
Lecture 2: Symbolic Model Checking With SAT

Edmund M. Clarke, Jr.
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

(Joint work over several years with: A. Biere, A. Cimatti, Y. Zhu,
A. Gupta, J. Kukula, D. Kroening, O. Strichman)

Symbolic Model Checking with BDDs

Method used by most “industrial strength” model checkers:

� usesBoolean encodingfor state machine and sets of states.

� can handle much larger designs –hundreds of state variables.

� BDDs traditionally used to represent Boolean functions.

Problems with BDDs
� BDDs are a canonical representation.Often become too large.

� Variable orderingmust beuniform along paths.

� Selectingright variable ordering very importantfor obtaining small BDDs.

– Often time consuming or needs manual intervention.

– Sometimes, no space efficient variable ordering exists.

We describe an alternative approach to symbolic model checking that uses SAT
procedures.

Advantages of SAT Procedures
� SAT procedures also operate on Boolean expressions but do not use canonical

forms.

� Do not suffer from the potential space explosion of BDDs.

� Different split orderings possible on different branches.

� Very efficient implementations available.

Bounded Model Checking
(Clarke, Biere, Cimatti, Fujita, Zhu)

� Bounded model checkinguses a SAT procedure instead of BDDs.

�We construct Boolean formula that issatisfiableiff there is acounterexample of
lengthk.

�Welook for longer and longer counterexamplesby incrementing the boundk.

� After some number of iterations, wemay conclude no counterexample existsand
specification holds.

� For example, to verifysafety properties, number of iterations is bounded by
diameterof finite state machine.

Main Advantages of Our Approach
� Bounded model checkingfinds counterexamples fast.This is due to depth first

nature of SAT search procedures.

� It finds counterexamples of minimal length.This feature helps user understand
counterexample more easily.

� It usesmuch less spacethan BDD based approaches.

� Does not need manually selected variable order or costly reordering.Default
splitting heuristics usually sufficient.

� Boundedmodel checkingof LTL formulasdoes not require a tableau or automaton
construction.

Implementation
�We have implemented a toolBMC for our approach.

� It accepts a subset of the SMV language.

� Givenk, BMC outputs a formula that is satisfiable iff counterexample exists of
lengthk.

� If counterexample exists, a standard SAT solver generates a truth assignment for the
formula.

Performance
�We give examples where BMCsignificantly outperformsBDD based model

checking.

� In some cases BMC detects errorsinstantly, while SMV fails to construct BDD for
initial state.

Outline
� Bounded Model Checking:

– Definitionsandnotation.

– Exampleto illustrate bounded model checking.

– Reductionof bounded model checking for LTLto SAT.

– Experimentalresults.

– Tuning SAT checkersfor bounded model checking

– Efficient computation ofdiameters

� Abstraction / refinementwith SAT

� Directions forfuture research.

Basic Definitions and Notation
�We uselinear temporal logic(LTL) for specifications.

� Basic LTL operators:
next time ‘X’ eventuality ‘F’
globally ‘G’ until ‘U’
release ‘R’

� Only considerexistentialLTL formulasEf , where

–E is the existential path quantifier, and

– f is a temporal formula with no path quantifiers.

� Recall thatE is thedualof the universal path quantifierA.

� Finding awitnessfor Ef is equivalent to finding acounterexampleforA:f .

Definitions and Notation (Cont.)
� System described as aKripke structureM = (S; I; T; `), where

– S is a finite set of states,

– I is the set of initial states,

– T � S � S is the transition relation, and

– ` : S ! P(A) is the state labeling.

�We assume every state has a successor state.

Definitions and Notation (Cont.)
� In symbolic model checking,a state is represented by a vector of state variables

s = (s(1); : : : ; s(n)).

�We define propositional formulasfI(s), fT (s; t) andfp(s) as follows:

– fI(s) iff s 2 I,

– fT (s; t) iff (s; t) 2 T , and

– fp(s) iff p 2 `(s).

�We writeT (s; t) instead offT (s; t), etc.

Definitions and Notation (Cont.)
�Will sometimes writes! t when(s; t) 2 T .

� If � = (s0; s1; : : :), then�(i) = si and�i = (si; si+1; : : :).

� � is apathif �(i)! �(i+ 1) for all i.

� Ef is true inM (M j= Ef) iff there is a path� in M with � j= f and�(0) 2 I.

�Model checkingis the problem of determining the truth of an LTL formula in a
Kripke structure. Equivalently,

Does a witness exist for the LTL formula?

Example To Illustrate New Technique

Two-bit counter with an erroneous transition:

00

01 10

11

� Each states is represented by two state variabless[1] ands[0].

� In initial state, value of the counter is0. Thus,I(s) = :s[1] ^ :s[0]:

� Let inc(s; s0) = (s0[0]$:s[0]) ^ (s0[1]$ (s[0]� s[1]))

� DefineT (s; s0) = inc(s; s0) _ (s[1] ^ :s[0] ^ s0[1] ^ :s0[0])

� Have deliberately added erroneous transition!!

Example (Cont.)
� Suppose we want to know if counter will eventually reach state(11).

� Can specify the property byAFq, whereq(s) = s[1] ^ s[0].

On all execution paths, there is a state whereq(s) holds.

� Equivalently, we can check if there is a path on which counter never reaches state

(11).

� This is expressed byEGp, wherep(s) = :s[1] _ :s[0].

There exists a path such thatp(s) holds globally along it.

Example (Cont.)
� In bounded model checking, we consider paths of lengthk.

�We start withk = 0 and incrementk until a witness is found.

� Assumek equals2. Call the statess0, s1, s2.

�We formulate constraints ons0, s1, ands2 in propositional logic.

� Constraints guarantee that(s0; s1; s2) is awitness forEGp and, hence, a
counterexample forAFq.

Example (Cont.)
� First, weconstrain(s0; s1; s2) to be a valid pathstarting from the initial state.

� Obtain a propositional formula
[[M]] = I(s0) ^ T (s0; s1) ^ T (s1; s2):

Example (Cont.)
� Second, weconstrain the shape of the path.

� The sequence of statess0; s1; s2 can be a loop.

� If so, there is a transition froms2 to the initial states0, s1 or itself.

�We write lL = T (s2; sl) to denote the transition froms2 to a statesl wherel 2 [0; 2].

�We defineL as

W
2

l=0 lL. Thus:L denotes the case where no loop exists.

Example (Cont.)
� The temporal propertyGp must hold on(s0; s1; s2).

� If no loop exists,Gp does not hold and[[Gp]] is false.

� To be a witness forGp, the path must contain a loop (conditionL, given
previously).

� Finally, p must hold at every state on the path

[[Gp]] = p(s0) ^ p(s1) ^ p(s2):

�We combine all the constraints to obtain the propositional formula

[[M]] ^ ((:L ^ false) _

2_
l=0

(lL ^ [[Gp]])):

Example (Cont.)
� In this example, the formula is satisfiable.

� Truth assignment corresponds tocounterexamplepath(00), (01), (10) followed by
self-loop at(10).

� If self-loop at(10) is removed, then formula is unsatisfiable.

Sequential Multiplier Example

SMV1 SMV2 SATO PROVER
bit sec MB sec MB sec MB sec MB
0 919 13 25 79 0 0 0 1
1 1978 13 25 79 0 0 0 1
2 2916 13 26 80 0 0 0 1
3 4744 13 27 82 0 0 1 2
4 6580 15 33 92 2 0 1 2
5 10803 25 67 102 12 0 1 2
6 43983 73 258 172 55 0 2 2
7 >17h 1741 492 209 0 7 3
8 >1GB 473 0 29 3
9 856 1 58 3
10 1837 1 91 3
11 2367 1 125 3
12 3830 1 156 4
13 5128 1 186 4
14 4752 1 226 4
15 4449 1 183 5

sum 71923 2202 23970 1066

Model Checking: 16x16 bit sequential shift and add multiplier with overflow flag and
16 output bits.

DME Example

SMV1 SMV2 SATO PROVER SATO PROVER

k = 5 k = 5 k = 10 k = 10

cells sec MB sec MB sec MB sec MB sec MB sec MB
4 846 11 159 217 0 3 1 3 3 6 54 5
5 2166 15 530 703 0 4 2 3 9 8 95 5
6 4857 18 1762 703 0 4 3 3 7 9 149 6
7 9985 24 6563 833 0 5 4 4 15 10 224 8
8 19595 31 >1GB 1 6 6 5 16 12 323 8
9 >10h 1 6 9 5 24 13 444 9
10 1 7 10 5 36 15 614 10
11 1 8 13 6 38 16 820 11
12 1 9 16 6 40 18 1044 11
13 1 9 19 8 107 19 1317 12
14 1 10 22 8 70 21 1634 14
15 1 11 27 8 168 22 1992 15

Model Checking: Liveness for one user in the DME.

“Buggy” DME Example

SMV1 SMV2 SATO PROVER
cells sec MB sec MB sec MB sec MB

4 799 11 14 44 0 1 0 2
5 1661 14 24 57 0 1 0 2
6 3155 21 40 76 0 1 0 2
7 5622 38 74 137 0 1 0 2
8 9449 73 118 217 0 1 0 2
9 segmentation 172 220 0 1 1 2
10 fault 244 702 0 1 0 3
11 413 702 0 1 0 3
12 719 702 0 2 1 3
13 843 702 0 2 1 3
14 1060 702 0 2 1 3
15 1429 702 0 2 1 3

Model Checking: Counterexample for liveness in a buggy DME implementation.

Tuning SAT checkers for BMC
(O. Strichman, CAV00)

� Use the variable dependency graph forderiving a static variable ordering.

� Use the regular structure ofAGp formulas toreplicate conflict clauses:
' : I0 ^

k�1^
i=0

T (si; si+1) ^

k_
i=0

pi

The transition relation appearsk times in', each time with different variables.

This symmetry indicates that under certain conditions, for each conflict clause we
can compute additionalk � 1 clauses ‘for free’.

Tuning SAT checkers for BMC (cont’d)

� Use the incremental nature of BMC toreuse conflict clauses.
Some of the clauses that were computed while solving BMC with e.g. k=10 can be
reused when solving the subsequent instance with k=11.

� Restrict decisionsto model variables only (ignore CNF auxiliary vars).

It is possible to decide the formula without the auxiliary variables (they will be
implied). In many examples they are 80%-90% of the variables in the CNF
instance.

� ...

BMC of some hardware designs w/wo tuning SAT

Design # K RB1 RB2 Grasp Tuned
1 18 7 6 282 3
2 5 70 8 1.1 0.8
3 14 597 375 76 3
4 24 690 261 510 12
5 12 803 184 24 2
6 22 356 18
7 9 2671 10 2
8 35 6317 20
9 38 9035 25
10 31 312
11 32 152 60
12 31 1419 1126
13 14 3626

RuleBase is IBM’s BDD based symbolic model-checker.

RB1 - RuleBase first run (with BDD dynamic reordering).

RB2 - RuleBase second run (without BDD dynamic reordering).

Diameter
� Diameterd: Least number of steps toreach all reachable states. If the property

holds fork � d, the property holds for all reachable states.

� Findingd is computationally hard:

– States is reachable inj steps:

Rj(s) := 9s0; : : : ; sj : s = sj ^ I(s0) ^
j�1^

i=0
T (si; si+1)

– Thus,k is greater or equal than the diameterd if

8s : Rk+1(s) =) 9j � k : Rj(s)

This requires an efficient QBF checker!

A Compromise: Recurrence Diameter
� Recurrence Diameterrd: Least number of stepsn such that all valid paths of length

n haveat least one cycle

s3 s2
s1s0

Example:

– All states are reachable froms0

in two steps, i.e.,d = 2

– All paths with at least one cycle
have a minimum length of four
steps, i.e.,rd = 4

� Theorem: Recurrence Diameterrd is anupper boundfor the Diameterd

Testing the Recurrence Diameter
� Recurrence Diameter test in BMC:

Find cycles by comparing all states with each other

8s0; : : : ; sk : I(s0) ^
n�1^

i=0
T (si; si+1) =)

k�1_
l=0

k_
j=l+1

sl = sj

?

= = =

= =

=

s1 s2 s3s0

� Size of CNF:O(k2)

� Too expensive for bigk

Recurrence Diameter Test using Sorting Networks (D. Kroening)
� Idea: Look for cycles using aSorting Network

� First, sort thek + 1 states symbolically:

s0
0
; : : : ; s0k are permutation ofs0; : : : ; sk such thats0
0

� s0
1

� : : : � s0k

� Sorting can be done with CNF of sizeO(k log k). Practical implementations, e.g.,
Bitonic sort, have sizeO(k log

2 k).

� Now only check neighborsin the sorted sequence:

(9i : s0i = s0i+1) () (9l; j : l 6= j ^ sl = sj)
?

= = =

s1 s2 s3s0

s
0

1 s
0

2 s
0

3s
0

0

Recurrence Diameter Test using Sorting Networks
� Example CNF size comparison (without transition system):

k O(k2) Alg. O(k log
2 k) Alg.

Variables ClausesVariables Clauses
32 5,777 25,793 7,862 34,493
64 22,817 104,833 21,494 95,341

128 90,689 422,657 56,438 252,109
256 361,601 1,697,281 143,606 644,557
512 1,444,0976,802,433 356,342 1,604,813

Future Research Directions

We believe our techniques may be able to handle much larger designs than is currently
possible. Nevertheless, there are a number of directions for future research:

� Techniques forgenerating short propositional formulasneed to be studied.

�Want toinvestigate further the use of domain knowledgeto guide search in SAT
procedures.

� A practical decision procedure for QBFwould also be useful.

� Combining bounded model checking withother reduction techniquesis also a
fruitful direction.

