Expressibility Results for Linear-Time and
Branching-Time Logics

E. M. Clarke, I. A. Draghicescu

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract We investigate the expressive power of linear-time and branching-time temporal logics as
fragments of the logic CTL*. We give a simple characterization of those CTL* formulas that can be
expressed in linear-time logic. We also give a simple method for showing that certain CTL* formulas
cannot be expressed in the branching-time logic CTL. Both results are illustrated with examples.

key words: temporal logic, linear-time logic, branching-time logic, computation tree logics, fairness

Contents

1. Introduction

2. Computation Tree Logics (CTL, LTL and CTL*)
3. Linear Time

4. Branching Time

5. Conclusion

This research was partially supported by NSF grant CCR-87-226-33.



430

formula AG(AFp) is expressible in LTL since it is equivalent to A(FGp), but the formula AF(AGp)
obtained by reversing the operators AF and AG, is not expressible in LTL. ’

Our paper gives a simple characterization of those CTL* formulas that can be expressed in LTL
We show that a CTL* formula f can be expressed in LTL if and only if it is equivalent to the formula.
Af' where f' is obtained from f by deleting the path quantifiers. We also give a necessary condition
that a CTL* formula must satisfy in order to be expressible in CTL. The condition is formulated in
terms of models that are labelled state transition graphs with fairness constraints . Intuitively, a CTL
formula is unable to distinguish between two such models when the second is obtained from the first
by adding a fairness constraint that extends some constraint of the first model. By using these two
results we are able to give simple arguments to show that a number of example formulas cannot be
expressed in LTL (in CTL). An additional advantage of our approach is that it provides insight into
why CTL and LTL have different expressive powers.

The paper is organized as follows: In Section 2 we describe the logics LTL, CTL and CTL*,
Section 3 contains the characterization of those CTL* formulas that can be expressed in LTL. Section
4 gives the necessary condition that a CTL* formula must satisfy in order to be expressible in CTL.
It also contains several examples that show how this result can be used to give simple proofs that

certain properties like strong faimess cannot be expressed in CTL. The paper concludes in Section 5
with a discussion of some remaining open problems.

2. Computation Tree Logics (CTL, LTL, and CTL*)

There are two types of formulas in CTL*: state formulas (which are true in a specific state) and path
formulas (which are true along a specific path). Let AP be the set of atomic proposition names. A
state formula is either:

o A if A€ AP.
e If f and g are state formulas, then —f and f V g are state formulas.

e If f is a path formula, then Ef is a state formula.
A path formula is either:

e A state formula.

e If f and g are path formulas, then —f, fV g, Xf, and fUg are path formulas.

CTL* is the set of state formulas generated by the above rules.

CTL ([2}, [4)) is a restricted subset of CTL* that permits only branching-time operators—each path
quantifier must be immediately followed by exactly one of the operators G, F, X, or U. More precisely,
CTL is the subset of CTL* that is obtained if the path formulas are restricted as follows:

e If f and g are state formulas, then Xf and fUg are path formulas.

e If f is a path formula, then so is —f.



431

Linear temporal logic (LTL), on the other hand, will consist of formulas that have the form Af where
f is a path formula in which the only state subformulas that are

permitted are atomic propositions.
More formally, a path formula is either

¢ An atomic proposition.

o If f and g are path formulas, then —f,fV g, Xf, and fUg are path formulas.
We define the semantics of CTL* with respect to a structure M = (S, R, L), where

e S is a set of states.

¢ R C § x § is the transition relation, which must be total. We write 53 — s, to indicate that
(sla SZ) € R.

e L£:S8 — P(AP) is a function that labels each state with a set of atomic propositions true in that
state.

Unless otherwise stated, all of our results apply only to finite Kripke structures.

‘ We define a path in M to be a sequence of states, = = so5; ... such that for every i 2 0, 5; — $in
m' will denote the suffix of = starting at s;.

We use the standard notation to indicate that a state formula f holds in a structure: M, s = f means
that f holds at state s in structure M. Similarly, if f is a path formula, M, = k= f means that f holds
along path 7 in structure M. The relation k= is defined inductively as follows (assuming that f; and
/2 are state formulas and g; and g, are path formulas):

sEA iff A€ L().

s E-f iff s¥h.

SEAVA if sEforsEf. _

s EE(gy) iff there exists a path 7 starting with s such that 7 |= g,.

T EA iff s is the first state of = and s = f;.

T g iff = s

TE&VE if tlEgiorTg,.

T = Xg iff =g

mEgiUg  iff there existsa k> Osuchthatn* =gy and forall 0 <j <k, o gy

O 00 W b wh—

We will also use the following abbreviations in writing CTL* (CTL and LTL) formulas:

ofAg
oFf

—(=fV -g) *¢A()
trueUf oGf

-E(=/)
-F-f.

mom

The necessary condition for expressability in CTL is given for Kripke structures with fairness
consraints. The fairness constraints are specified in essentially the same way as the acceptance sets
for Muller automata [10]. A Kripke structure with fairness constraints is a 4-tuple M = (S, R, L, F)
where

e S5, R, L are as in the definition of the standard Kripke structures.




432

e F C 2% is a set of fairness constraints.
Let M = (S, R, £, F) be a Kripke structure with fairness constraints and = = sqs; ... a path in M.
Let inf(m) denote the set of states occurring infinitely often on 7. « is fair iff inf(r) € F.

The semantics of CTL* with respect to a Kripke structure with fairness constraints M = (S, R, £, F)
is defined using only the fair paths of the structure. Thus, the relation |= is defined inductively for

all states s and fair paths 7 of M using the same clauses as in the case of ordinary CTL* except the
clause 4 is replaced by

4. sEE(g) iff there exists a fair path = starting with s such that = = g,.

3. Linear Time

For every n > 0, let ~, be the equivalence relation over infinite paths given by

! "

o' ~,d" iff for any linear formula f with length(f) < n, o' Ff < " Ef
Lemma 1 Suppose AP, the set of atomic propositions is finite. Let M be a Kripke structure and o a
pathin M. Let n > 0.

Then there exists a prefix xy of o such that xy“ is an infinite path in M and o ~, xy”.

Proof: It will be given in the completed version.

If ¢ is a CTL* formula, we will denote by ¢ the linear formula obtained from ¢ by deleting all
its path quantifiers. For instance, if ¢ = AG(pU(EXg)) then ¢¢ = G(pU(Xg)).

For a Kripke structure M and a path o = 508y ...5i-1(Si...5j—1) in M we will denote by M(o) the
single-path Kripke structure defined by . M(¢) = (S(0), R(0), L(0)), where :
S(o) = {3, ..., 51}
R(d) = {(3'0a 31)7 ceey (Stj-Za §j—l)s (sti-l’ 3'!)}
L(o) : S(@) = 24P, L(o)@k) = L(s¥)

Let us notice that for any path' of the form xy” of a Kripke structure M and for any CTL* formula
¢, we have

MGy*), %o ¢ iff MOy”),xy” ¢

Theorem 1 Let ¢ be a CTL* state formula.

Then & is expressible in LTL iff ¢ is equivalent to Al
Proof: Suppose that ¢ is equivalent to Af, where f is a linear formula. We have to show that ¢ is
equivalent to A¢?.

Let M be a Kripke structure and so a state in M. We have :



433

M,so = ¢ iff for all paths o in M, Mo Ef
iff for all paths of the form xy“ in M, M,x* E=f
( by Lemma 1)

iff for all paths of the form xy* in M, M(xy*),xy* =f
iff for all paths of the form xy* in M, M(x*), 55 E ¢
iff for all paths of the form xy* in M, M(xy”),xy” |= ¢¢
( as noticed above )
iff for all paths of the form xy* in M, M,xy” = ¢?¢
iff for all paths o in M, M, o = ¢?
(by Lemma 1)
iff M,so = Ad?

Theorem 2 Let ¢ be a CTL* formula.
Then ¢ is expressible in LTL iff there exists a set P of paths such that

M,so E¢ iff for any path o starting in so, there exists a path o' € P such that
T ~length(p) T !

Proof: Suppose ¢ is expressible in LTL. Then, by Theorem 1, ¢ is equivalent to A¢?. Let P = {o
g = ¢%}. :

For any Kripke structure M and any state 5o in M, we have

M,so ¢ iff for any path o in M starting in so, M,o = ¢¢
iff for any path o in M staring insg, o€ P
iff for any path o in M staring in so, there exists a path o’ € P such that

T ~length(¢) T !
(as 0 ~ienging) o' and o’ € P imply, by the definition of P, that o € P)

In order to prove the converse, suppose P is a set of paths with the following property :

M,so = ¢ iff for any path o starting in so, there exists a path ¢’ € P such that
T ~length(¢p) T ‘.

By Theorem 1, it is enough to show that M,so ¢ <= M, 5 | Ag%.

Suppose that M, so |= ¢. Then, by the above property of P, for any path o = xy* in M starting
in so, there exists a path o' € P such that ¢ ~ingme) o'- Thus, for any o = xy*, the unique path
of M(0) iS ~lngm)-equivalent with some path in P. Using again the property of P, we obtain that
M(0),3o = ¢. This implies that for any o =xy*, M,o E ¢%. Therefore, by Lemma 1, for any path o
in M starting in so, M, o k= ¢%, which implies M, so = A¢.

Suppose M, so = A¢%. In particular, for any path xy* in M starting in so, M(xy*),xy* = $4,
which implies M(xy*),3o | ¢ and therefore there exists o’ € P such that Xy ~iengas) o'. Thus, by
Lemma 1, for any path o in M starting in so, there exists a path ¢’ € P such that & ~ingn(e) o'.
Therefore M, 5o |= ¢. '

Using the above characterizations, it is easy to check, for instance, whether AFAGp is expressible
in LTL.



434
So S1 s,

MO»

S

(o}
t1 tj S, s2

Figure 1: Kripke Structures for AFAGp

Consider the Kripke structures shown in Figure 1, '
M = ({50, 51, 52}, {(S0, S0), (S0, $1), (51, 52), (52, 52)}, L), where L(s0) = L(s2) = {p} and L(s1) = {-p},
MO = ({SO}’ {(307 sO)}a L IMo})v
M] = ({th seey tj, S1, s2}’ {(th tZ)’ ey (tj—la tj), (tp sl)7 (sh s2)) (32, s2)}s [’])9 for aan Z 1,
where calLi(ti) = L(s2) = {p} and Lj(s1) = {-p}.

It is easy to see that M, so ¥ AFAGp but M, 5o E A(_(AFAGp)"). This implies, by Theorem 1, that
AFAGp is not expressible in LTL.

We also have My, so = AFAGp and for any j > 1, M;, 1, = AFAGp but M, 5o ¢ AFAGp. As any
path of M is ~j.ngmAFAGp)-€quivalent to a path in some M;, j > 0, we obtain again, by Theorem 2 this
time, that AFAGp is not expressible in LTL.

4. Branching Time

A strongly connected component C of a directed graph G = (V, R) is non-trivial if either | C |> 1 or
C = {c} and c has a self loop—i.e. (c,¢) € R. If M =(S,R,L,F) is a Kripke structure with fairness
constraints, then we can assume without loss of generality that each set F € F determines a non-trivial
strongly connected subgraph of the graph of M. If 7 and F' are two sets of fairness constraints, then
we will say that F' extends F if F' = F U {F'} where F' is a superset of some set F € F.

Theorem 3 Let M = (S,R,L,F) be a Kripke structure with fairness constraints, and let M' =
(S, R, L, F') where the set of constraints F' extends F. Then for all CTL formulas f and all states
SES,

Mskf iff MsEf

Proof: We prove the theorem by induction on the structure of f. We have the following cases:



435

Figure 2: Kripke Structure for A(FGp)

e f is an atomic proposition: This case is trivial.
o f=fiVf, or f =—f;: This case follows directly from the inductive hypothesis.

¢ f=EXf; or f = E[f{Uf;]: We consider f = E[f;Uf;]; the other case is similar. We first show

that the set of finite prefixes of the M-fair paths coincides with the set of finite prefixes of M'-fair
paths. To see that this is true let P be the set of prefixes of M-fair paths that start at s and let 7/
be the corresponding set for M'. We must show that P = P, It is easy to see that P C P. Since
F C F', it must be the case that every M-fair path starting at s is also M’-fair path. To show
that P/ C P, let p’ € P'. Assume that p' is a prefix of some M'-fair path =’. If inf(n") € F, then
n’ is also an M-fair path and p € P. If inf(r') = F/, then = must pass infinitely often through
F since F C F'. Let p be a prefix of »’ that includes all of p’ and ends in a state of F. Since
F determines a nontrivial strongly connected component of the graph of M, we can extend p to
an M-fair path 7 such that inf(r) = F. Consequently, p € P.

Assume that M, 5 = E[fiUf;). There must be a M-fair path 7 that starts at s such that for some
k>O0M,m* =f; and for all 0 < j < k, M, 7* = fi. By the above observation there is an M'-fair
path =’ that has the same prefix of length k as x. By the inductive hypothesis M, (x')* |= f,
and for all 0 < j < k, M', (="} = fi. It follows that M, 7' |= fiUf; and that M', s = E[f, U]
Exactly the same argument can be used to show that if M', s |= E[fiUf,], then M, s = E[fUf].

o f = EGf;: If M,s = EGf; then, as any M-fair path is also a M’-fair path, it follows by the
inductive hypothesis that M,s = EGf;. For the other direction suppose that M’,s = EGf
and let m be the M'-fair path that satisfies Gfi. If inf(x) € F then we are done. Otherwise
inf(r) = F' and F’ is strongly connected. As F C F' is also strongly connected, there exists a
path m; starting in s such that inf(m;) = F and any state on =, is also on w. It follows 7, is
M-fair and, by inductive hypothesis, M, m; = Gf}, which implies M, s = EGf,.

We illustrate how the Theorem 3 can be used to prove that A(FGp) is not expressible in CTL. Let
M be the Kripke structure shown in Figure 2 with the fairness constraint F = {{s1}}. The set {51}
determines a non-trivial strongly connected component of the graph of M. A(FGp) is true in state
so of M, since all fair paths must eventually loop forever in state s,. The set {so,s;} is certainly a
superset of the set {s1}. If we let 7/ = FU {{s0,51}} and M’ be the corresponding Kripke structure
with F’ replacing F, then M and M’ will satisfy the same CTL formulas. However, A(FGp) is not
true in state so of M’ since the path 7 = s5o51505) .. . is fair, but does not satisfy the path formula FGp.
It follows that no CTL formula is equivalent to AFGp).

The same two Kripke structures M and M’ can be used to show that the formula AF(p A Xp) is
not expressible in CTL. If = is a fair path in M, then p must hold almost always on =. Consequently,



436

T = lf‘(p A Xp). It follows that AF(p A Xp) is true in state so of M. However, 7’ = 55,5051 is a fair
path in M’ that does not satisfy F(p A Xp), so AF(p A Xp) is false in state so of M’.

5. Conclusion

In the linear-time case we have obtained two necessary and sufficient conditions for a CTL* formula
to be expressible in LTL. In the branching-time case we have only given a necessary condition for
a CTL* formula to be expressible in CTL. It would be useful to have a complete characterization in

this case as well. One possibility would be to prove the converse for Theorem 3, which we state as a
conjecture below:

Conjecture 1 If f is not expressible in CTL, then it is possible to find two Kripke structures M =
(S,R,L,F)and M' =(S,R, L, F") with F' an extension of F such that for some state s € S

either M,skEfandM' slEf or M,s¥fand M sk=f.

So far, we have been unable to prove or disprove this conjecture. If it is true, we believe that the
proof is likely to be difficult.

Another problem with the result in Section 4 is that it is possible to have a CTL* formula that
is equivalent to false over ordinary Kripke models and, therefore, is expressible in CTL, but is not
expressible in CTL when the models are fair Kripke structures. In order to construct such an example
we use a result from [3], which shows that it is possible to completely characterize an ordinary Kripke
structure in the logic CTL. Let M and M’ be two Kripke structures. Let so be a state of M and s; be
a state of M'. Then M, so is CTL*-equivalent to M', s; iff for all CTL* formulas f, M,so =f iff
M, sy Ef.

Given a Kripke structure M and a state .so of M, there is a CTL formula C(M, so) such that
M, st = C(M, so) iff M, so is CTL*-equivalent to M’, s5. For the model shown in Figure 2, C(M, o) is
given by

p A AG(p — (EX(~p) A AX(-p)) A AG(~p — (EX(=p) A EX(p)).

Now, consider the formula C(M, so) A A(FGp). This formula is equivalent to false if the models
are ordinary Kripke structures. Since A(FGp) is false in M, 5o, it follows that if M’, 55 = C(M, so) then
M', s} = ~A(FGp). If we modify M to include the fairness constraint F = {{s1}}, then C(M, so) A
A(FGp) is true in so. Thus, the formula is not equivalent to false over fair Kripke structures.
Essentially the same argument as in the first example of Section 4 shows that it is not expressible in
CTL in this case. It would be useful to have a version of Theorem 3 that applied to ordinary Kripke
structures and avoided such pathological examples.

References

[1] EM. Clarke A.P. Sistla. Complexity of propositional temporal logics. Journal of the Association
for Computing Machinery, 32(3):733-749, July 1986.



437

[2] M. Ben-Ar, Z. Manna, and A. Pneuli. The temporal logic of branching tme. In 8th Annual
ACM Symp. on Principles of Programming Languages, pages 164-177, 1981.

[3] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing Kripke structures in temporal
logic. In 1987 Colloquium on Trees in Algebra and Programming, Pisa, Italy, March 1987.

[4] EM. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for branching time

temporal logic. In Proc. of the Workshop on Logic of Programs, Springer-Verlag, Yorktown
Heights, NY, 1981.

[5] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages and
Systems, 8(2):244-263, 1986.

{6] E.A. Emerson and J.Y. Halpern. Decision procedures and expressiveness in the temporal logic
of branching time. J. Comput. System Sci., 30(1):1-24, 1985.

[7] E.A. Emerson and J.Y. Halpern. ‘Sometimes’ and ‘not never’ revisited: on branching versus
linear time. In Proc. 10th ACM Symp. on Principles of Programming Languages, 1983.

[8] G.E. Hughes and M.J. Creswell. An Introduction to Modal Logic. Methuen and Co., 1977.

[9] L. Lamport. ‘Sometimes’ is sometimes ‘not never’. In Seventh Annual ACM Symposium on
Principles of Programming Languages, pages 174-185, Association for Computing Machinery,
Las Vegas, January 1980.

[10] D. E. Muller. Infinite sequences and finite machines. In Proc. 4th Annual IEEE Symposium of
Switching Theory and Logical Design, pages 3-16, 1963.



