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Symbolic Model Checking with BDDs

Method used by mostridustrial strengthmodel checkers:

e usesBoolean encodinfpr state machine and sets of states.
e can handle much larger designgundreds of state variables.

e BDDs traditionally used to represent Boolean functions.



Problems with BDDs

e BDDs are a canonical representati@iten become too large.
e Variable orderingnust beuniformalong paths.
e Selectingight variable ordering very importafar obtaining small BDDs.

— Often time consuming or needs manual intervention.

— Sometimes, no space efficient variable ordering exists.

We describe an alternative approach to symbolic model checking that uses SAT
procedures.



Advantages of SAT Procedures

e SAT procedures also operate on Boolean expressions but do not use canonical
forms.

e Do not suffer from the potential space explosion of BDDs.
e Different split orderings possible on different branches.

e \ery efficient implementations available.



Bounded Model Checking
(Clarke, Biere, Cimatti, Fujita, Zhu)

e Bounded model checkingses a SAT procedure instead of BDDs.

e We construct Boolean formula thatgatisfiablaff there is acounterexample of
lengthk.

e We look for longer and longer counterexamphkasincrementing the bounkl

e After some number of iterations, weay conclude no counterexample exaigl
specification holds.

e For example, to verifgafety propertiesnumber of iterations is bounded by
diameterof finite state machine.



Main Advantages of Our Approach

e Bounded model checkinighds counterexamples fasthis is due to depth first
nature of SAT search procedures.

e |t finds counterexamples of minimal lengthhis feature helps user understand
counterexample more easily.

e It usesmuch less spachan BDD based approaches.

e Does not need manually selected variable order or costly reordérafgult
splitting heuristics usually sufficient.

e Boundedmodel checkingf LTL formulasdoes not require a tableau or automaton
construction.



Implementation

e \We have implemented a toBIMC for our approach.
e |t accepts a subset of the SMV language.

e Givenk, BMC outputs a formula that is satisfiable iff counterexample exists of
lengthk.

e |[f counterexample exists, a standard SAT solver generates a truth assignment for t
formula.



Performance

e We give examples where BMS€Ignificantly outperform&DD based model
checking.

¢ In some cases BMC detects errarstantly, while SMV fails to construct BDD for
Initial state.



Outline

e Bounded Model Checking:

— Definitionsandnotation.

— Exampleto illustrate bounded model checking.

— Reductionof bounded model checking for LTio SAT.
— Experimentakesults.

— Tuning SAT checkerfor bounded model checking

— Efficient computation ofliameters

e Abstraction / refinemenwith SAT

e Directions forfuture research.



Basic Definitions and Notation

e \We usdinear temporal logi¢LTL) for specifications.

e Basic LTL operators:

next time ‘X’ eventuality ‘F’
globally ‘G’ until ‘U’
release ‘R’

e Only consideexistentialLTL formulasE f, where
— E Is the existential path quantifier, and
— f Is a temporal formula with no path quantifiers.
e Recall thatE is thedual of the universal path quantifieX.

e Finding awitnessfor E f is equivalent to finding aounterexampléor A—f.



Definitions and Notation (Cont.)

e System described as<aipke structureM = (S, 1,7, /¢), where

— .5 1s a finite set of states,
— [ i1s the set of initial states,
—T C S x S'is the transition relation, and

—(: S — P(A) is the state labeling.

e \\/e assume every state has a successor state.



Definitions and Notation (Cont.)

¢ In symbolic model checkingg state is represented by a vector of state variables

s=(s(1),...,s(n)).
e \We define propositional formulas(s), fr(s,t) andf,(s) as follows:
— fr(s)iff s € I,
— fr(s,t) iff (s,t) € T, and
— fp(s) iff p € £(s).

e \We writeT'(s, t) instead offr(s, t), etc.



Definitions and Notation (Cont.)

e Will sometimes writes — ¢ when(s,t) € T.

o If 7 = (s0,51,...),thenw(i) = s; andw’ = (s;, Si11,- - . ).

e 1 is apathif n(i) — w(i + 1) for all 4.

e EfistrueinM (M = Ef) iff there is a pathr in M with = = f andn(0) € I.

e Model checkings the problem of determining the truth of an LTL formula in a
Kripke structure. Equivalently,

Does a withess exist for the LTL formula?



Example To lllustrate New Technique

Two-bit counter with an erroneous transition:

o—0
|

©—©>

e Each state is represented by two state variablés ands|0).
e In initial state, value of the counter s Thus,/(s) = —s[1] A =s{0].
o Letinc(s,s’) = (s'|0] <» —s|0]) A (s'[1] + (s]0] & s[1]))

e DefineT'(s, s') = inc(s,s’) V (s[1] A =s]0] A s'[1] A =5[0])

e Have deliberately added erroneous transition!!



Example (Cont.)

e Suppose we want to know if counter will eventually reach state
e Can specify the property b Fq, whereg(s) = s[1] A s[0].
On all execution paths, there is a state whgre holds.

e Equivalently, we can check if there is a path on which counter never reaches state

(11).

e This is expressed bEGp, wherep(s) = —s[1] V —s|0].

There exists a path such thak) holds globally along it.



Example (Cont.)

¢ In bounded model checking, we consider paths of lergth

e We start withk = 0 and incremenk until a witness is found.

e Assumek equals2. Call the statesy, si, so.

e \We formulate constraints ofy, s;, ands, in propositional logic.

e Constraints guarantee that, si, s2) is awitness forEGp and, hence, a
counterexample foAFyg.



Example (Cont.)

e First, weconstrain(sy, s1, so) to be a valid patistarting from the initial state.

e ODbtain a propositional formula
I M || = 1(so) NT(sg,81) NT(s1,52).



Example (Cont.)

e Second, weonstrain the shape of the path.

e The seguence of stateg s, sy can be a loop.

e If SO, there iIs a transition from, to the initial states,, s; or itself.

e We write, L = T'(sq, s;) to denote the transition frosy to a states; wherel € |0, 2].

e We defineL as\/;_,,L. Thus—L denotes the case where no loop exists.



Example (Cont.)

e The temporal propert¢zp must hold onsg, s1, s2).
e If no loop existsGp does not hold an@l Gp | is false.

e To be a witness foGp, the path must contain a loop (conditiangiven
previously).

e Finally, p must hold at every state on the path
| Gp | = p(so) Ap(s1) A p(s2).

e \We combine all the constraints to obtain the propositional formula

[ MIA(SLA false) v\ (L ATGP]),

[=0



Example (Cont.)

e In this example, the formula is satisfiable.

e Truth assignment correspondsdounterexampl@ath(00), (01), (10) followed by
self-loop at(10).

o If self-loop at(10) is removed, then formula is unsatisfiable.



Sequential Multiplier Example

Model Checking: 16x16 bit sequential shift and add multiplier with overflow flag and

16 output bits.

SMVy SMVy SATO PROVER
bit | sec MB| sec MB | sec MB| sec MB
0O | 919 13| 25 79 0 O O 1
1 1978 13| 25 79 0 O O 1
2 | 2916 13| 26 80 0 Ol O 1
3 | 4744 13| 27 82 0 0] 1 2
4 | 6580 15| 33 92 2 0O 1 2
5 [10803 25| 67 102 | 12 0| 1 2
6 (43983 73| 258 172 | 55 0| 2 2
7 | >17h 1741 492 | 209 0| 7 3
8 >1GB| 473 0| 29 3
9 856 1| 58 3
10 1837 1| 91 3
11 2367 1125 3
12 3830 1156 4
13 5128 1186 4
14 4752 1226 4
15 4449 1,183 5
sum| 71923 2202 23970 1066




DME Example

SMVy SMVy SATO | PROVER SATO | PROVER
k=5 k=5 k=10 k=10

cellsy sec MB| sec MB |sec MB|sec MB|sec MB| sec MB
4 | 846 11,159 2170 3|1 3 |3 6 | 54 5
5 (2166 15530 7030 4|2 319 8 | 95 5
6 | 4857 18|1762 703/ 0 4| 3 3 |7 9 (149 6
7 19985 24|6563 833|0 5|4 4 |15 10,224 8
8 [19595 31 >1GB| 1 6 | 6 5 |16 12323 8
9 |>10h 1 6|9 5 |24 113|444 9
10 1 7 |10 5 |36 15(614 10
11 1 8 |13 6 |38 16820 11
12 1 9 |16 6 |40 18,1044 11
13 1 9 |19 8 [107 19|1317 12
14 1 10|22 8 |70 21,1634 14
15 1 11|27 8 |168 22/1992 15

Model Checking: Liveness for one user in the DME.




“Buggy” DME Example

SMVy SMVy SATO | PROVER
cells| sec MB| sec MB|sec MB|sec MB
4 1799 11| 14 44| 0 1|0 2
5 |1661 14| 24 57| 0 1|0 2
6 |3155 21| 40 76| 0 1|0 2
7 15622 38| 74 137/ O 1|0 2
8 19449 73118 217 0 1|0 2
9 segmentation 172 220 O 1 1 2
10 fault 244 702 O 1|0 3
11 413 702 O 1|0 3
12 719 702 O 211 3
13 843 702 O 211 3
14 1060 702 O 21 3
15 1429 702 O 211 3

Model Checking: Counterexample for liveness in a buggy DME implementation.



Tuning SAT checkers for BMC
(O. Strichman, CAV00)

e Use the variable dependency graphderiving a static variable ordering

e Use the reqgular structure 8iGp formulas toreplicate conflict clauses
k—1 k

R (WA /\ T'(siy8i+1) A \/pz'

The transition relation appeakgimes iny, each time with different variables.

This symmetry indicates that under certain conditions, for each conflict clause we
can compute addition@ — 1 clauses ‘for free’.



Tuning SAT checkers for BMC (cont’d)

e Use the incremental nature of BMC iteuse conflict clauses

Some of the clauses that were computed while solving BMC with e.g. k=10 can be
reused when solving the subsequent instance with k=11.

e Restrict decisionto model variables only (ignore CNF auxiliary vars).

It is possible to decide the formula without the auxiliary variables (they will be
Implied). In many examples they are 80%-90% of the variables in the CNF
Instance.



BMC of some hardware designs w/wo tuning SAT

Design# K | RB1 | RB2 | Grasp| Tuned
1 18| 7 6 282 3
2 5| 70 8 1.1 0.8
3 14| 597 | 375 | 76 3
4 24| 690 | 261 | 510 12
5 12| 803 | 184 | 24 2
6 22 356 18
7 9 2671 10 2
8 35 6317 | 20
9 38 9035| 25
10 31 312
11 32| 152 | 60
12 31| 1419|1126
13 14 3626

RuleBase is IBM’s BDD based symbolic model-checker.
RB1 - RuleBase first run (with BDD dynamic reordering).
RB2 - RuleBase second run (without BDD dynamic reordering).



Diameter

e Diameterd:. Least number of steps teach all reachable statdfthe property
holds fork > d, the property holds for all reachable states.

e Findingd is computationally hard:

— States is reachable iy steps:
7—1

Rj(s):=3s0,...,8;:5=35; NI(s0) A /\ T(s;, Sit1)
i=0

—Thus,k is greater or equal than the diamedaf
Vs Riy1(s) = 37 < k: Rj(s)
This requires an efficient QBF checker!



A Compromise: Recurrence Diameter

e Recurrence Diametetl: Least number of stepssuch that all valid paths of length
n haveat least one cycle

T Example:

~_ — All states are reachable frosg
In two steps, i.ed = 2

‘/\ — All paths with at least one cycle
~ have a minimum length of four
steps, i.e.yd =4

e Theorem: Recurrence Diametet is anupper boundor the Diameter!



Testing the Recurrence Diameter

e Recurrence Diameter test in BMC:
Find cycles by comparing all states with each other

n—1 k-1 k
VS(),... ,Skil<80>/\/\T(SZ’,S¢+1):>\/ \/ S| = §;
1=0

=0 j=l1+1

e Size of CNF:O(k?)
e ToO expensive for big



Recurrence Diameter Test using Sorting Networks (D. Kroening)

e Idea: Look for cycles using &orting Network
e First, sort thet + 1 states symbolically:

Sy, - .- , S, are permutation ofy, ... , sy such that; < s] < ... < s,

e Sorting can be done with CNF of siz&k log k). Practical implementations, e.g.,
Bitonic sort, have siz&(klog” k).

e Now only check neighborm the sorted sequence:
(Fi:s;=s5) <= BL,j:l#jNs =35




Recurrence Diameter Test using Sorting Networks

e Example CNF size comparison (without transition system):

k O(k?) Alg. O(klog® k) Alg.

Variables ClausesVariables Clauses
32 5777 25,793 7,862 34,493
64| 22,817 104,833 21,494 95,341
128 90,689 422,657 56,438 252,109
256/ 361,601 1,697,281 143,606 644,557
512/ 1,444,0976,802,433 356,342 1,604,813




Future Research Directions

We believe our techniques may be able to handle much larger designs than is current
possible. Nevertheless, there are a number of directions for future research:

e Techniques fogenerating short propositional formulased to be studied.

e Want toinvestigate further the use of domain knowledgeuide search in SAT
procedures.

e A practical decision procedure for QB¥ould also be useful.

e Combining bounded model checking witkher reduction techniqués also a
fruitful direction.



