
Lecture 2: Symbolic Model Checking With SAT

Edmund M. Clarke, Jr.
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

(Joint work over several years with: A. Biere, A. Cimatti, Y. Zhu,
A. Gupta, J. Kukula, D. Kroening, O. Strichman)

1

Symbolic Model Checking with BDDs

Method used by most “industrial strength” model checkers:

uses Boolean encoding for state machine and sets of states.

can handle much larger designs – hundreds of state variables.

BDDs traditionally used to represent Boolean functions.

2

Problems with BDDs

BDDs are a canonical representation. Often become too large.

Variable ordering must be uniform along paths.

Selecting right variable ordering very important for obtaining small BDDs.

– Often time consuming or needs manual intervention.

– Sometimes, no space efficient variable ordering exists.

We describe an alternative approach to symbolic model checking that uses SAT
procedures.

3

Advantages of SAT Procedures

SAT procedures also operate on Boolean expressions but do not use canonical
forms.

Do not suffer from the potential space explosion of BDDs.

Different split orderings possible on different branches.

Very efficient implementations available.

4

Bounded Model Checking
(Clarke, Biere, Cimatti, Fujita, Zhu)

Bounded model checking uses a SAT procedure instead of BDDs.

We construct Boolean formula that is satisfiable iff there is a counterexample of
length .

We look for longer and longer counterexamples by incrementing the bound .

After some number of iterations, we may conclude no counterexample exists and
specification holds.

For example, to verify safety properties, number of iterations is bounded by
diameter of finite state machine.

5

Main Advantages of Our Approach

Bounded model checking finds counterexamples fast. This is due to depth first
nature of SAT search procedures.

It finds counterexamples of minimal length. This feature helps user understand
counterexample more easily.

It uses much less space than BDD based approaches.

Does not need manually selected variable order or costly reordering. Default
splitting heuristics usually sufficient.

Bounded model checking of LTL formulas does not require a tableau or automaton
construction.

6

Implementation

We have implemented a tool BMC for our approach.

It accepts a subset of the SMV language.

Given , BMC outputs a formula that is satisfiable iff counterexample exists of
length .

If counterexample exists, a standard SAT solver generates a truth assignment for the
formula.

7

Performance

We give examples where BMC significantly outperforms BDD based model
checking.

In some cases BMC detects errors instantly, while SMV fails to construct BDD for
initial state.

8

Outline

Bounded Model Checking:

– Definitions and notation.

– Example to illustrate bounded model checking.

– Reduction of bounded model checking for LTL to SAT.

– Experimental results.

– Tuning SAT checkers for bounded model checking

– Efficient computation of diameters

Abstraction / refinement with SAT

Directions for future research.

9

Basic Definitions and Notation

We use linear temporal logic (LTL) for specifications.

Basic LTL operators:
next time ‘ ’ eventuality ‘ ’
globally ‘ ’ until ‘ ’
release ‘ ’

Only consider existential LTL formulas , where

– is the existential path quantifier, and

– is a temporal formula with no path quantifiers.

Recall that is the dual of the universal path quantifier .

Finding a witness for is equivalent to finding a counterexample for .

10

Definitions and Notation (Cont.)

System described as a Kripke structure , where

– is a finite set of states,

– is the set of initial states,

– is the transition relation, and

– is the state labeling.

We assume every state has a successor state.

11

Definitions and Notation (Cont.)

In symbolic model checking, a state is represented by a vector of state variables
.

We define propositional formulas , and as follows:

– iff ,

– iff , and

– iff .

We write instead of , etc.

12

Definitions and Notation (Cont.)

Will sometimes write when .

If , then and .

is a path if for all .

is true in () iff there is a path in with and .

Model checking is the problem of determining the truth of an LTL formula in a
Kripke structure. Equivalently,

Does a witness exist for the LTL formula?

13

Example To Illustrate New Technique

Two-bit counter with an erroneous transition:

00

01 10

11

Each state is represented by two state variables and .

In initial state, value of the counter is . Thus,

Let

Define

Have deliberately added erroneous transition!!

14

Example (Cont.)

Suppose we want to know if counter will eventually reach state .

Can specify the property by , where .

On all execution paths, there is a state where holds.

Equivalently, we can check if there is a path on which counter never reaches state
.

This is expressed by , where .

There exists a path such that holds globally along it.

15

Example (Cont.)

In bounded model checking, we consider paths of length .

We start with and increment until a witness is found.

Assume equals . Call the states , , .

We formulate constraints on , , and in propositional logic.

Constraints guarantee that is a witness for and, hence, a
counterexample for .

16

Example (Cont.)

First, we constrain to be a valid path starting from the initial state.

Obtain a propositional formula

17

Example (Cont.)

Second, we constrain the shape of the path.

The sequence of states can be a loop.

If so, there is a transition from to the initial state , or itself.

We write to denote the transition from to a state where .

We define as . Thus denotes the case where no loop exists.

18

Example (Cont.)

The temporal property must hold on .

If no loop exists, does not hold and is .

To be a witness for , the path must contain a loop (condition , given
previously).

Finally, must hold at every state on the path

We combine all the constraints to obtain the propositional formula

19

Example (Cont.)

In this example, the formula is satisfiable.

Truth assignment corresponds to counterexample path , , followed by
self-loop at .

If self-loop at is removed, then formula is unsatisfiable.

20

Sequential Multiplier Example

SMV SMV SATO PROVER
bit sec MB sec MB sec MB sec MB
0 919 13 25 79 0 0 0 1
1 1978 13 25 79 0 0 0 1
2 2916 13 26 80 0 0 0 1
3 4744 13 27 82 0 0 1 2
4 6580 15 33 92 2 0 1 2
5 10803 25 67 102 12 0 1 2
6 43983 73 258 172 55 0 2 2
7 17h 1741 492 209 0 7 3
8 1GB 473 0 29 3
9 856 1 58 3

10 1837 1 91 3
11 2367 1 125 3
12 3830 1 156 4
13 5128 1 186 4
14 4752 1 226 4
15 4449 1 183 5

sum 71923 2202 23970 1066

Model Checking: 16x16 bit sequential shift and add multiplier with overflow flag and
16 output bits.

21

DME Example

SMV SMV SATO PROVER SATO PROVER

cells sec MB sec MB sec MB sec MB sec MB sec MB
4 846 11 159 217 0 3 1 3 3 6 54 5
5 2166 15 530 703 0 4 2 3 9 8 95 5
6 4857 18 1762 703 0 4 3 3 7 9 149 6
7 9985 24 6563 833 0 5 4 4 15 10 224 8
8 19595 31 1GB 1 6 6 5 16 12 323 8
9 10h 1 6 9 5 24 13 444 9

10 1 7 10 5 36 15 614 10
11 1 8 13 6 38 16 820 11
12 1 9 16 6 40 18 1044 11
13 1 9 19 8 107 19 1317 12
14 1 10 22 8 70 21 1634 14
15 1 11 27 8 168 22 1992 15

Model Checking: Liveness for one user in the DME.

22

“Buggy” DME Example

SMV SMV SATO PROVER
cells sec MB sec MB sec MB sec MB

4 799 11 14 44 0 1 0 2
5 1661 14 24 57 0 1 0 2
6 3155 21 40 76 0 1 0 2
7 5622 38 74 137 0 1 0 2
8 9449 73 118 217 0 1 0 2
9 segmentation 172 220 0 1 1 2

10 fault 244 702 0 1 0 3
11 413 702 0 1 0 3
12 719 702 0 2 1 3
13 843 702 0 2 1 3
14 1060 702 0 2 1 3
15 1429 702 0 2 1 3

Model Checking: Counterexample for liveness in a buggy DME implementation.

23

Tuning SAT checkers for BMC
(O. Strichman, CAV00)

Use the variable dependency graph for deriving a static variable ordering.

Use the regular structure of AG formulas to replicate conflict clauses:

The transition relation appears times in , each time with different variables.

This symmetry indicates that under certain conditions, for each conflict clause we
can compute additional clauses ‘for free’.

24

Tuning SAT checkers for BMC (cont’d)

Use the incremental nature of BMC to reuse conflict clauses.
Some of the clauses that were computed while solving BMC with e.g. k=10 can be
reused when solving the subsequent instance with k=11.

Restrict decisions to model variables only (ignore CNF auxiliary vars).
It is possible to decide the formula without the auxiliary variables (they will be
implied). In many examples they are 80%-90% of the variables in the CNF
instance.

...

25

BMC of some hardware designs w/wo tuning SAT

Design # RB1 RB2 Grasp Tuned
1 18 7 6 282 3
2 5 70 8 1.1 0.8
3 14 597 375 76 3
4 24 690 261 510 12
5 12 803 184 24 2
6 22 356 18
7 9 2671 10 2
8 35 6317 20
9 38 9035 25
10 31 312
11 32 152 60
12 31 1419 1126
13 14 3626

RuleBase is IBM’s BDD based symbolic model-checker.
RB1 - RuleBase first run (with BDD dynamic reordering).
RB2 - RuleBase second run (without BDD dynamic reordering).

26

Diameter

Diameter : Least number of steps to reach all reachable states. If the property
holds for , the property holds for all reachable states.

Finding is computationally hard:

– State is reachable in steps:

– Thus, is greater or equal than the diameter if

This requires an efficient QBF checker!

27

A Compromise: Recurrence Diameter

Recurrence Diameter : Least number of steps such that all valid paths of length
have at least one cycle

Example:

– All states are reachable from
in two steps, i.e.,

– All paths with at least one cycle
have a minimum length of four
steps, i.e.,

Theorem: Recurrence Diameter is an upper bound for the Diameter

28

Testing the Recurrence Diameter

Recurrence Diameter test in BMC:
Find cycles by comparing all states with each other

?

= = =

= =

=

Size of CNF:

Too expensive for big

29

Recurrence Diameter Test using Sorting Networks (D. Kroening)

Idea: Look for cycles using a Sorting Network

First, sort the states symbolically:

are permutation of such that

Sorting can be done with CNF of size . Practical implementations, e.g.,
Bitonic sort, have size .

Now only check neighbors in the sorted sequence:

?

= = =

30

Recurrence Diameter Test using Sorting Networks

Example CNF size comparison (without transition system):

Alg. Alg.
Variables Clauses Variables Clauses

32 5,777 25,793 7,862 34,493
64 22,817 104,833 21,494 95,341

128 90,689 422,657 56,438 252,109
256 361,601 1,697,281 143,606 644,557
512 1,444,097 6,802,433 356,342 1,604,813

31

Future Research Directions

We believe our techniques may be able to handle much larger designs than is currently
possible. Nevertheless, there are a number of directions for future research:

Techniques for generating short propositional formulas need to be studied.

Want to investigate further the use of domain knowledge to guide search in SAT
procedures.

A practical decision procedure for QBF would also be useful.

Combining bounded model checking with other reduction techniques is also a
fruitful direction.

32

