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Abstract We investigate the expressive power of linear-time and branching-time tempora1logics as
fragments of the logic CfL*. We give a simple characterization of those C11..* formulas that can be
expressed in linear-time logic. We also give a simple method for showing that certain CfL * formulas

cannot be expressed in the branching-time logic CfL. Both results are illustrated with examples.
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fonnula AG(AFp) is expressible in LTL since it is equivalent to A(FGp), but the fonnula AF(AGp),
obtained by reversing the operators AF and AG, is not expressible in LTL.

Our paper gives a simple characterization of those crL* formulas that can be expressed in LTl..
We show that a crL* formulaf can be expressed in LTL if and only if it is equivalent to the formula
Af where f is obtained from f by deleting the path quantifiers. We also give a necessary condition
that a CTL * formula must satisfy in order to be expressible in crL. The condition is formulated in

terms of models that are labelled state transition graphs with fairness constraints. Intuitively, a CfL
formula is unable to distinguish between two such models when the second is obtained from the first
by adding a fairness constraint that extends some constraint of the first model. By using these two
results we are able to give simple arguments to show that a number of example formulas cannot be
expressed in LTL (in crL). An additional advantage of our approach is that it provides insight into
why CTL and LTL have different expressive powers.

The paper is organized as follows: In Section 2 we describe the logics Ln.., CfL and CfL*.
Section 3 contains the characterization of those CfL* formulas that can be expressed in Ln... Section
4 gives the necessary condition that a CfL* fonnula must satisfy in order to be expressible in cfL.
It also contains several examples that show how this result can be used to give simple proofs that
certain properties like strong fairness cannot be expressed in CfL. The paper concludes in Section 5
with a discussion of some remaining open problems.

Computation Tree Logics (CTL, LTL, and CTL*)2.

There are two types of fonnulas in CfL*: state formulas (which are true in a specific state) and path
formulas (which are true along a specific path). Let AP be the set of atomic proposition names. A
state fonnula is either:

.A, if A E AP.

.If f and g are state fonnulas, then -1 and tv g are state fonnulas.

.If f is a path fonnula, then Ef is a state fonnula.

A path formula is either:

.A state fonnula.

.Iff and g are path fonnulas, then .-,j,fV g, Xf, andfVg are path fonnulas.

crL * is the set of state fonnulas generated by the above rules.

crL ([2], [4]) is a restricted subset of crL* that penn its only branching-time operators-each path
quantifier must be immediately followed by exactly one of the operators G, F, X, or U. More precisely,
crL is the subset of crL * that is obtained if the path formulas are restricted as follows:

.Iff and g are state formulas, then Xf andj'Ug are path formulas.

.Iff is a path fonnula, then so is -{.
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Linear temporal logic (LTL), on the other hand, will consist of formulas that have the form AI where
I is a path formula in which the only state subformulas that are permitted are atomic propositions.
More formally, a path formula is either

.An atomic proposition.

.Ift and g are path fonnulas, then -{.tv g, XI. and/Ug are path fonnulas.

We define the semantics of CfL* with respect to a structure M = (S, R, .c), where

.S is a set of states.

.R ~ S x S is the transition relation, which must be total. We write Sl -S2 to indicate that
(Sl, S2) E R.

.r.: S -+ P(AP) is a function that labels each state with a set of atomic propositions true in that
state.

Unless otherwise stated, all of our results apply only to finite Kripke structures.

We define a path in M to be a sequence of states, Jr = SOSI ...such that for every i ? 0, Sj -+ Sj+1
Jrj will denote the suffix of Jr starting at Sj.

We use the standard notation to indicate that a state fonnulaf holds in a structure: M, s 1= f means
that f holds at state s in structure M. Similarly, if f is a path fonnula, M, 71" 1= f means that f holds
along path 71" in structure M. The relation 1= is defined inductively as follows (assuming that !I and
h are state fonnulas and gl and g2 are path fonnulas):

1. sl=A
2. s 1= -11
3. sl=f1v/z
4. s 1= E(gI)

5.7r1=f1
6. 7r 1= -,gl

7. 7r 1= gl V g2

8. 7r 1= Xg1
9. 7r 1= g1Ug2

iff A E L(s).

iff s~/l.
iff s F /I or s F h. .
iff there exists a path 7r starting with s such that 7r F gl.
iff s is the first state of 7r and s 1= /I.
iff 7r ~ gl.
iff 7r 1= gl or 7r 1= gz. .

iff 7rl F gl.
iff there exists a k ? 0 such that trk 1= gz and for all 0 ::;: j < k, 7rj 1= gl

We will also use the following abbreviations in writing CfL* (CfL and LTL) fonnulas:

efA g
eFf

= -'(-1 V -'g)
= trueUj

eA(f)
eGf

= -.E(-1)
= -.F-.J.

The necessary condition for expressability in CTL is given for Kripke structures .with fairness
consraints. The fairness constraints are specified in essentially the same way as the acceptance sets
for Muller automata [10]. A Kripke structure with fairness constraints is a 4-tuple M = (8, R, L:, J=)
where

.S, 'R, I:, are as in the definition of the standard Kripke structures.
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.:F ~ 2s is a set of fairness constraints.

Let M = (5, 'R., .c,:F) be a Kripke structure with fairness constraints and 7r = SOSI ...a path in M.
Let inf(7r) denote the set of states occurring infinitely often on 7r. 7r is fair iff inf(7r) E F.

The semantics of cn. with respect to a Kripke structure with fairness constraints M = (8, R, C, .:F)
is defined using only the fair paths of the structure. Thus, the relation 1= is defined inductively for
all states s and fair paths 7r of M using the same clauses as in the case of ordinary cn except the
clause 4 is replaced by

4'. s 1= E(gl) iff there exists a fair path 71' starting with s such that 71' F gl.

3. Linear Time

For every n ~ 0, let ""II be the equivalence relation over infinite paths given by

(]" """" (]'" iff for any linear fonnula f with length(f) ~ n, 0" 1= f ~ 0'" 1= f

Lemma 1 Suppose AP, the set 01 atomic propositions is finite. Let M be a Kripke structure and 0" a
path in M. Let n ~ o.

Then there exists a prefix xy 0/0' such that xylol is an infinite path in M and 0' -II xY"'.

Proof: It will be given in the completed version.

If 4> is a CfL * fonnula, we will denote by 4>d the linear fonnula obtained from 4> by deleting all

its path quantifiers. For instance, if 4> = AG(pU(EXq» then 4>d = G(pU(Xq».

For a Kripke structure M and a path 0' = SOSl ...Sj-l (Sj ...Sj-l) in M we will denote by M(O') the
single-path Kripke structure defined by 0'. M(O') = (S(O'), R(O'), £(0')), where :

S(O') = {so,...,Sj-l}
R(O') = {(3'0, SI),"', (3'j-Z, Sj-l), (Sj-l, 3'J}
£(0') : S(O') -+ 2AP, £(O')(3'J = £(Sk)

Let us notice that for any path of the fonn xr of a Kripke structure M and for any CTL * fonnula

4>, we have

iff M(xYW),xYW 1= <l>dM(~), Jo F <I>

Theorem 1 Let 4> be a CTL* stateformula.

Then <I> is expressible in LTL iff <I> is equivalent to A<I>d.

We have to show that <I> isProof: Suppose that 4> is equivalent to At, where f is a linear formula.

equivalent to A4>d.

Let M be a Kripke structure and So a state in M. We have:
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M, So 1= <I> M,a' Ff
M, xy'" F f

M (xy'" ), xy'" 1= f

M(xy"'), :ro 1= <k
M (xy'" ), xy'" 1= <p d

M,.xy'" F Ij>d
M,O" F Ij>d

iff for all paths 0' in M,
iff for all paths of the fonn xy'" in M,

( by Lemma 1)
iff for all paths of the fonn xy'" in M,
iff for all paths of the fonn xy'" in M,
iff for all paths of the fonn xy'" in M,

( as noticed above)
iff for all paths of the fonn xy'" in M,
iff for all paths 0' in M,

( by Lemma 1 )
iff M, So 1= A<I>d

Theorem 2 Let <t> be a CTL* formula.

Then <P is expressible in LTL iff there exists a set P of paths such that

iff for any path 0" starting in so, there exists a path 0"' E P such that
,

0" ""'le/lglh(I/» 0"

M,so F 4>

Proof: Suppose <I> is expressible in LTL. Then, by Theorem I, <I> is equivalent to A<I>d. Let P = {O'

0' F <l>d}.

For any Kripke structure M and any state So in M, we have

M, So 1= <P iff for any path 0' in M starting in So, M, 0' 1= 4>d
iff for any path 0' in M staring in So, 0' E P
iff for any path 0' in M staring in So, there exists a path 0" E P such that

,0' """' l~/lglh(.p) 0'
( as 0' "" l~/lglh(.p) 0" and 0" E P imply, by the definition of P, that 0' E P)

In order to prove the converse, suppose P is a set of paths with the following property :

for any path 0' starting in So. there exists a path 0:' E P such that
,0' "'"'ltllglh(lP) 0' .

iffM, So F 4>

By Theorem 1, it is enough to show that M, So I=,p ~ M, So 1= A,pd.

Suppose that M, So 1= 4>. Then, by the above property of P, for any path 0' = xy'" in M starting
in So, there exists a path 0" E P such that 0' "'"'14118111(';) 0". Thus, for any 0' = x)f", the unique path

of M(O') is ""'14118t1l(rJ»-equivalent with some path in P. Using again the property of P, we obtain that
M(O'),3'o 1= 4>. This implies that for any 0' = x)f", M,O' F 4>d. Therefore, by Lemma 1, for any path 0'

in M starting in So, M, 0' 1= 4>d, which implies M, So F A4>d.

Suppose M, So F A4>d. In particular, for any path xy'" in M starting in So, M(xy"'),xy'" F 4>d,
which implies M(xy"'), Jo F 4> and therefore there exists 0-' E P such that xy'" '"'"'l~"glh("') 0-'. Thus, by
Lemma 1, for any path 0- in M starting in So, there exists a path 0-' E P such that 0- "'"'l~"glh(4» 0-'.

Therefore M, So F 4>.

Using the above characterizations, it is easy to check, for instance, whether AFAGp is expressible

in LTL.
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Figure 1: Kripke Structures for AFAGp
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Consider the Kripke structures shown in Figure 1,
M= ({SO,SI,S2}, {(So, So), (SO,SI), (SI,S2), (S2, sv},L), where I:.(so) = I:.(sv = {P} and I:.(SI) = {-,p},

Mo = ({so}, {(so, so)}, I:. IMo})'
Mj = ({ tl, ..., tj, SI, S2}, {(tl, tv, ..., (tj-l, tj), (tj, SI), (SI ,S2), (S2, sv}, I:.j), for any j ~ 1,
where caILj(tk) = I:.(SV = {p} and I:.j(SI) = {-,p}.

It is easy to see that M, So ~ AFAGp but M, So 1= A«AFAGp)d). This implies, by Theorem 1, that
AFAGp is not expressible in LTL.

We also have Mo, So 1= AFAGp and for any j ? 1, Mj, tl 1= AFAGp but M, So ~ AFAGp. As any
path of M is "" leIlBth(AFAGp)-equivalent to a path in some M j, j ? 0, we obtain again, by Theorem 2 this
time, that AF AGp is not expressible in LTL.

Branching Time4.

A strongly connected component C of a directed graph G = (V, R) is non-trivial if either I C I> 1 or
C = {c} and c has a self loop-i.e. (c, c) E R. If M = (5, R, L:, :F) is a Kripke structure with fairness
constraints, then we can assume without loss of generality that each set F E F determines a non-trivial
strongly connected subgraph of the graph of M. If F and :F' are two sets of fairness constraints, then
we will say that F' extends F if F' = F U {F'} where F' is a superset of some set F E F.

Theorem 3 Let M = (8, 'R.,.c, J=) be a Kripke structure with fairness constraints, and let M' =

(8, 'R., .c, :F') where the set of constraints F' extends F. Then for all CTL formulas f and all states

s E S,

iff M',s 1=/M,sl=f
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s 0

~ 1

Figure 2: Kripke Structure for A(FGp)

.f is an atomic proposition: This case is trivial.

.f = h V/z or f = -.,jl: This case follows directly from the inductive hypothesis.

.f = EX/t or f = E[fl Uh]: We consider f = E[fl Uh]; the other case is similar. We first show

that the set of finite prefixes of the M-fair paths coincides with the set of finite prefixes of M'-fair
paths. To see that this is true let P be the set of prefixes of M-fair paths that start at s and let P'
be the corresPQnding set for M'. We must show that P = P'. It is easy to see that P ~ P'. Since
F ~ F', it must be the case that every M-fair path starting at s is also M'-fair path. To show
that P' ~ P, letp' E P'. Assume that pi is a prefix of some M'-fair path 11"'. If inf(1I"') E F, then
11"' is also an M-fair path and pEP. If inf(1I"/) = F', then 11" must pass infinitely often through
F since F ~ F'. Let p be a prefix of 11"' that includes all of pi and ends in a state of F. Since
F determines a nontrivial strongly connected component of the graph of M, we can extend p to
an M-fair path 11" such that inf(1I") =F. Consequently,p E P.

Assume that M, s 1= E~ Uh]. There must be a M-fair path 11" that starts at s such that for some
k ~ 0 M,1I"k 1= h and for all 0 $ j < k, M, 1I"k 1= /to By the above observation there is an M'-fair
path 11"' that has the same prefix of length k as 11". By the inductive hypothesis M', (1I"/)k I=h
and for all 0 $ j < k, M', (1I"')k 1= /to It follows that M', 11"' F= /t Uh and that M', s F= E[fl Uh].
Exactly the same argument can be used to show that if M', s F= E[fl Uh], then M, s F= E[fl Uh].

.f = EGft: If M,s 1= EGft then, as any M-fair path is also a M'-fair path, it follows by the

inductive hypothesis that M, s 1= EGft. For the other direction suppose that M', s 1= EGft
and let 1r be the M'-fair path that satisfies Gft. If inf(1r) E .:F then we are done. Otherwise
inf(1r) = F' and F' is strongly connected As F ~ F' is also strongly connected, there exists a
path 1rl starting in s such that inf(1rl) = F and any state on 1rl is also on 1r. It follows 1rl is

M-fair and, by inductive hypothesis, M,1rl 1= GiI, which implies M, s 1= EGiI.

We illustrate how the Theorem 3 can be used to prove that A(FGp) is not expressible in CfL. Let
M be the Kripke structure shown in Figure 2 with the fairness constraint :F = {{ s}} }. The set {s}}

determines a non-trivial strongly connected component of the graph of M. A(FGp) is true in state
So of M, since all fair paths must eventually loop forever in state St. The set {so, Sl} is certainly a
superset of the set {s}}. If we let :F' = F U {{so, s}}} and M' be the corresponding Kripke structure

with :F' replacing :F, then M and M' will satisfy the same CI1.. formulas. However, A(FGp) is not
true in state So of M' since the path 7r = SOSlSOS} ...is fair, but does not satisfy the path formula FGp.

It follows that no C'fi. formula is equivalent to A(FGp).

The same two Kripke structures M and M' can be used to show that the fonnula AF(p A Xp) is
not expressible in crL. If 7r is a fair path in M, then p must hold almost always on 7r. Consequently,
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is a fairJr F F(p t\ Xp). It follows that AF(p t\ Xp) is true in state So of M. However, Jr' = SOSlSOSl
path in M' that does not satisfy F(p t\ Xp), so AF(p t\ Xp) is false in state So of M'.

5.

Conclusion

In the linear-time case we have obtained two necessary and sufficient conditions for a cn.. '" formula

to be expressible in LTL. In the branching-time case we have only given a necessary condition for
a CTL '" formula to be expressible in CTL. It would be useful to have a complete characterization in

this case as well. One possibility would be to prove the converse for Theorem 3, which we state as a
conjecture below:

Conjecture 1 Iff is not expressible in CTL, then it is possible to find two Kripke structures M =
(5, 'R., £, F) and M' = (5, 'R., £, :F') with :F' an extension of:F such that for some state s E 5

either M, s ~ f and M', s l#= f M,s ~fandM',s I=f.or

So far, we have been unable to prove or disprove this conjecture. If it is true, we believe that the
proof is likely to be difficult.

Another problem with the result in Section 4 is that it is possible to have a cn.. * formula that

is equivalent to false over ordinary Kripke models and, therefore, is expressible in cn.., but is not
expressible in cn.. when the models are fair Kripke structures. In order to construct such an example
we use a result from [3], which shows that it is possible to completely characterize an ordinary Kripke
structure in the logic cn... Let M and M' be two Kripke structures. Let So be a state of M and So be
a state of M'. Then M, So is CTL*-equivalent to M', sO iff for all cn..* formulas f, M, So F f iff

M',s~ I=f.

Given a Kripke structure M and a state .so of M, there is a C11.. formula C(M, so) such that
M', So F C(M, so) iff M, So is CfL "'-equivalent to M', 10' For the model shown in Figure 2, C(M, so) is

given by

p!\ AG(p -+ (EX(-,p)!\ AX(-,p»!\ AG(-,p -+ (EX(-,p)!\ EX(P».

Now, consider the fonnula C(M, so) 1\ A(FGp). This fonnula is equivalent to false if the models
are ordinary Kripke structures. Since A(FGp) is false in M, so, it follows that if M', s'o F C(M, so) then
M',so F -,A(FGp). If we modify M to include the fairness constraint F = {{Sl}}, then C(M,so) 1\
A(FGp) is true in so. Thus, the fonnula is not equivalent to false over fair Kripke structures.
Essentially the same argument as in the first example of Section 4 shows that it is not expressible in
CTL in this case. It would be useful to have a version of Theorem 3 that applied to ordinary Kripke

structures and avoided such pathological examples.
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