
© 2011 Carnegie Mellon University

SPIN: Part 2

15-414/614 Bug Catching: Automated
Program Verification

Sagar Chaki
November 14, 2012

2

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Control flow

We have already seen some

• Concatenation of statements, parallel execution, atomic sequences

There are a few more

• Case selection, repetition, unconditional jumps

3

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Case selection

if

:: (a < b) ! option1

:: (a > b) ! option2

:: else ! option3 /* optional */

fi

Cases need not be exhaustive or mutually exclusive

• Non-deterministic selection

4

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Repetition

byte count = 1;

proctype

}

byte count = 1;

proctype counter() {

do

:: count = count + 1

:: count = count – 1

:: (count == 0) ! break

od

}

5

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Repetition

proctype counter()

{

}

proctype counter()

{

do

:: (count != 0) !

if

:: count = count + 1

:: count = count – 1

fi

:: (count == 0) ! break

od

}

6

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Unconditional jumps

proctype Euclid (int x, y)

{

}

proctype Euclid (int x, y)

{

do

:: (x > y) ! x = x – y

:: (x < y) ! y = y – x

:: (x == y) ! goto done

od ;

done: skip

}

7

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Procedures and Recursion

Procedures can be modeled as processes

• Even recursive ones

• Return values can be passed back to the calling process via a global variable
or a message

8

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Time for example 3

9

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Timeouts

Proctype watchdog() {

do

:: timeout ! guard!reset

od

}

Get enabled when the entire system is deadlocked

No absolute timing considerations

10

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Assertions

assert(any_boolean_condition)

• pure expression

If condition holds) no effect

If condition does not hold) error report during verification with Spin

11

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Time for example 4

12

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

LTL model checking

Two ways to do it

Convert Kripke to Buchi

• Convert claim (LTL) to Buchi

• Check language inclusion

OR

• Convert ~Claim (LTL) to Buchi

• Check empty intersection

13

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

What Spin does

Checks non-empty intersection

• Requires very little space in best case

Works directly with Promela

• No conversion to Kripke or Buchi

Must provide Spin with negation of property you
want to prove

14

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

LTL syntax in SPIN

:= p proposition:= p proposition

| true

| false

| ()

| binop

| unop

unop := [] always (G)

binop

unop := [] always (G)

| <> eventually (F)

| X next time

| ! logical negation

binop := U strong until

| && logical AND

| || logical OR

| -> implication

| <-> equivalence

15

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Time for example 5

16

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Peterson’s Algorithm in SPIN

bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

/* critical section */

flag[_pid] = 0;

goto again;

}

Active process:

automatically creates instances of processes

_pid:

Identifier of the process

assert:

Checks that there are only

at most two instances with

identifiers 0 and 1

17

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Peterson’s Algorithm in SPIN

bool turn, flag[2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

ncrit++;

assert(ncrit == 1); /* critical section */

ncrit--;

flag[_pid] = 0;

goto again;

}

ncrit:

Counts the number of

Process in the critical section

assert:

Checks that there are always

at most one process in the

critical section

18

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Peterson’s Algorithm in SPIN

bool turn, flag[2];

bool critical[2];

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

critical[_pid] = 1;

/* critical section */

critical[_pid] = 0;

flag[_pid] = 0;

goto again;

}

LTL Properties:

1. [] (!critical[0] || !critical[1])

2. []<> (critical[0]) && []<> (critical[1])

3. [] (critical[0] -> (critical[0] U

(!critical[0] && ((!critical[0] &&

!critical[1]) U critical[1]))))

4. [] (critical[1] -> (critical[1] U

(!critical[1] && ((!critical[1] &&

!critical[0]) U critical[0]))))

mutex

no starvation

alternation

alternation

Use a pair of flags instead of a count

19

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Peterson’s Algorithm in SPIN

bool turn, flag[2];

bool critical[2];

active [2] proctype user()

{

assert(_pid == 0 || _pid == 1);

again:

flag[_pid] = 1;

turn = _pid;

(flag[1 - _pid] == 0 || turn == 1 - _pid);

critical[_pid] = 1;

/* critical section */

critical[_pid] = 0;

flag[_pid] = 0;

goto again;

}

LTL Properties (negated):

1. <> (critial[0] && critical[1])

2. <>[] (!critical[0]) || <>[] (!critical[1])

3. <> (critical[0] && !(critical[0] U

(!critical[0] && ((!critical[0] &&

!critical[1]) U critical[1]))))

4. <> (critical[1] && !(critical[1] U

(!critical[1] && ((!critical[1] &&

!critical[0]) U critical[0]))))

holds

holds

does not hold

does not hold

20

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

N

S

W

Traffic

Controller

21

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Modeling in SPIN

System

• No turning allowed

• Traffic either flows East-West or North-South

• Traffic Sensors in each direction to detect waiting vehicles

• Traffic.pml

Properties:

• Safety : no collision (traffic1.ltl)

• Progress – each waiting car eventually gets to go (traffic2.ltl)

• Optimality – light only turns green if there is traffic (traffic3.ltl)

22

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Dining Philosophers

23

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Modeling in SPIN

Each fork is a rendezvous channel

A philosopher picks up a fork by sending a message to the fork.

A philosopher releases a fork by receiving a message from the fork.

Properties
• No deadlock

• Safety – two adjacent philosophers never eat at the same time – dp0.ltl

• No livelock – dp1.ltl

• No starvation – dp2.ltl

Versions
• dp.pml – deadlock, livelock and starvation

• dp_no_deadlock1.pml – livelock and starvation

• dp_no_deadlock2.pml – starvation

24

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

References

http://cm.bell-labs.com/cm/cs/what/spin/

http://cm.bell-
labs.com/cm/cs/what/spin/Man/Manual.html

http://cm.bell-
labs.com/cm/cs/what/spin/Man/Quick.html

http://cm.bell-labs.com/cm/cs/what/spin/
http://cm.bell-labs.com/cm/cs/what/spin/
http://cm.bell-labs.com/cm/cs/what/spin/
http://cm.bell-labs.com/cm/cs/what/spin/Man/Manual.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Manual.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Manual.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Quick.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Quick.html
http://cm.bell-labs.com/cm/cs/what/spin/Man/Quick.html

25

SPIN – Part 2

Sagar Chaki, Nov 14, 2012

© 2011 Carnegie Mellon University

Questions?

Sagar Chaki

Senior Member of Technical Staff

RTSS Program

Telephone: +1 412-268-1436

Email: chaki@sei.cmu.edu

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web

www.sei.cmu.edu/staff/chaki

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

mailto:chaki@sei.cmu.edu

