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Why study SAT solvers?

� Many problems reduce to SAT.

� Formal verification

� CAD, VLSI

� Optimization

� AI, planning, automated deduction

� Modern SAT solvers are often fast.

� Other solvers (QBF, SMT, etc.) 
borrow techniques from SAT solvers.

� SAT solvers and related solvers 
are still active areas of research.
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Negation-Normal Form (NNF)

� A formula is in negation-normal form iff:

� all negations are directly in front of variables, and

� the only logical connectives are: “∧”, “∨”, “¬”.

� A literal is a variable or its negation.

� Convert to NNF by pushing negations inward:

¬(P ∧Q)⇔ (¬P ∨ ¬Q)

¬(P ∨Q)⇔ (¬P ∧ ¬Q)
(De Morgan’s Laws)
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Disjunctive Normal Form (DNF)

� Recall: A literal is a variable or its negation.

� A formula is in DNF iff:

� it is a disjunction of conjunctions of literals.

� Every formula in DNF is also in NNF.

� A simple (but inefficient) way convert to DNF:

� Make a truth table for the formula φ.

� Each row where φ is true corresponds to a conjunct.

(ℓ11 ∧ ℓ12 ∧ ℓ13)
︸ ︷︷ ︸
conjunction 1

∨ (ℓ21 ∧ ℓ22 ∧ ℓ23)
︸ ︷︷ ︸
conjunction 2

∨ (ℓ31 ∧ ℓ32 ∧ ℓ33)
︸ ︷︷ ︸
conjunction 3
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Conjunctive Normal Form (CNF)

� A formula is in CNF iff:

� it is a conjunction of disjunctions of literals.

� Modern SAT solvers use CNF.

� Any formula can be converted to CNF.

� Equivalent CNF can be exponentially larger.

� Equi-satisfiable CNF (Tseitin encoding):

� Only linearly larger than original formula.

(ℓ11 ∨ ℓ12 ∨ ℓ13)
︸ ︷︷ ︸

clause 1

∧ (ℓ21 ∨ ℓ22 ∨ ℓ23)
︸ ︷︷ ︸

clause 2

∧ (ℓ31 ∨ ℓ32 ∨ ℓ33)
︸ ︷︷ ︸

clause 3
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Tseitin transformation to CNF

� Introduce new variables to represent subformulas.

� E.g, to convert (A ∨ (B ∧ C)):

� Replace (B ∧ C) with a new variable g1.

� Add clauses to equate g1 with (B ∧ C).

�

� Gives value of g1 for all 4 possible assignments to {B, C}.

Original: ∃�x. φ(�x)

Transformed: ∃�x.∃�g. ψ(�x,�g)

(A ∨ g1)∧ (B ∨ ¬g1)
︸ ︷︷ ︸
(¬B→¬g1)

∧ (C ∨ ¬g1)
︸ ︷︷ ︸
(¬C→¬g1)

∧ (¬B ∨ ¬C ∨ g1)
︸ ︷︷ ︸

((B∧C)→g1)
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Tseitin transformation to CNF

(A ∨ g1)∧ (¬g1 ∨B)
︸ ︷︷ ︸
(g1→B)

∧ (¬g1 ∨ C)
︸ ︷︷ ︸
(g1→C)

∧ (¬B ∨ ¬C ∨ g1)
︸ ︷︷ ︸

((B∧C)→g1)

(g1 → (B ∧ C)) ∧ ((B ∧ C)→ g1)

(g1 ⇔ (B ∧ C))

Convert (A ∨ (B ∧ C)) to CNF by introducing new
variable g1 for (B ∧ C).
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SAT Solvers -- Representation

� A CNF formula is represented by a set of clauses.

� Empty set represents a true formula.

� A clause is represented by a set of literals

� Empty set represents a false clause.

� A variable is represented by a positive integer.

� The logical negation of a variable is represented by 
the arithmetic negation of its number.

� E.g., ((x1 ∨ x2) ∧ (¬ x1 ∨ ¬ x2)) is represented by

{{1, 2}, {-1, -2}}
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Naïve Approach

� SAT problem: Given a boolean formula φ, does 
there exist an assignment that satisfies φ?

� Naïve approach: Search all assignments!

� n variables → 2^

n possible assignments

� Explosion!

� SAT is NP-complete: 

� Worst case is likely O(2^

n), unless P=NP.

� But for many cases that arise in practice,
we can do much better.
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Unit Propagation

� Davis-Putnam-Logemann-Loveland (DPLL)

� Unit Clause: Clause with exactly one literal.

� Algorithm: 
� If a clause has exactly one literal, then assign it true.

� Repeat until there are no more unit clauses.

� Example:

� ((x1 ∨ x2) ∧ (¬ x1 ∨ ¬ x2) ∧ (x1))

� (( T ∨ x2) ∧ (   F  ∨ ¬ x2) ∧ (T))

� ((    T    ) ∧ (    ¬ x2      ))

� T
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Helper function

def AssignLit(ClauseList, lit):
ClauseList = deepcopy(ClauseList)

for clause in copy(ClauseList):

if lit in clause: ClauseList.remove(clause)

if -lit in clause: clause.remove(-lit)

return ClauseList

>>> AssignLit([[1, 2, -3], [-1, -2, 4], [3, 4]], 1)
[[-2, 4], [3, 4]]

>>> AssignLit([[1, 2, -3], [-1, -2, 4], [3, 4]], -1)
[[2, -3], [3, 4]]

Assumption: No clause contains both a variable and its negation.

from copy import copy, deepcopy
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Naïve Solver

def AssignLit(ClauseList, lit):
ClauseList = deepcopy(ClauseList)

for clause in copy(ClauseList):

if lit in clause: ClauseList.remove(clause)

if -lit in clause: clause.remove(-lit)

return ClauseList

def IsSatisfiable(ClauseList):
# Test if no unsatisfied clauses remain

if len(ClauseList) == 0: return True

# Test for presense of empty clause

if [] in ClauseList: return False

# Split on an arbitrarily decided literal

DecLit = ClauseList[0][0]

return (IsSatisfiable(AssignLit(ClauseList, DecLit)) or

IsSatisfiable(AssignLit(ClauseList, -DecLit)))
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DPLL Solver

def IsSatisfiable(ClauseList):

# Unit propagation

repeat until fixed point:
for each unit clause UC in ClauseList:

ForcedLit = UC[0]

ClauseList = AssignLit(ClauseList, ForcedLit)

# Test if no unsatisfied clauses remain

if len(ClauseList) == 0: return True

# Test for presense of empty clause

if [] in ClauseList: return False

# Split on an arbitrarily decided literal

DecLit = (choose a variable occuring in ClauseList)
return (IsSatisfiable(AssignLit(ClauseList, DecLit)) or

IsSatisfiable(AssignLit(ClauseList, -DecLit)))

u
n
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n
g
e
d



GRASP: an efficient SAT solver

Original Slides by Pankaj Chauhan

Modified by Will Klieber

Please interrupt me if anything is not clear!
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Terminology

� CNF formula ϕ
� x1,…, xn: n variables

� ω1,…, ωm: m clauses

� Assignment A
� Set of (variable, value) pairs.

� Notation:  {(x1,1), (x2,0)},  {x1:1, x2:0},  {x1=1, x2=0},  {x1, ¬x2} 

� |A| < n → partial assignment {x1=0, x2=1, x4=1}

� |A| = n → complete assignment  {x1=0, x2=1, x3=0, x4=1}

� ϕ|A= 0 → falsifying assignment {x1=1, x4=1}

� ϕ|A= 1 → satisfying assignment {x1=0, x2=1, x4=1}

� ϕ|A= X → unresolved asgnment {x1=0, x2=0, x4=1}

φ = ω1 ∧ ω2 ∧ ω3

ω1 = (x2 ∨ x3) 

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

A = {x1=0, x2=1, x3=0, x4=1}

φ = ω1 ∧ ω2 ∧ ω3

ω1 = (x2 ∨ x3) 

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

A = {x1=0, x2=1, x3=0, x4=1}
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Terminology

� An assignment partitions the 
clause database into three classes:

� Satisfied, falsified, unresolved

� Free literal: an unassigned literal

� Unit clause: has exactly one free literal
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Basic Backtracking Search

� Organize the search in the form of a decision tree.

� Each node is a decision variable.

� Outgoing edges: assignment to the decision variable.

� Depth of node in decision tree is decision level δ(x).

� “ x=v @ d ” means variable  x is assigned value v at
decision level d.

x2

x2 = 0@2

x1 = 0@1

x1

x1 = 1@1

x2

x2 = 1@2
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Basic Backtracking Search

1. Make new decision assignments.

2. Infer implied assignments by a deduction 
process (unit propagation).

� May lead to falsifying clauses, conflict! 

� The assignment is called “conflicting assignment”.

3. Conflicting assignments leads to backtrack.
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Backtracking Search in Action

ω1 = (x2 ∨ x3) 

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

ω1 = (x2 ∨ x3) 

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

x1

x1 = 0@1

{(x1,0), (x2,0), (x3,1)}

x2
x2 = 0@2

⇒ x3 = 1@2

No backtrack in this example!

Example 1
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Backtracking Search in Action

ω1 = (x2 ∨ x3) 

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

ω1 = (x2 ∨ x3) 

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

x1

{(x1,1), (x2,0), (x3,1) , (x4,0)}

x1 = 1@1 ⇒ x4 = 0@1 ⇒ x2 = 0@1

⇒ x3 = 1@1

No backtrack in this example!

Example 2
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Backtracking Search in Action

ω1 = (x2 ∨ x3) 

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

ω4 = (¬x1 ∨ x2 ∨ ¬x3)

ω1 = (x2 ∨ x3) 

ω2 = (¬x1 ∨ ¬x4)

ω3 = (¬x2 ∨ x4)

ω4 = (¬x1 ∨ x2 ∨ ¬x3)
⇒ x4 = 0@1

⇒ x2 = 0@1

⇒ x3 = 1@1

conflict

{(x1,0), (x2,0), (x3,1)}

x2

x2 = 0@2 ⇒ x3 = 1@2

x1 = 0@1

x1

x1 = 1@1

Example 3
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GRASP

� GRASP is Generalized seaRch Algorithm for 
the Satisfiability Problem (Silva, Sakallah, ’96).

� Features:

� Implication graphs for Unit Propagation and 
conflict analysis.

� Learning of new clauses.

� Non-chronological backtracking!
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Learning

� GRASP can learn new clauses that are logically 
implied by the original formula.

� Goal is to allow Unit Prop to deduce more 
forced literals, pruning the search space.

� Example:

� φ contains clauses (x ∨ y ∨ z) and (x ∨ y ∨ ¬z).

� Resolving on z yields a new clause (x ∨ y).

� If y is false, then x must be true for φ to be true.

� But not discoverable by simple Unit Prop w/o resolvent clause.

� Clause (x ∨ y) allows Unit Prop to force x=1 when y=0.

� New clauses learned from conflicting assignments.
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Resolution

From

(x1 ∨ · · · ∨ xn ∨ r) ∧ (¬r ∨ y1 ∨ · · · ∨ ym)

deduce

(x1 ∨ · · · ∨ xn ∨ y1 ∨ · · · ∨ ym)
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Top-level of GRASP-like solver

1. CurAsgn = {};

2. while (true) {

3. while (value of φ under CurAsgn is unknown) {

4. DecideLit();   // Add decision literal to CurAsgn.

5. Propagate();  // Add forced literals to CurAsgn.

6. }

7. if (CurAsgn satisifies φ) {return true;}

8. Analyze conflict and learn a new clause;

9. if (the learned clause is empty) {return false;}

10. Backtrack();  

11. Propagate();  // Learned clause will force a literal

12. }
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GRASP Decision Heuristics

� Procedure DecideLit()

� Choose the variable that satisfies the 
most clauses

� Other possibilities exist
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GRASP Deduction

� Unit Propagation is a type of Boolean Constraint 
Propagation (BCP).

� Grasp does Unit Prop using implication graphs:
E.g., for the clause ω = (x ∨ ¬y),

if y=1, then x=1 is forced; the antecedent of x is {y=1}.

� If a variable x is forced by a clause during BCP, then 
assignment of 0 to all other literals in the clause is
called the antecedent assignment A(x).

� E.g., for ω = (x ∨ y ∨ ¬z), 

A(x) = {y:0, z:1}, A(y) = {x:0, z:1}, A(z) = {x:0, y:0}

� Variables directly responsible for forcing the value of x.

� Antecedent assignment of a decision variable is empty.
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Implication Graphs
� Depicts the antecedents of assigned variables.

� A node is an assignment to a variable.

� (decision or implied)

� Predecessors of x correspond to antecedent A(x).

� No predecessors for decision assignments!

� For special conflict vertex κ, antecedent A(κ) is
assignment to vars in the falsified clause.

κ

conflict

x9=0@1

x1=1@6

x10=0@3

x11=0@3

x5=1@6

x6=1@6x3=1@6

x2=1@6

x4=1@6
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Example Implication Graph

ω1 = (¬x1 ∨ x2) 

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ ¬ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

ω1 = (¬x1 ∨ x2) 

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ ¬ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

Current truth assignment: {x9=0@1, x12=1@2, x13=1@2, x10=0@3, x11=0@3}

Current decision assignment: {x1=1@6}

ω6

ω6
κ

conflict

x9=0@1

x1=1@6

x10=0@3

x11=0@3

x5=1@6
ω4

ω4

ω5

ω5 x6=1@6
ω2

ω2

x3=1@6

ω1

x2=1@6

ω3

ω3

x4=1@6
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GRASP Conflict Analysis

� After a conflict arises, analyze the implication graph.

� Add new clause that would prevent the occurrence 
of the same conflict in the future.
⇒ Learning

� Determine decision level to backtrack to; this might
not be the immediate one.
⇒ Non-chronological backtrack
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Learning Algorithm

1. Let CA be the assignment of False to all literals in the 
falsified clause.  (“CA” is short for “conflict assignment”.)
� Example: CA= {x5=1@6,  x6 = 1@6}

2. A literal l ∈ CA is a unique implication point (UIP) iff every 

other literal in CA has an earlier decision level than l.

3. loop:

� Remove the most recently assigned literal from CA and 
replace it by its antecedent.

� if (CA is empty or has a UIP): break;

4. Let {L1, ..., Ln} = CA;  learn clause (¬L1 ∨ ... ∨ ¬Ln).

5. Backtrack to the earliest decision level at which the 
learned clause will force the UIP to be false.

� Why is this guaranteed to be possible?
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Example Implication Graph

ω1 = (¬x1 ∨ x2) 

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ ¬ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

ω1 = (¬x1 ∨ x2) 

ω2 = (¬x1 ∨ x3 ∨ x9)

ω3 = (¬x2 ∨ ¬x3 ∨ x4)

ω4 = (¬x4 ∨ x5 ∨ x10)

ω5 = (¬x4 ∨ x6 ∨ x11)

ω6 = (¬x5 ∨ ¬ x6)

ω7 = (x1 ∨ x7 ∨ ¬x12)

ω8 = (x1∨ x8)

ω9 = (¬x7 ∨ ¬x8 ∨ ¬ x13)

Current truth assignment: {x9=0@1, x12=1@2, x13=1@2, x10=0@3, x11=0@3}

Current decision assignment: {x1=1@6}

ω6

ω6
κ

conflict

x9=0@1

x1=1@6

x10=0@3

x11=0@3

x5=1@6
ω4

ω4

ω5

ω5 x6=1@6
ω2

ω2

x3=1@6

ω1

x2=1@6

ω3

ω3

x4=1@6



33

Example

ω1 = (¬x1 ∨ x8 ∨ x9 )

ω2 = (¬x1 ∨ x8 ∨ ¬x9) 

ω3 = (¬x1 ∨ ¬x8 ∨ x9 ) 

ω4 = (¬x1 ∨ ¬x8 ∨ ¬x9) 

ω5 = (x1 ∨ x3) 

ω6 = (x1 ∨ ¬x3) 

ω1 = (¬x1 ∨ x8 ∨ x9 )

ω2 = (¬x1 ∨ x8 ∨ ¬x9) 

ω3 = (¬x1 ∨ ¬x8 ∨ x9 ) 

ω4 = (¬x1 ∨ ¬x8 ∨ ¬x9) 

ω5 = (x1 ∨ x3) 

ω6 = (x1 ∨ ¬x3) 
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Is that all?

� Huge overhead for boolean constraint
propagation (BCP)

� Better decision heuristics

� Better learning, problem specific

� Better engineering! 

Chaff


