

# Lecture 2: Symbolic Model Checking With SAT

---

Edmund M. Clarke, Jr.  
School of Computer Science  
Carnegie Mellon University  
Pittsburgh, PA 15213

(Joint work over several years with: A. Biere, A. Cimatti, Y. Zhu,  
A. Gupta, J. Kukula, D. Kroening, O. Strichman)

# Symbolic Model Checking with BDDs

---

Method used by most “industrial strength” model checkers:

- uses Boolean encoding for state machine and sets of states.
- can handle much larger designs – hundreds of state variables.
- BDDs traditionally used to represent Boolean functions.

## Problems with BDDs

---

- BDDs are a canonical representation. Often become too large.
- Variable ordering must be uniform along paths.
- Selecting right variable ordering very important for obtaining small BDDs.
  - Often time consuming or needs manual intervention.
  - Sometimes, no space efficient variable ordering exists.

We describe an alternative approach to symbolic model checking that uses SAT procedures.

## Advantages of SAT Procedures

---

- SAT procedures also operate on Boolean expressions but do not use canonical forms.
- Do not suffer from the potential space explosion of BDDs.
- Different split orderings possible on different branches.
- Very efficient implementations available.

# Bounded Model Checking

## (Clarke, Biere, Cimatti, Fujita, Zhu)

---

- Bounded model checking uses a SAT procedure instead of BDDs.
- We construct Boolean formula that is satisfiable iff there is a counterexample of length  $k$ .
- We look for longer and longer counterexamples by incrementing the bound  $k$ .
- After some number of iterations, we may conclude no counterexample exists and specification holds.
- For example, to verify safety properties, number of iterations is bounded by diameter of finite state machine.

# Main Advantages of Our Approach

---

- Bounded model checking finds counterexamples fast. This is due to depth first nature of SAT search procedures.
- It finds counterexamples of minimal length. This feature helps user understand counterexample more easily.
- It uses much less space than BDD based approaches.
- Does not need manually selected variable order or costly reordering. Default splitting heuristics usually sufficient.
- Bounded model checking of LTL formulas does not require a tableau or automaton construction.

# Implementation

---

- We have implemented a tool **BMC** for our approach.
- It accepts a subset of the SMV language.
- Given  $k$ , BMC outputs a formula that is satisfiable iff counterexample exists of length  $k$ .
- If counterexample exists, a standard SAT solver generates a truth assignment for the formula.

# Performance

---

- We give examples where BMC significantly outperforms BDD based model checking.
- In some cases BMC detects errors instantly, while SMV fails to construct BDD for initial state.

# Outline

---

- Bounded Model Checking:
  - Definitions and notation.
  - Example to illustrate bounded model checking.
  - Reduction of bounded model checking for LTL to SAT.
  - Experimental results.
  - Tuning SAT checkers for bounded model checking
  - Efficient computation of diameters
- Abstraction / refinement with SAT
- Directions for future research.

# Basic Definitions and Notation

---

- We use **linear temporal logic (LTL)** for specifications.

- Basic LTL operators:

|                  |     |                   |     |
|------------------|-----|-------------------|-----|
| <i>next time</i> | ‘X’ | <i>eventually</i> | ‘F’ |
| <i>globally</i>  | ‘G’ | <i>until</i>      | ‘U’ |
| <i>release</i>   | ‘R’ |                   |     |

- Only consider **existential** LTL formulas  $Ef$ , where

- $E$  is the existential path quantifier, and
  - $f$  is a temporal formula with no path quantifiers.

- Recall that  $E$  is the **dual** of the universal path quantifier  $A$ .

- Finding a **witness** for  $Ef$  is equivalent to finding a **counterexample** for  $A\neg f$ .

## Definitions and Notation (Cont.)

---

- System described as a **Kripke structure**  $M = (S, I, T, \ell)$ , where
  - $S$  is a finite set of states,
  - $I$  is the set of initial states,
  - $T \subseteq S \times S$  is the transition relation, and
  - $\ell: S \rightarrow \mathcal{P}(\mathcal{A})$  is the state labeling.
- We assume every state has a successor state.

## Definitions and Notation (Cont.)

---

- In symbolic model checking, a state is represented by a vector of state variables  $s = (s(1), \dots, s(n))$ .
- We define propositional formulas  $f_I(s)$ ,  $f_T(s, t)$  and  $f_p(s)$  as follows:
  - $f_I(s)$  iff  $s \in I$ ,
  - $f_T(s, t)$  iff  $(s, t) \in T$ , and
  - $f_p(s)$  iff  $p \in \ell(s)$ .
- We write  $T(s, t)$  instead of  $f_T(s, t)$ , etc.

## Definitions and Notation (Cont.)

---

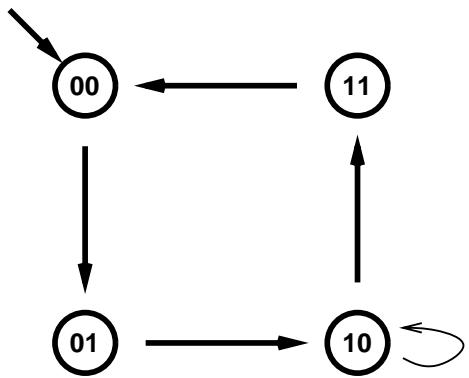
- Will sometimes write  $s \rightarrow t$  when  $(s, t) \in T$ .
- If  $\pi = (s_0, s_1, \dots)$ , then  $\pi(i) = s_i$  and  $\pi^i = (s_i, s_{i+1}, \dots)$ .
- $\pi$  is a **path** if  $\pi(i) \rightarrow \pi(i + 1)$  for all  $i$ .
- **Ef** is true in  $M$  ( $M \models \text{Ef}$ ) iff there is a path  $\pi$  in  $M$  with  $\pi \models f$  and  $\pi(0) \in I$ .
- **Model checking** is the problem of determining the truth of an LTL formula in a Kripke structure. Equivalently,

Does a witness exist for the LTL formula?

# Example To Illustrate New Technique

---

Two-bit counter with an erroneous transition:



- Each state  $s$  is represented by two state variables  $s[1]$  and  $s[0]$ .
- In initial state, value of the counter is 0. Thus,  $I(s) = \neg s[1] \wedge \neg s[0]$ .
- Let  $inc(s, s') = (s'[0] \leftrightarrow \neg s[0]) \wedge (s'[1] \leftrightarrow (s[0] \oplus s[1]))$
- Define  $T(s, s') = inc(s, s') \vee (s[1] \wedge \neg s[0] \wedge s'[1] \wedge \neg s'[0])$
- Have deliberately added erroneous transition!!

## Example (Cont.)

---

- Suppose we want to know if counter will eventually reach state (11).
- Can specify the property by  $\mathbf{AF}q$ , where  $q(s) = s[1] \wedge s[0]$ .

On all execution paths, there is a state where  $q(s)$  holds.

- Equivalently, we can check if there is a path on which counter never reaches state (11).
- This is expressed by  $\mathbf{EG}p$ , where  $p(s) = \neg s[1] \vee \neg s[0]$ .

There exists a path such that  $p(s)$  holds globally along it.

## Example (Cont.)

---

- In bounded model checking, we consider paths of length  $k$ .
- We start with  $k = 0$  and increment  $k$  until a witness is found.
- Assume  $k$  equals 2. Call the states  $s_0, s_1, s_2$ .
- We formulate constraints on  $s_0, s_1$ , and  $s_2$  in propositional logic.
- Constraints guarantee that  $(s_0, s_1, s_2)$  is a witness for  $\mathbf{EG}p$  and, hence, a counterexample for  $\mathbf{AF}q$ .

## Example (Cont.)

---

- First, we constrain  $(s_0, s_1, s_2)$  to be a valid path starting from the initial state.
- Obtain a propositional formula

$$[\![ M ]\!] = I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2).$$

## Example (Cont.)

---

- Second, we constrain the shape of the path.
- The sequence of states  $s_0, s_1, s_2$  can be a loop.
- If so, there is a transition from  $s_2$  to the initial state  $s_0, s_1$  or itself.
- We write  $_l L = T(s_2, s_l)$  to denote the transition from  $s_2$  to a state  $s_l$  where  $l \in [0, 2]$ .
- We define  $L$  as  $\bigvee_{l=0}^2 {}_l L$ . Thus  $\neg L$  denotes the case where no loop exists.

## Example (Cont.)

---

- The temporal property  $\mathbf{G}p$  must hold on  $(s_0, s_1, s_2)$ .
- If no loop exists,  $\mathbf{G}p$  does not hold and  $\llbracket \mathbf{G}p \rrbracket$  is *false*.
- To be a witness for  $\mathbf{G}p$ , the path must contain a loop (condition  $L$ , given previously).
- Finally,  $p$  must hold at every state on the path

$$\llbracket \mathbf{G}p \rrbracket = p(s_0) \wedge p(s_1) \wedge p(s_2).$$

- We combine all the constraints to obtain the propositional formula

$$\llbracket M \rrbracket \wedge ((\neg L \wedge \text{false}) \vee \bigvee_{l=0}^2 (\_l L \wedge \llbracket \mathbf{G}p \rrbracket)).$$

## Example (Cont.)

---

- In this example, the formula is satisfiable.
- Truth assignment corresponds to **counterexample** path (00), (01), (10) followed by self-loop at (10).
- If self-loop at (10) is removed, then formula is unsatisfiable.

# Sequential Multiplier Example

---

| bit | SMV <sub>1</sub> |    | SMV <sub>2</sub> |      | SATO  |    | PROVER |    |
|-----|------------------|----|------------------|------|-------|----|--------|----|
|     | sec              | MB | sec              | MB   | sec   | MB | sec    | MB |
| 0   | 919              | 13 | 25               | 79   | 0     | 0  | 0      | 1  |
| 1   | 1978             | 13 | 25               | 79   | 0     | 0  | 0      | 1  |
| 2   | 2916             | 13 | 26               | 80   | 0     | 0  | 0      | 1  |
| 3   | 4744             | 13 | 27               | 82   | 0     | 0  | 1      | 2  |
| 4   | 6580             | 15 | 33               | 92   | 2     | 0  | 1      | 2  |
| 5   | 10803            | 25 | 67               | 102  | 12    | 0  | 1      | 2  |
| 6   | 43983            | 73 | 258              | 172  | 55    | 0  | 2      | 2  |
| 7   | >17h             |    | 1741             | 492  | 209   | 0  | 7      | 3  |
| 8   |                  |    |                  | >1GB | 473   | 0  | 29     | 3  |
| 9   |                  |    |                  |      | 856   | 1  | 58     | 3  |
| 10  |                  |    |                  |      | 1837  | 1  | 91     | 3  |
| 11  |                  |    |                  |      | 2367  | 1  | 125    | 3  |
| 12  |                  |    |                  |      | 3830  | 1  | 156    | 4  |
| 13  |                  |    |                  |      | 5128  | 1  | 186    | 4  |
| 14  |                  |    |                  |      | 4752  | 1  | 226    | 4  |
| 15  |                  |    |                  |      | 4449  | 1  | 183    | 5  |
| sum | 71923            |    | 2202             |      | 23970 |    | 1066   |    |

Model Checking: 16x16 bit sequential shift and add multiplier with overflow flag and 16 output bits.

# DME Example

---

| cells | SMV <sub>1</sub> |    | SMV <sub>2</sub> |      | SATO<br>$k = 5$ |    | PROVER<br>$k = 5$ |    | SATO<br>$k = 10$ |    | PROVER<br>$k = 10$ |    |
|-------|------------------|----|------------------|------|-----------------|----|-------------------|----|------------------|----|--------------------|----|
|       | sec              | MB | sec              | MB   | sec             | MB | sec               | MB | sec              | MB | sec                | MB |
| 4     | 846              | 11 | 159              | 217  | 0               | 3  | 1                 | 3  | 3                | 6  | 54                 | 5  |
| 5     | 2166             | 15 | 530              | 703  | 0               | 4  | 2                 | 3  | 9                | 8  | 95                 | 5  |
| 6     | 4857             | 18 | 1762             | 703  | 0               | 4  | 3                 | 3  | 7                | 9  | 149                | 6  |
| 7     | 9985             | 24 | 6563             | 833  | 0               | 5  | 4                 | 4  | 15               | 10 | 224                | 8  |
| 8     | 19595            | 31 |                  | >1GB | 1               | 6  | 6                 | 5  | 16               | 12 | 323                | 8  |
| 9     | >10h             |    |                  |      | 1               | 6  | 9                 | 5  | 24               | 13 | 444                | 9  |
| 10    |                  |    |                  |      | 1               | 7  | 10                | 5  | 36               | 15 | 614                | 10 |
| 11    |                  |    |                  |      | 1               | 8  | 13                | 6  | 38               | 16 | 820                | 11 |
| 12    |                  |    |                  |      | 1               | 9  | 16                | 6  | 40               | 18 | 1044               | 11 |
| 13    |                  |    |                  |      | 1               | 9  | 19                | 8  | 107              | 19 | 1317               | 12 |
| 14    |                  |    |                  |      | 1               | 10 | 22                | 8  | 70               | 21 | 1634               | 14 |
| 15    |                  |    |                  |      | 1               | 11 | 27                | 8  | 168              | 22 | 1992               | 15 |

Model Checking: Liveness for one user in the DME.

# “Buggy” DME Example

---

| cells | SMV <sub>1</sub>   |    | SMV <sub>2</sub> |     | SATO |    | PROVER |    |
|-------|--------------------|----|------------------|-----|------|----|--------|----|
|       | sec                | MB | sec              | MB  | sec  | MB | sec    | MB |
| 4     | 799                | 11 | 14               | 44  | 0    | 1  | 0      | 2  |
| 5     | 1661               | 14 | 24               | 57  | 0    | 1  | 0      | 2  |
| 6     | 3155               | 21 | 40               | 76  | 0    | 1  | 0      | 2  |
| 7     | 5622               | 38 | 74               | 137 | 0    | 1  | 0      | 2  |
| 8     | 9449               | 73 | 118              | 217 | 0    | 1  | 0      | 2  |
| 9     | segmentation fault |    | 172              | 220 | 0    | 1  | 1      | 2  |
| 10    |                    |    | 244              | 702 | 0    | 1  | 0      | 3  |
| 11    |                    |    | 413              | 702 | 0    | 1  | 0      | 3  |
| 12    |                    |    | 719              | 702 | 0    | 2  | 1      | 3  |
| 13    |                    |    | 843              | 702 | 0    | 2  | 1      | 3  |
| 14    |                    |    | 1060             | 702 | 0    | 2  | 1      | 3  |
| 15    |                    |    | 1429             | 702 | 0    | 2  | 1      | 3  |

Model Checking: Counterexample for liveness in a buggy DME implementation.

# Tuning SAT checkers for BMC

## (O. Strichman, CAV00)

---

- Use the variable dependency graph for deriving a static variable ordering.
- Use the regular structure of  $\mathbf{AG}p$  formulas to replicate conflict clauses:

$$\varphi : I_0 \wedge \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \wedge \bigvee_{i=0}^k p_i$$

The transition relation appears  $k$  times in  $\varphi$ , each time with different variables.

This symmetry indicates that under certain conditions, for each conflict clause we can compute additional  $k - 1$  clauses ‘for free’.

## Tuning SAT checkers for BMC (cont'd)

---

- Use the incremental nature of BMC to **reuse conflict clauses**.

Some of the clauses that were computed while solving BMC with e.g.  $k=10$  can be reused when solving the subsequent instance with  $k=11$ .

- **Restrict decisions** to model variables only (ignore CNF auxiliary vars).

It is possible to decide the formula without the auxiliary variables (they will be implied). In many examples they are 80%-90% of the variables in the CNF instance.

- ...

# BMC of some hardware designs w/wo tuning SAT

---

| Design # | $K$ | RB1  | RB2  | Grasp | Tuned |
|----------|-----|------|------|-------|-------|
| 1        | 18  | 7    | 6    | 282   | 3     |
| 2        | 5   | 70   | 8    | 1.1   | 0.8   |
| 3        | 14  | 597  | 375  | 76    | 3     |
| 4        | 24  | 690  | 261  | 510   | 12    |
| 5        | 12  | 803  | 184  | 24    | 2     |
| 6        | 22  |      | 356  |       | 18    |
| 7        | 9   |      | 2671 | 10    | 2     |
| 8        | 35  |      |      | 6317  | 20    |
| 9        | 38  |      |      | 9035  | 25    |
| 10       | 31  |      |      |       | 312   |
| 11       | 32  | 152  | 60   |       |       |
| 12       | 31  | 1419 | 1126 |       |       |
| 13       | 14  |      | 3626 |       |       |

RuleBase is IBM's BDD based symbolic model-checker.

RB1 - RuleBase first run (with BDD dynamic reordering).

RB2 - RuleBase second run (without BDD dynamic reordering).

# Diameter

---

- Diameter  $d$ : Least number of steps to **reach all reachable states**. If the property holds for  $k \geq d$ , the property holds for all reachable states.
- Finding  $d$  is computationally hard:
  - State  $s$  is reachable in  $j$  steps:

$$R_j(s) := \exists s_0, \dots, s_j : s = s_j \wedge I(s_0) \wedge \bigwedge_{i=0}^{j-1} T(s_i, s_{i+1})$$

- Thus,  $k$  is greater or equal than the diameter  $d$  if

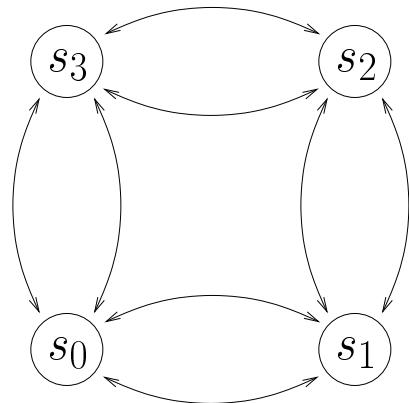
$$\forall s : R_{k+1}(s) \implies \exists j \leq k : R_j(s)$$

This requires an efficient QBF checker!

# A Compromise: Recurrence Diameter

---

- Recurrence Diameter  $rd$ : Least number of steps  $n$  such that all valid paths of length  $n$  have **at least one cycle**



Example:

- All states are reachable from  $s_0$  in two steps, i.e.,  $d = 2$
- All paths with at least one cycle have a minimum length of four steps, i.e.,  $rd = 4$

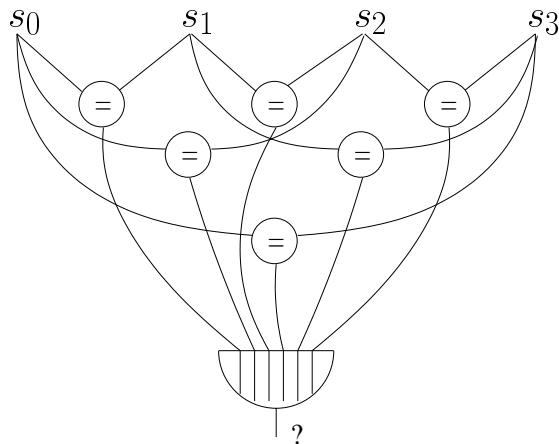
- Theorem: Recurrence Diameter  $rd$  is an **upper bound** for the Diameter  $d$

# Testing the Recurrence Diameter

---

- Recurrence Diameter test in BMC:  
Find cycles by comparing all states with each other

$$\forall s_0, \dots, s_k : I(s_0) \wedge \bigwedge_{i=0}^{n-1} T(s_i, s_{i+1}) \implies \bigvee_{l=0}^{k-1} \bigvee_{j=l+1}^k s_l = s_j$$



- Size of CNF:  $O(k^2)$
- Too expensive for big  $k$

# Recurrence Diameter Test using Sorting Networks (D. Kroening)

---

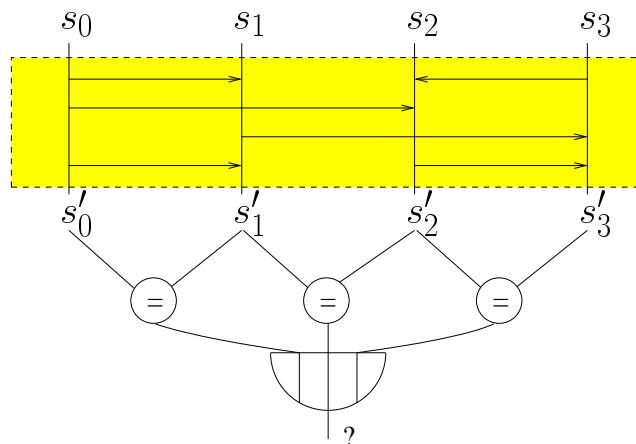
- Idea: Look for cycles using a **Sorting Network**

- First, sort the  $k + 1$  states symbolically:

$s'_0, \dots, s'_k$  are permutation of  $s_0, \dots, s_k$  such that  $s'_0 \leq s'_1 \leq \dots \leq s'_k$

- Sorting can be done with CNF of size  $O(k \log k)$ . Practical implementations, e.g., Bitonic sort, have size  $O(k \log^2 k)$ .
- Now only check neighbors in the sorted sequence:

$$(\exists i : s'_i = s'_{i+1}) \iff (\exists l, j : l \neq j \wedge s_l = s_j)$$



# Recurrence Diameter Test using Sorting Networks

---

- Example CNF size comparison (without transition system):

| $k$ | $O(k^2)$ Alg. |           | $O(k \log^2 k)$ Alg. |           |
|-----|---------------|-----------|----------------------|-----------|
|     | Variables     | Clauses   | Variables            | Clauses   |
| 32  | 5,777         | 25,793    | 7,862                | 34,493    |
| 64  | 22,817        | 104,833   | 21,494               | 95,341    |
| 128 | 90,689        | 422,657   | 56,438               | 252,109   |
| 256 | 361,601       | 1,697,281 | 143,606              | 644,557   |
| 512 | 1,444,097     | 6,802,433 | 356,342              | 1,604,813 |

## Future Research Directions

---

We believe our techniques may be able to handle much larger designs than is currently possible. Nevertheless, there are a number of directions for future research:

- Techniques for generating short propositional formulas need to be studied.
- Want to investigate further the use of domain knowledge to guide search in SAT procedures.
- A practical decision procedure for QBF would also be useful.
- Combining bounded model checking with other reduction techniques is also a fruitful direction.