the graph has trillions of nodes?
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Graph Reachability

0

1

2

3

4

5

6

7

Use three Boolean variables (a,b,c) to encode each node?Use three Boolean variables (a,b,c) to encode each node?

: a Æ : b Æ : c
a Æ b Æ c
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Graph Reachability

0

1

2

3

4

5

6

7

Use three Boolean variables (a,b,c) to encode each node?Use three Boolean variables (a,b,c) to encode each node?

: a Æ : b Æ : c
a Æ b Æ c

a Æ : b Æ : c
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Graph Reachability

0

1

2

3

4

5

6

7

Use three Boolean variables (a,b,c) to encode each node?Use three Boolean variables (a,b,c) to encode each node?

: a Æ : b Æ : c
a Æ b Æ c

a Æ : b Æ : c

a Æ : b Æ c
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Graph Reachability
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Key Idea 1: Every Boolean formula represents a set of nodes!Key Idea 1: Every Boolean formula represents a set of nodes!

a Æ b Æ : c = ?a Æ b Æ : c = ?

The nodes whose encodings satisfy the formula.The nodes whose encodings satisfy the formula.
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Graph Reachability

0

1

2

3

4
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7

Key Idea 1: Every Boolean formula represents a set of nodes!Key Idea 1: Every Boolean formula represents a set of nodes!

a Æ b Æ : c = {6}a Æ b Æ : c = {6}
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Graph Reachability

0

1

2

3

4
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7

Key Idea 1: Every Boolean formula represents a set of nodes!Key Idea 1: Every Boolean formula represents a set of nodes!

a Æ b =  ?a Æ b =  ?
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Graph Reachability

0

1

2

3

4

5

6

7

Key Idea 1: Every Boolean formula represents a set of nodes!Key Idea 1: Every Boolean formula represents a set of nodes!

a Æ b =  {6,7}a Æ b =  {6,7}
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Graph Reachability

0

1
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7

Key Idea 1: Every Boolean formula represents a set of nodes!Key Idea 1: Every Boolean formula represents a set of nodes!

a xor b =  ?a xor b =  ?
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Graph Reachability

0

1

2

3

4

5

6

7

Key Idea 1: Every Boolean formula represents a set of nodes!Key Idea 1: Every Boolean formula represents a set of nodes!

a xor b =  {2,3,4,5}a xor b =  {2,3,4,5}
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Graph Reachability

0

1

2

3

4

5

6

7

• Key Idea 2: Edges can also be represented by Boolean formulas

• An edge is just a pair of nodes

• Introduce three new variables: a’, b’, c’

• Formula © represents all pairs of nodes (n,n’) that satisfy © when n is 

encoded using (a,b,c) and n’ is encoded using (a’,b’,c’)

• Key Idea 2: Edges can also be represented by Boolean formulas

• An edge is just a pair of nodes

• Introduce three new variables: a’, b’, c’

• Formula © represents all pairs of nodes (n,n’) that satisfy © when n is 

encoded using (a,b,c) and n’ is encoded using (a’,b’,c’)
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Graph Reachability
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: a Æ : b Æ : c Æ : a’ Æ : b’ Æ c’

Key Idea 2: Edges can also be represented by Boolean formulasKey Idea 2: Edges can also be represented by Boolean formulas
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Graph Reachability
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a Æ : b Æ c Æ : a’ Æ b’ Æ : c’

Key Idea 2: Edges can also be represented by Boolean formulasKey Idea 2: Edges can also be represented by Boolean formulas
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Graph Reachability
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a Æ : b Æ c Æ : a’ Æ b’ Æ : c’

Ç

: a Æ : b Æ : c Æ : a’ Æ : b’ Æ c’

Key Idea 2: Edges can also be represented by Boolean formulasKey Idea 2: Edges can also be represented by Boolean formulas

a Æ : b Æ c Æ : a’ Æ b’ Æ : c’

Ç

: a Æ : b Æ : c Æ : a’ Æ : b’ Æ c’



90

Binary Decision Diagrams 

Arie Gurfinkel, March 2014

© 2014 Carnegie Mellon University

Graph Reachability
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Key Idea 3: Given the BDD for a set of nodes S, and the BDD for 

the set of all edges R, the BDD for all the nodes that are adjacent 

to S can be computed using the BDD operations

Key Idea 3: Given the BDD for a set of nodes S, and the BDD for 

the set of all edges R, the BDD for all the nodes that are adjacent 

to S can be computed using the BDD operations

Image(S,R) =

(9 a,b,c . (S Æ R)) [ a \ a’, b \ b’, c \

c’]

Image(S,R) =

(9 a,b,c . (S Æ R)) [ a \ a’, b \ b’, c \

c’]

Variable renaming : 

replace a’ with a
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Graph Reachability Algorithm

S = BDD for initial set of nodes;

R = BDD for all the edges of the graph;

while (true) {

I = Image(S,R); // compute adjacent nodes to S

if (And(Not(S),I) == False) // no new nodes found

break;

S = Or(S,I); // add newly discovered nodes to result

}

return S; 

Symbolic Model Checking. Has been done for graphs with 1020 nodes.Symbolic Model Checking. Has been done for graphs with 1020 nodes.


