Axioms and Theories

One important use of predicate logic is to pin down the properties mathematical objects. You fix a
language, and a collection of formulae, so-calle&tbms and then study all the models of these
formulae.

In a while, we will generalize our deduction rules to predicate logic. thkeryassociated with a
set of axiomd' is
Th(I') = all ¢ derivable froml’

The formulae in'A(T") are calledheorems

» Since our deduction rules are sound, any formul&Adl’) is valid in all models forl".

In other words, one single proof covers all models, we do not have to bother to prove the same fact
over and over again in countless different models of the axioms.

» Usually try to keep axiom set small (ideally finite, at least very simple structure).

Peano Arithmetic (PA)

We usel(+, -, S, 0; <) and omit the universal quantifierS.stands for thesuccessofunction,

S(x)=z+1.

» Peano Axioms

S(xz) # 0 Sx)=5y) »z=y
r+0=ux z+ S(y) =Sz +y)
z-0=0 r-Sly)=(r-y) +z
—(z < 0) r< Sy ecr=yVe<y

Induction Axiom:

©(0) AVz(p(r) = ©(S(z))) — Vre(r)

The “Induction Axiom” is actually a so-called schema: there is one axiom for any formula

All elementary number theory can be handled within this axiom system.

2

Computational Aspects

The Peano axioms are almost like programs.

In particular, the axioms provide recursive definitions of plus, times and less-than in terms of the
successor functiof.

add(x,y)
{

if(y==0) return x;
return S(x,y—1);

}

less(X, y)

{

if(y == 0) return false;
return (x==y-1)]|| less(x, y—1);

}

A Theorem of (PA)

Claim: Vz (0 + z = x)
Proof.
Consider the formula(z) = (0 + = = z).
Theny(0) is the first addition axiom (more precisely, replacky 0 there).
Now assumev(z). Then by the second addition axiom
0+ S(x)=S50+x)=S5(z)
Hence we have showp(0) A Va(p(z) — ¢(S(x))).
By the Induction Axiom and modus ponens we gep(z).

Likewise, one can prove
Ve,y,z(x+ (y+2) = (x +y) + 2)
Ve,yle+y=y+ x)

Hence, it follows from the Peano axioms tha{; +, 0) is associative, commutative, and has an
identity.

Primes in Peano Arithmetic

Remember our formula that expresses primality?

px)=950) <z AVy,zlz=y-z—>zx=yVr=2)

With some more effort one could derive frami A)
Vady (z <y Ae(y))
In other words, there are infinitely many primes.

Likewise, one can show ifi? A) that every number can be decomposed uniquely into a product of
primes, and so on.

All results of basic arithmetic can be deduced from ju3H).

» Hence we have a very succinct representation of the essential features of arithmetic: just 8
axioms and one axiom schema (induction).

Recall: Natural Deduction Rules

And

fmine Ean 2
Or

9 [v)
ﬁ\/il ﬁ\/ig ¢V¢X>'< X(\/€>
Implication
9]
¢ (ﬁﬁ‘” (s Y jﬁ;‘” (= mt) ﬁ(% 0

Double negation y

Falsum

Derivations in Predicate Logic

We need to augment our deduction rules. We keep all the rules from propositional logic, and add
rules for the quantifiers.

Intuitively, we would like to use

o) Swo(x)
Te(r) O o) =9

o(5) . Ved()
Vo) "9 o) O

wherez is a variable¢ a constant, antla term.

» Correct in spirit.

Alas, as stated these rules are not sound.

Counterexample

Suppose we adopt the quantifier rules from above. Then we can perform the following derivation.

Vaedy(z < y) premise
dy(z < y) Ve
(z < ¢) Je
Va(x < ¢ Vi
YV (r < y) =N

» Disaster!

The premise is valid oveX/, but the conclusion is not. This is exactly the wrong direction of the
valid implicationdzVyp(z, y) — Vydxp(z,y)

The problem is that thereally depends omn.

To address this and similar problems, one has to add certain technical conditions to the quantifier
rules.

Amended Quantifier Rules

A term¢t is substitutabldor x in ¢(z) iff no variable int becomes bound in(t).

Jr¢(x)
wheret is substitutable for: in .
()
dro(x |
wherez is not free im), and does not occur in active assumptions.
o)
Vaa(z) "

wherez is not free in any assumptions for

Veo(a)
ot) "¢

wheret is substitutable fog in ¢.

Example

An example for a correct derivation, according to our rules:
Jz(p(e) = () F Voe(r) = Jwp(z)

This is valid (our structures are never empty).

Here is the proof tree:

Enough?
10

