Solvers for the Problem of Boolean Satisfiability (SAT)

Will Klieber
15-414
Aug 31, 2011

Why study SAT solvers?

- Many problems reduce to SAT.
- Formal verification
- CAD, VLSI
- Optimization
- AI, planning, automated deduction
- Modern SAT solvers are often fast.
- Other solvers (QBF, SMT, etc.) borrow techniques from SAT solvers.
- SAT solvers and related solvers are still active areas of research.

Negation-Normal Form (NNF)

- A formula is in negation-normal form iff:
- all negations are directly in front of variables, and
- the only logical connectives are: " \wedge ", " \vee ", " \neg ".
- A literal is a variable or its negation.
- Convert to NNF by pushing negations inward:

$$
\begin{aligned}
& \neg(P \wedge Q) \Leftrightarrow(\neg P \vee \neg Q) \\
& \neg(P \vee Q) \Leftrightarrow(\neg P \wedge \neg Q)
\end{aligned}
$$

(De Morgan's Laws)

Disjunctive Normal Form (DNF)

- Recall: A literal is a variable or its negation.
- A formula is in DNF iff:
- it is a disjunction of conjunctions of literals.

$$
\underbrace{\left(\ell_{11} \wedge \ell_{12} \wedge \ell_{13}\right)}_{\text {conjunction } 1} \vee \underbrace{\left(\ell_{21} \wedge \ell_{22} \wedge \ell_{23}\right)}_{\text {conjunction } 2} \vee \underbrace{\left(\ell_{31} \wedge \ell_{32} \wedge \ell_{33}\right)}_{\text {conjunction } 3}
$$

- Every formula in DNF is also in NNF.
- A simple (but inefficient) way convert to DNF:
- Make a truth table for the formula φ.
- Each row where φ is true corresponds to a conjunct.

Conjunctive Normal Form (CNF)

- A formula is in CNF iff:
- it is a conjunction of disjunctions of literals.

$$
\underbrace{\left(\ell_{11} \vee \ell_{12} \vee \ell_{13}\right)}_{\text {clause } 1} \wedge \underbrace{\left(\ell_{21} \vee \ell_{22} \vee \ell_{23}\right)}_{\text {clause } 2} \wedge \underbrace{\left(\ell_{31} \vee \ell_{32} \vee \ell_{33}\right)}_{\text {clause } 3}
$$

- Modern SAT solvers use CNF.
- Any formula can be converted to CNF.
- Equivalent CNF can be exponentially larger.
- Equi-satisfiable CNF (Tseitin encoding):
- Only linearly larger than original formula.

Tseitin transformation to CNF

- Introduce new variables to represent subformulas.

Original: $\exists \vec{x} . \phi(\vec{x})$
Transformed: $\exists \vec{x} \cdot \exists \vec{g} \cdot \psi(\vec{x}, \vec{g})$

- E.g, to convert $(A \vee(B \wedge C))$:
- Replace $(B \wedge C)$ with a new variable g_{1}.
- Add clauses to equate g_{1} with $(B \wedge C)$.
- $\left(A \vee g_{1}\right) \wedge \underbrace{\left(B \vee \neg g_{1}\right)}_{\left(\neg B \rightarrow \neg g_{1}\right)} \wedge \underbrace{\left(C \vee \neg g_{1}\right)}_{\left(\neg C \rightarrow \neg g_{1}\right)} \wedge \underbrace{\left(\neg B \vee \neg C \vee g_{1}\right)}_{\left((B \wedge C) \rightarrow g_{1}\right)}$
- Gives value of g_{1} for all 4 possible assignments to $\{B, C\}$.

Tseitin transformation to CNF

Convert $(A \vee(B \wedge C))$ to CNF by introducing new variable g_{1} for $(\mathrm{B} \wedge \mathrm{C})$.

$$
\begin{array}{r}
\left(A \vee g_{1}\right) \wedge \underbrace{\left(\neg g_{1} \vee B\right)}_{\left(g_{1} \rightarrow B\right)} \wedge \underbrace{(\underbrace{\left(\neg g_{1} \vee C\right)}_{1}}_{\left(g_{1} \rightarrow C\right)} \wedge \underbrace{(\underbrace{\left(\neg B \vee \neg C \vee g_{1}\right)}_{\left((B \wedge C) \rightarrow g_{1}\right)}}_{\left(g_{1} \Leftrightarrow(B \wedge C)\right)}
\end{array}
$$

SAT Solvers -- Representation

- A CNF formula is represented by a set of clauses.
- Empty set represents a true formula.
- A clause is represented by a set of literals
- Empty set represents a false clause.
- A variable is represented by a positive integer.
- The logical negation of a variable is represented by the arithmetic negation of its number.
- E.g., $((x 1 \vee x 2) \wedge(\neg x 1 \vee \neg x 2))$ is represented by $\{\{1,2\},\{-1,-2\}\}$

Naïve Approach

- SAT problem: Given a boolean formula φ, does there exist an assignment that satisfies φ ?
- Naïve approach: Search all assignments!
- n variables $\rightarrow 2^{n}$ possible assignments
- Explosion!
- SAT is NP-complete:
- Worst case is likely $\mathrm{O}\left(2^{n}\right)$, unless $\mathrm{P}=\mathrm{NP}$.
- But for many cases that arise in practice, we can do much better.

Unit Propagation

- Davis-Putnam-Logemann-Loveland (DPLL)
- Unit Clause: Clause with exactly one literal.
- Algorithm:
- If a clause has exactly one literal, then assign it true.
- Repeat until there are no more unit clauses.
- Example:
- $((x 1 \vee x 2) \wedge(\neg x 1 \vee \neg x 2) \wedge(x 1))$
- ($(T \vee x 2) \wedge(F \vee \neg x 2) \wedge(T))$
- ($\quad \mathrm{T}) \wedge(\neg \mathrm{X} 2))$
- T

Helper function

from copy import copy, deepcopy

```
def AssignLit(ClauseList, lit):
ClauseList = deepcopy(ClauseList)
for clause in copy(ClauseList):
    if lit in clause: ClauseList.remove(clause)
    if -lit in clause: clause.remove(-lit)
return ClauseList
```

>>> AssignLit([[1, 2, -3], [-1, -2, 4], [3, 4]], 1) [[-2, 4], [3, 4]]
>>> AssignLit([[1, 2, -3], [-1, -2, 4], [3, 4]], -1) [[2, -3], [3, 4]]

Assumption: No clause contains both a variable and its negation.

Naïve Solver

```
def AssignLit(ClauseList, lit):
    ClauseList = deepcopy(ClauseList)
    for clause in copy(ClauseList):
        if lit in clause: ClauseList.remove(clause)
    if -lit in clause: clause.remove(-lit)
    return ClauseList
def IsSatisfiable(ClauseList):
    # Test if no unsatisfied clauses remain
    if len(ClauseList) == 0: return True
    # Test for presense of empty clause
    if [] in ClauseList: return False
    # Split on an arbitrarily decided literal
    DecLit = ClauseList[0][0]
    return (IsSatisfiable(AssignLit(ClauseList, DecLit)) or
        IsSatisfiable(AssignLit(ClauseList, -DecLit)))
```


DPLL Solver

def IsSatisfiable(ClauseList):

\# Unit propagation repeat until fixed point:
for each unit clause UC in ClauseList: ForcedLit = UC[0] ClauseList = AssignLit(ClauseList, ForcedLit)

```
# Test if no unsatisfied clauses remain
```

 if len(ClauseList) == 0: return True
 \# Test for presense of empty clause
 if [] in ClauseList: return False
 \# Split on an arbitrarily decided literal
 DecLit = (choose a variable occuring in ClauseList)
 return (IsSatisfiable(AssignLit(ClauseList, DecLit)) or
 IsSatisfiable(AssignLit(ClauseList, -DecLit)))

GRASP: an efficient SAT solver

Original Slides by Pankaj Chauhan Modified by Will Klieber

Please interrupt me if anything is not clear!

Terminology

- CNF formula φ
- x_{1}, \ldots, x_{n} : n variables
- $\omega_{l, \ldots}, \omega_{m}$: m clauses

$$
\begin{aligned}
& \varphi=\omega_{1} \wedge \omega_{2} \wedge \omega_{3} \\
& \omega_{1}=\left(x_{2} \vee x_{3}\right) \\
& \omega_{2}=\left(\neg x_{1} \vee \neg x_{4}\right) \\
& \omega_{3}=\left(\neg x_{2} \vee x_{4}\right) \\
& A=\left\{x_{1}=0, x_{2}=1, x_{3}=0, x_{4}=1\right\}
\end{aligned}
$$

- Assignment A
- Set of (variable, value) pairs.
- Notation: $\left\{\left(x_{1}, 1\right),\left(x_{2}, 0\right)\right\},\left\{x_{1}: 1, x_{2}: 0\right\},\left\{x_{1}=1, x_{2}=0\right\},\left\{x_{1}, \neg x_{2}\right\}$
- $|A|<n \rightarrow$ partial assignment $\quad\left\{x_{1}=0, x_{2}=1, x_{4}=1\right\}$
- $|\mathrm{A}|=\mathrm{n} \rightarrow$ complete assignment $\left\{\mathrm{x}_{1}=0, \mathrm{x}_{2}=1, \mathrm{x}_{3}=0, \mathrm{x}_{4}=1\right\}$
- $\varphi_{\mathrm{A}}=0 \rightarrow$ falsifying assignment $\left\{\mathrm{x}_{1}=1, \mathrm{x}_{4}=1\right\}$
- $\varphi_{\mathrm{A}}=1 \rightarrow$ satisfying assignment $\left\{\mathrm{x}_{1}=0, \mathrm{x}_{2}=1, \mathrm{x}_{4}=1\right\}$
- $\varphi_{\mathrm{A}}=\mathrm{X} \rightarrow$ unresolved asgnment $\left\{\mathrm{x}_{1}=0, \mathrm{x}_{2}=0, \mathrm{x}_{4}=1\right\}$

Terminology

- An assignment partitions the clause database into three classes:
- Satisfied, falsified, unresolved
- Free literal: an unassigned literal
- Unit clause: has exactly one free literal

Basic Backtracking Search

Organize the search in the form of a decision tree.

- Each node is a decision variable.
- Outgoing edges: assignment to the decision variable.
- Depth of node in decision tree is decision level $\delta(x)$.
- " $x=v$ @ d " means variable x is assigned value v at decision level d.

Basic Backtracking Search

1. Make new decision assignments.
2. Infer implied assignments by a deduction process (unit propagation).

- May lead to falsifying clauses, conflict!
- The assignment is called "conflicting assignment".

3. Conflicting assignments leads to backtrack.

Backtracking Search in Action

Example 1

$$
\begin{aligned}
& \omega_{1}=\left(x_{2} \vee x_{3}\right) \\
& \omega_{2}=\left(\neg x_{1} \vee \neg x_{4}\right) \\
& \omega_{3}=\left(\neg x_{2} \vee x_{4}\right)
\end{aligned}
$$

No backtrack in this example!

Backtracking Search in Action

Example 2

No backtrack in this example!

Backtracking Search in Action

Example 3

GRASP

- GRASP is Generalized seaRch Algorithm for the Satisfiability Problem (Silva, Sakallah, '96).
- Features:
- Implication graphs for Unit Propagation and conflict analysis.
- Learning of new clauses.
- Non-chronological backtracking!

Learning

- GRASP can learn new clauses that are logically implied by the original formula.
- Goal is to allow Unit Prop to deduce more forced literals, pruning the search space.
- Example:
- φ contains clauses ($x \vee y \vee z$) and $(x \vee y \vee \neg z)$.
- Resolving on z yields a new clause ($x \vee y$).
- If y is false, then x must be true for φ to be true.
- But not discoverable by simple Unit Prop w/o resolvent clause.
- Clause ($x \vee y$) allows Unit Prop to force $x=1$ when $y=0$.
- New clauses learned from conflicting assignments.

Resolution

From
$\left(x_{1} \vee \cdots \vee x_{n} \vee r\right) \wedge\left(\neg r \vee y_{1} \vee \cdots \vee y_{m}\right)$
deduce
$\left(x_{1} \vee \cdots \vee x_{n} \vee y_{1} \vee \cdots \vee y_{m}\right)$

Top-level of GRASP-like solver

1. CurAsgn = \{\};
2. while (true) \{
3. while (value of φ under CurAsgn is unknown) \{
4. DecideLit(); // Add decision literal to CurAsgn.
5.

Propagate(); // Add forced literals to CurAsgn.
6. \}
7. if (CurAsgn satisifies φ) \{return true; \}
8. Analyze conflict and learn a new clause;
9.
10. Backtrack();
11. Propagate(); // Learned clause will force a literal
12. \}

GRASP Decision Heuristics

- Procedure DecideLit()
- Choose the variable that satisfies the most clauses
- Other possibilities exist

GRASP Deduction

- Unit Propagation is a type of Boolean Constraint Propagation (BCP).
- Grasp does Unit Prop using implication graphs:
E.g., for the clause $\omega=(x \vee \neg y)$,
if $y=1$, then $x=1$ is forced; the antecedent of x is $\{y=1\}$.
- If a variable x is forced by a clause during BCP, then assignment of 0 to all other literals in the clause is called the antecedent assignment $A(x)$.
- E.g., for $\omega=(x \vee y \vee \neg z)$,

$$
A(x)=\{y: 0, z: 1\}, A(y)=\{x: 0, z: 1\}, A(z)=\{x: 0, y: 0\}
$$

- Variables directly responsible for forcing the value of x.
- Antecedent assignment of a decision variable is empty.

Implication Graphs

- Depicts the antecedents of assigned variables.
- A node is an assignment to a variable.
- (decision or implied)
- Predecessors of x correspond to antecedent $A(x)$.
- No predecessors for decision assignments!
- For special conflict vertex κ, antecedent $A(\kappa)$ is assignment to vars in the falsified clause.

Example Implication Graph

Current truth assignment: $\left\{x_{9}=0 @ 1, x_{12}=1 @ 2, x_{13}=1 @ 2, x_{10}=0 @ 3, x_{11}=0 @ 3\right\}$
Current decision assignment: $\left\{x_{l}=1 @ 6\right\}$

$$
\begin{aligned}
& \omega_{1}=\left(\neg x_{1} \vee x_{2}\right) \\
& \omega_{2}=\left(\neg x_{1} \vee x_{3} \vee x_{9}\right) \\
& \omega_{3}=\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \\
& \omega_{4}=\left(\neg x_{4} \vee x_{5} \vee x_{10}\right) \\
& \omega_{5}=\left(\neg x_{4} \vee x_{6} \vee x_{11}\right) \\
& \omega_{6}=\left(\neg x_{5} \vee \neg x_{6}\right) \\
& \omega_{7}=\left(x_{1} \vee x_{7} \vee \neg x_{12}\right) \\
& \omega_{8}=\left(x_{1} \vee x_{8}\right) \\
& \omega_{9}=\left(\neg x_{7} \vee \neg x_{8} \vee \neg x_{13}\right)
\end{aligned}
$$

GRASP Conflict Analysis

- After a conflict arises, analyze the implication graph.
- Add new clause that would prevent the occurrence of the same conflict in the future.
\Rightarrow Learning
- Determine decision level to backtrack to; this might not be the immediate one.
\Rightarrow Non-chronological backtrack

Learning Algorithm

1. Let CA be the assignment of False to all literals in the falsified clause. ("CA" is short for "conflict assignment".)

- Example: $C A=\left\{x_{5}=1 @ 6, x_{6}=1 @ 6\right\}$

2. A literal $l \in \mathrm{CA}$ is a unique implication point (UIP) iff every other literal in CA has an earlier decision level than l.
3. loop:

- Remove the most recently assigned literal from CA and replace it by its antecedent.
- if (CA is empty or has a UIP): break;

4. Let $\left\{L_{1}, \ldots, L_{n}\right\}=C A$; learn clause $\left(\neg L_{1} \vee \ldots \vee \neg L_{n}\right)$.
5. Backtrack to the earliest decision level at which the learned clause will force the UIP to be false.

- Why is this guaranteed to be possible?

Example Implication Graph

Current truth assignment: $\left\{x_{9}=0 @ 1, x_{12}=1 @ 2, x_{13}=1 @ 2, x_{10}=0 @ 3, x_{11}=0 @ 3\right\}$
Current decision assignment: $\left\{x_{l}=1 @ 6\right\}$

$$
\begin{aligned}
& \omega_{1}=\left(\neg x_{1} \vee x_{2}\right) \\
& \omega_{2}=\left(\neg x_{1} \vee x_{3} \vee x_{9}\right) \\
& \omega_{3}=\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right) \\
& \omega_{4}=\left(\neg x_{4} \vee x_{5} \vee x_{10}\right) \\
& \omega_{5}=\left(\neg x_{4} \vee x_{6} \vee x_{11}\right) \\
& \omega_{6}=\left(\neg x_{5} \vee \neg x_{6}\right) \\
& \omega_{7}=\left(x_{1} \vee x_{7} \vee \neg x_{12}\right) \\
& \omega_{8}=\left(x_{1} \vee x_{8}\right) \\
& \omega_{9}=\left(\neg x_{7} \vee \neg x_{8} \vee \neg x_{13}\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \omega_{1}=\left(\neg \mathrm{x}_{1} \vee \mathrm{x}_{8} \vee \mathrm{x}_{9}\right) \\
& \omega_{2}=\left(\neg \mathrm{x}_{1} \vee \mathrm{x}_{8} \vee \neg \mathrm{x}_{9}\right) \\
& \omega_{3}=\left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{8} \vee \mathrm{x}_{9}\right) \\
& \omega_{4}=\left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{8} \vee \neg \mathrm{x}_{9}\right) \\
& \omega_{5}=\left(\mathrm{x}_{1} \vee \mathrm{x}_{3}\right) \\
& \omega_{6}=\left(\mathrm{x}_{1} \vee \neg \mathrm{x}_{3}\right)
\end{aligned}
$$

Is that all?

- Huge overhead for boolean constraint propagation (BCP)
- Better decision heuristics
- Better learning, problem specific
- Better engineering!

Chaff

