
A framework for traversing dense annotation lattices

Branimir Boguraev • Mary Neff

Published online: 30 May 2010

� Springer Science+Business Media B.V. 2010

Abstract Pattern matching, or querying, over annotations is a general purpose

paradigm for inspecting, navigating, mining, and transforming annotation reposi-

tories—the common representation basis for modern pipelined text processing

architectures. The open-ended nature of these architectures and expressiveness of

feature structure-based annotation schemes account for the natural tendency of such

annotation repositories to become very dense, as multiple levels of analysis get

encoded as layered annotations. This particular characteristic presents challenges

for the design of a pattern matching framework capable of interpreting ‘flat’ patterns

over arbitrarily dense annotation lattices. We present an approach where a finite

state device applies (compiled) pattern grammars over what is, in effect, a linearized

‘projection’ of a particular route through the lattice. The route is derived by a mix of

static grammar analysis and runtime interpretation of navigational directives within

an extended grammar formalism; it selects just the annotations sequence appropriate

for the patterns at hand. For expressive and efficient pattern matching in dense

annotations stores, our implemented approach achieves a mix of lattice traversal and

finite state scanning by exposing a language which, to its user, provides constructs

for specifying sequential, structural, and configurational constraints among

annotations.

Keywords AFst � UIMA � Annotation-based analytics development �
Pattern matching over annotations � Annotation lattices � High density

annotation repositories � Finite-state transduction � Corpus analysis

Abbreviations
UIMA Unstructured information management architecture

FST Finite state transduction

B. Boguraev (&) � M. Neff

IBM T.J. Watson Research Center, Yorktown Heights, New York, USA

e-mail: bran@us.ibm.com

123

Lang Resources & Evaluation (2010) 44:183–203

DOI 10.1007/s10579-010-9123-y

AFst Annotation-based finite state transduction

GATE General architecture for text engineering

ULA Unified linguistic annotation

1 Multi-faceted annotation representations

Annotation-based representation of linguistic analyses has gradually become the

established mechanism for recording analysis results, across a broad range of

analytical components and frameworks, and for a variety of purposes (gold standards/

ground truth annotation, linguistic mark-up, formal expression of analytical output,

definition of standards, to name but a few). To a large extent, the notion of annotations

has driven the strong trend towards evolving robust and scalable architectures for

natural language processing (Cunningham and Scott 2004). Frameworks like GATE
1,

UIMA
2 and NLTK

3 (Cunningham 2002; Ferrucci and Lally 2004; Bird 2006) have wide

acceptance in the community (Dale 2005), and have demonstrated the viability of

feature-rich annotation structures as an expressive device, contributing to compo-

nentization and interoperability.

Bird and Liberman (2001) developed a generalized view of annotation principles

and formats. Since then, representational schemes have evolved to support complex

data models and multiply-layered (stacked) annotation-based analyses over a corpus.

For instance, to address some issues of reusability, interoperability and portability,

Hahn et al. (2007) at JULIE Lab4 have developed a comprehensive annotation type

system capturing document structure and meta-information, together with linguistic

information at morphological, syntactic and semantic levels. This naturally will result

in multiple annotations over the same text spans, stacked in layers as the number of

annotation types grows to meet the representational demands of arbitrary deep

analytics.

Orthogonally, initiatives like the NSF project on Unified Linguistic Annotation5

(ULA) and the Linguistic Annotation Framework (Ide and Romary 2004) developed

within ISO6 argue for the need for annotation formats to support multiple,

independent, and alternative annotation schemes; see, for instance, Verhagen et al.’s

MAIS (2007) and and Ide and Suderman’s GrAF (2007). In such schemes a specific

type of e.g. semantic analysis can be maintained separately from, and without

interfering with, semantic annotations at other layers: consider, for instance, the ULA

focus on integrating PropBank-, NomBank-, and TimeBank-style annotations over

the same corpus, while maintaining open-endedness of the framework so other

1
GATE: General Architecture for Text Engineering.

2
UIMA: Unstructured Information Management Architecture.

3
NLTK: Natural Language Toolkit.

4 Language and Information Engineering Lab at Jena University, http://www.julielab.de/.
5 http://www.verbs.colorado.edu/ula2008/.
6 International Standards Organization, Technical Committee 37, Sub-Committee 4, Language Resource
Management, http://www.iso.org/iso/iso_catalogue/catalogue_tc.

184 B. Boguraev, M. Neff

123

http://www.julielab.de/
http://www.verbs.colorado.edu/ula2008/
http://www.iso.org/iso/iso_catalogue/catalogue_tc

annotation schemes can be similarly accommodated. Multiple annotations—

possibly even carrying identical labels over identical spans—are also a likely

characteristic of such environments.

From an engineering standpoint, such complexity in annotation formats and

schemes is already tractable. For instance, by providing a formal mechanism for

specifying annotations within an arbitrarily complex type hierarchy based on feature

structures (further enhanced by multiple analysis views within a document, and

awareness of namespaces for feature structure types), UIMA offers the representa-

tional backbone for the requirements of the JULIE project, as well as the ability to

support (or be isomorphic to) the multiple annotation layers of MAIS and GrAF.

1.1 Dense annotation lattices

Such annotation frameworks, however, make for densely populated annotation

spaces; these are, essentially, annotation lattices. Typically, there will be numerous

annotations over the same text span. This may be the result of layering different

kinds of annotation, as discussed earlier, in the case of e.g. syntactic and semantic

layers. Or (as we will see in Sects. 2 and 5.4 below), this may be due to a particular

characteristic of the annotation scheme: say, trees (or tree fragments) may be

encoded by relative overlays of annotation spans, possibly mediated by an auxiliary

system of features (properties) on annotations.

Annotations will be deposited in an annotations store by individual components

of a particular processing pipeline. It may be reasonable to expect that closely

related components would deposit annotations which are aligned—e.g. when later

analyses operate on the output of prior annotators. Less inter-dependent components

are less likely to be so well behaved. For instance, just bringing more than one

tokenizer into the pipeline is certain to produce mis-aligned tokens. Similarly,

combining a named entity annotator with an independently developed parsing

component is certain to result in mis-alignment of boundaries of named entities and

linguistic phrases, also leading to overlapping annotations.

Such multi-layered representational schemes give rise to ‘tangled’ lattices, which

can be traversed along multiple paths representing different layers of granularity,

e.g. tokens, named entities, phrases, co-referentially linked objects, and so forth.

The lattices tend to become dense, as more and more levels of analysis get stacked

on top of each other. This has significant implications for an operation common in

annotation-based frameworks: matching (or querying) over an annotations store.7

Typically, such an operation is mediated via a formal language (we discuss some

formalisms in Sect. 3). Matching over annotations then would require interpretation

of sub-graphs against an annotations lattice, assuming that somehow the right path

of traversal has been chosen—right, that is, from the point of view of the intended

semantics of a given pattern (query).

7 Requesting all the text fragments which match a pattern is, conceptually, no different from querying an

annotation repository for all annotations (or annotation configurations) which satisfy a certain set of

constraints, themselves specified in a pattern (query).

A framework for traversing dense annotation lattices 185

123

This paper addresses some of the requirements—and underlying support—for a

pattern specification language to resolve the ambiguities of traversal associated with

the kinds of lattices under discussion. We argue for a specially adapted lattice

traversal engine designed with the capability to focus—simultaneously—on

sequences of annotations, on annotation structures isomorphic to tree fragments,

and on specific configurational relationships between annotations.

For example, sequential constraints might be used in an annotation pattern for

some meaningful relationship between a preposition token and a noun phrase

immediately following it, and the underlying interpretation mechanism needs to

make sure that it finds the path through the lattice which exposes the linear order of

annotation instances in question. Or, tree matching over a predicate-argument

fragment may be used to identify the node annotation for a labeled argument—this

would require awareness of how tree nodes are mapped to annotation layers. Or,

annotation filtering may need to iterate over ‘like’ annotations—say noun phrases—

excluding those which are in a certain configurational relationship with other

annotations (e.g. not sentence-initial, in subject position only, and so forth), or

which exhibit certain internal structural properties (e.g. containing a temporal

expression annotation, or a named entity of a certain type). The key requirement

here is to be aware of possibility of, and need for, different projections through the

lattice.

Clearly, constraints like these (and the need to be sensitive to them) derive

directly from the nature of a dense lattice and the properties of analyzed objects

captured within. We will refer to such constraints by using terms like ‘horizontal’

and/or ‘vertical’.

Examples like the ones above illustrate some of the issues in navigating

annotation lattices; additional complexity may be added by the characteristics of a

particular lattice, or by the specific needs of an application. For instance, multiple,

non-aligned token streams8 may pose a challenge to figuring out what the ‘next’

token is, after the end of some higher-level constituent. Likewise, an application

may need to aggregate over a set of annotation instances of a certain type—e.g. for

consistency checking—before it posts a higher-level, composite, annotation

(consider the constraint that an [EmailSignature] annotation9 may ‘contain’ at

least two of [Name], [Affiliation], [Address], or [PhoneNumber], in any order;

or that a temporal relation10 must have two arguments, one of which is a temporal

expression).

In this work, we examine the implications for a mechanism for querying

an annotations store which is known to be a dense lattice. In the next two sections

we highlight some considerations to be taken into account when designing

lattice traversal support, and we briefly summarize some salient points of related

work addressing matching over annotations. Section 4 highlights some essential

8 Tokens are just instances of an annotation type. Multiple tokenizers would introduce multiple token

streams; it is not uncommon for complex applications to deploy multiple tokenizers, e.g. if models for

different components have been trained over disparate pre-tagged text sources.
9 The notation [TypeName] refers to an annotation of type TypeName in the text.
10 Here, and in this paper in general, we assume that all annotations manipulated through the framework

are text-consuming.

186 B. Boguraev, M. Neff

123

characteristics of a formal language for matching over annotations, and describes

how it is adapted to the task of lattice traversal by means of a novel iteration device.

It is within this formalism that we then develop the navigational elements which are

the subject of this paper (Sect. 5). In essence, the language appeals to a set of

finite-state operators, adapted to the task of matching against annotations and

manipulating multi-faceted typed feature structures; we assume familiarity with finite-

state devices and the mechanics of pattern matching, and do not detail all of the

language. We conclude with some examples of applications of the framework we have

developed, and highlight a couple of particularly salient extensions, as future work.

2 Challenges of lattice navigation

Revisiting the examples above, we notice that in many situations where an

annotation in the store is matched against some annotation specification, it presents

an inherent ambiguity. On the one hand, it may be considered as an object by itself:

is it an annotation of a certain type?11 The test can therefore be executed over a

single annotation object.

Alternatively, the intent may be to consider it as an integral part of a larger

structured object, the shape of which matters. Consider, for instance, a represen-

tation scheme where proper names are annotated (say, by [PName] annotations),

with their internal structure made explicit by annotating, as appropriate, for [Title]

and [Name], itself further broken into e.g. [First], [Middle], and [Last]. ‘‘General
Ulysses S. Grant’’, in such a rendering, would instantiate multi-layered annotations:

For any particular instance of a [PName] found in the text, some of these

annotation types may, or may not, appear (‘‘Max’’, ‘‘Minister of Agriculture
Stoyanov’’). The analysis relies, however, on the annotations strictly covering—but

not crossing—each other. This allows the above structure to be construed as

representing a tree by layering annotations, and by encoding a parent-child

relationship between annotations by appropriately interpreting their relative spans:

[PName] node is ‘above’ a [Title] node; [Name] is a parent to [First], and so on.

(We note here, in passing, that such a relationship clearly cannot be inferred for two

annotations with identical spans; for this, we need an additional system of type

11 It may be the case that an annotation will have inner properties (or features: UIMA uses typed feature

structures to represent annotations); in that case testing for a match would require checking values of

features against their specifications too. Still, this operation is carried out just on the annotation itself.

A framework for traversing dense annotation lattices 187

123

priorities, and we will discuss this in detail in Sects. 4.2 and more specifically 5.4

below.)

Now, in addition to conceiving an application which just needs to iterate over

[PName]s (for the purposes of an ‘atomic’ match), it is also possible to imagine a

need for e.g. only collecting titled proper names, or proper names whose [Last]

components satisfy some constraint, such as they are all of a certain nationality. The

former iteration regime would only ‘care for’ [PName] annotations; the latter needs

both to identify [PName]s and simultaneously to inspect their internal components

which, by definition, are other annotations on a different path through the lattice.

Since the different annotation layers are not connected explicitly (as tree nodes

would), what is required is a ‘smart iterator’ which needs to be aware of the

configurational properties of layered annotations.

This unit-vs-structure dichotomy is orthogonal to a different kind of ambiguity

with respect to an annotation: is it to be visible to an underlying lattice traversal

engine or not? Visibility in this sense may be contingent upon focusing on one, and

ignoring alternative, layers of annotation in, say, ULA-style of analysis (e.g. iterate

over [NP]s in PropBank annotations, but ignore NomBank [NP] annotations).

Alternatively, visibility may also be defined in terms of what matters to an abstract

‘pattern’: in the example of parsing an electronic signature above, it is convenient to

cast the rule in terms of meaningful components, and not even have to specify the

optional use of punctuation tokens, such as commas, hyphens, etc.—the intuition

here is that a pattern language should drive a traversal regime which is only

sensitive to some, but not all, annotation types encountered.

Yet another perspective on visibility derives from the combined effects of

likelihood of multiple annotations over exactly the same span, and the application’s

need to inspect two (or more) of them, conceptually during the same traversal. An

example here is an entity being tagged as (legitimately) belonging to multiple

categories within a broad semantic class: a person may be an [Actor], a

[Director] and a [Producer], and the annotations store would reflect this, by

means of multiple co-terminous annotations over the same [PName] span. The

semantics of these annotations is such that the runtime engine here would need to

visit all of these, as opposed to making a choice (whether priority-based, or

mandated by an explicit directive). This is complementary to most of the above

scenarios, and further illustrates that a range of iteration regimes need to be

supported by the annotation matching infrastructure. Obviously, part of that support

would entail provisions—at the grammar language level—for specifying the kind of

iteration to be carried out at runtime.

Our work develops an annotation traversal framework which addresses the

challenges of navigating dense annotation lattices. Fundamentally, the design seeks

to exploit insights from research in finite-state (FS) technology, appealing both to

the perspicuity of regular patterns and the efficiency of execution associated with FS

automata. However, given the non-linear nature of the input and the variety of

constraints on traversal regimes outlined above, our framework of annotation-based

finite-state transduction (henceforth AFst) makes suitable adaptations in order to

reduce the problem of traversing an annotation lattice to that of FS-tractable

188 B. Boguraev, M. Neff

123

problem of scanning an unambiguous stream of ‘like’ objects, in our case structured

UIMA annotations.

Broadly speaking, we address similar challenges to those identified by research on

querying annotation graphs (Bird et al. 2000). However, rather than focusing on

strongly hierarchical representations and mapping queries to a relational algebra

(SQL), as in for instance (Lai and Bird 2004), we seek a solution ultimately rooted in

‘linearizing’ (fragments of) the annotation lattice into an unambiguous annotation

stream, so that pattern matching can then be realized as a finite-state process. This fits

better not just activities like exploration of an annotated corpus, but also an

operational model of composing an application, where a pattern-matching annotation

engine implements, via a set of fully declarative grammars, an active annotator

component such as a parser, a named entity detector, or a feature extractor. The

focus of this paper is to present the basic design points of the framework (and the

associated pattern specification language elements) facilitating such linearization.

3 Related work: patterns over annotations

Several approaches have been developed to address the problems of matching over

annotations. Glossing over the details somewhat, two broad categories can be

observed.

A class of systems, like those of (Grefenstette 1999; Silberztein 2000; Boguraev

2000; Grover et al. 2000; Simov et al. 2002), essentially deconstruct an annotations

store data structure into a string which is suitably adorned with in-line annotation

boundary information; FS (or FS-like) matching is then applied over that string. At

the implementational level, annotations may be represented internally either in a

framework-specific way, or by means of XML markup. There are many attractions

to using XML (with its requisite supporting technology, including e.g. schemas,

parsers, transformations, and so forth) to emulate most of the functions of an

annotations store (but see Cassidy 2002, for an analysis of some problems of

adopting XML as an annotation data model, with XQuery as an interpreter).

However, not all annotations stores can be rendered as strings with in-line
annotations: difficulties arise precisely in situations where ambiguities discussed in

Sect. 2 are present. Consequently, overlapping, non-hierarchical, multi-layered

annotation spaces present serious challenges to traversal by such a mechanism.

Alternatively, overlaying FS technology on top of structured annotations which

are ‘first-class citizens’ in their architecture environments is exemplified by a

different class of systems, most prominently by GATE’s JAPE (Cunningham et al.

2000) and DFKI’s SProUT (Droẑdẑyński et al. 2004). While the two are substantially

different, a crucial shared assumption is that the annotation traversal engine ‘knows’

that components upstream of it will have deposited annotations of certain type(s).

This knowledge is then implicitly used during grammar application. As a result, the

lattice to be traversed has certain ‘well-formed’ characteristics, stemming from the

advanced knowledge of types to be encountered therein, and their relationships with

each other—whether fanning out at certain ambiguous points (in the case of GATE),

or within a strictly hierarchical set of type instances (in the case of SProUT).

A framework for traversing dense annotation lattices 189

123

Operationally, an iterator behaves as an ambiguous one, examining multiple choice

points in the lattice, in a pre-determined order. This is not an assumption which

necessarily holds for projects like the ones outlined earlier (Sect. 1), nor does it

adequately address the proliferation of possibly ambiguous, or even contradictory,

annotations typical of large-scale architectures where an arbitrary number of

annotator components may deposit semantically conflicting and/or configurationally

partially overlapping spans in the annotations store.

Clearly, the one common theme underlying most of these approaches is the notion

of adapting an annotations store so that FS-like matching can be applied to the objects

in it. As we already mentioned in the previous section, such is the strategy we adopt as

well. However, none of the work outlined here addresses the issues and challenges of

explicitly controlling end-to-end navigation through the lattice-like structure of such

annotations stores. This is the subject of the remainder of this paper.

4 Elements of annotation-matching formalism

Our AFst framework addresses the design considerations for traversing and navigating

annotation lattices by exposing a language which, to its user, provides constructs for

specifying sequential, structural, and configurational constraints among annotations.

It thus borrows notions from regular algebra for pattern matching, and from tree

traversal for structure decomposition; additionally it utilizes type prioritization for the

interpretation of configurational statements. These elements are embedded in a

notational framework derivative of cascaded regular expressions.

4.1 Pattern specification

In an annotations store environment, where the only ‘currency’ of representation is

the annotation-based type instance, FS operations have to be defined over

annotations and their properties. AFst thus implements, in effect, a finite-state
calculus over typed feature structures, cf. (Droẑdẑyński et al. 2004), with pattern-

action rules where patterns are specified over configurations of type instances, and

actions manipulate annotation instances in the annotations store (see below). The

notation developed for specifying FS operations is compliant with the notion of a

UIMA application whose data model is defined by means of externally specified

system of types and features.

At the simplest level of abstraction, grammars for AFst can be viewed as regular
expression-like patterns over annotations. This allows for finding sequences of

annotations with certain properties, e.g. nouns following determiners, unbroken

stream of tokens with certain orthographic feature (such as capitalization), or noun

group–verb group pairs in particular contexts.

However, given that transitions of the underlying FS automaton are mediated by

a complex set of constraints, the notation incorporates additional syntax for

specifying what annotation to match, what are the conditions under which the match

is deemed to be successful, and what (if any) action is to be taken with respect to

modifying the annotations store (e.g. by creating and posting new annotations,

190 B. Boguraev, M. Neff

123

deleting or modifying existing ones, arbitrary manipulation of features and values,

and promoting instances of types within the type hierarchy). Note that conditions for

successful match may include filters on annotation structure components (i.e.its

feature set), as well as contextual factors determined by other annotations to be

found above, below, and around the one in the focus of the match (cf. vertical and

horizontal configurational constraints, introduced in Sect. 1).

Much of the complexity is borne by a symbol notation, indicative of the set of

operations that need to be carried out upon a transition within the transition graph

compiled from the FS grammar skeleton. Thus, for instance, where a character-

based FS automaton would be examining the next character in its input tape, our

AFst interpreter may be asked to perform progressively more complex operations

over the next annotation in its input stream. Examples of such operations, expressed

as symbols on the arcs of an FS automaton, are:

• Token []: straightforward match conditioned only on type, or

• Person [kind=*"named"] : match over an annotation of type Person,

examining the value of its kind feature; license the transition only for

"named" [Person]s;

• NP []/]Subj[passive="false"] : match over an [NP]; if successful, post a

new annotation, [Subj], with a feature named passive set to a string

"false".12

Later, we will show how elements from both the symbol and grammar notations can

be augmented to affect navigation.

A (very simple) grammar for noun phrases, defined over the part-of-speech tags of

[Token] annotations, is shown below. The symbol <E> marks an empty transition (a

match which always ‘succeeds’), and the operators. and * specify, respectively,

sequential composition, and zero or more repetitions, of sub-patterns. In effect, this

grammar looks for a sequence of tokens, which starts with an optional determiner,

includes zero or more adjectives, and terminates with a singular or plural noun. If

found, a new [NP] annotation is posted to the annotations store; its span is over the

entire matching sequence of Tokens (denoted by the matching pairs of /[NP and /]NP

transduction symbols).

12 Elements of the formalism which translate into posting new, or modifying existing, annotations are

somewhat orthogonal to issues of navigation; we will not discuss transduction symbols or mechanisms

here. We also deliberately gloss over the question of what the span of the new [Subj] annotation should

be, but see the example grammar immediately below.

A framework for traversing dense annotation lattices 191

123

Note that Token is just another type in a UIMA type system: there is nothing

special about querying for its pos feature. Thus, if an upstream annotator has

deposited, say, temporal expressions in the annotations store, the pattern above

could also incorporate dates in the noun phrase contour, e.g. by specifying Timex

[kind=*"date"] as an additional nominal pre-modifier (c.f. ‘‘this December 25th
tradition).

In line with similar matching frameworks, like GATE and SProUT, both ‘match’

and ‘transduce’ operations appear as atomic transactions within a finite-state

device. Matching operations are defined as subsumption among feature structures.

Transduction operations create new annotations, delegating to the native UIMA

annotation-posting mechanism; they also facilitate, by means of variable setting and

binding, feature percolation and embedded references to annotations as feature

values. By their nature and function, transductions are largely outside of the scope

of this paper.

In essence, by appealing to UIMA’s type system which not only prioritizes types,

but also defines a type subsumption hierarchy, both sequential (and even order-

independent) patterns over annotations and vertical configurations among annota-

tions may be specified at different levels of type granularity,13 in an open-ended and

application-agnostic fashion.

Moreover, by relocating the data model to a specification outside of the traversal

engine itself, the framework allows for a relatively small set of AFst language

constructs, which can manipulate annotations (both existing and newly posted) and

their properties without the need for e.g. admitting code fragments on the right-hand

side of pattern rules (as GATE does in special cases), or appealing to ‘back-door’

library functions from an FST toolkit (as SProUT allows), or having to write query-

specific functions (as XQuery would require).

4.2 Navigational constraints

There are essentially two components to the AFst framework. The previous section

outlined the pattern-based matching. In order for the patterns to be applied,

however, navigation through the lattice must happen in order for a stream of

annotations to be generated—the lattice gets linearized, from the perspective of the

FST graph compiled from the grammar.

Both navigation and matching are by their nature runtime elements. Navigation,

however, crucially requires information gathered from static grammar analysis: the

set of types a grammar refers to and the configurational constraints among

annotations to match—implicitly inferrable and explicitly specified via custom

notational devices.

Such notational devices assert control both at symbol-matching and pattern-

specification levels. In particular, we will see below how, by referencing the UIMA

13 Patterns may refer to both type instances and supertypes: the framework will admit e.g. a PName
annotation as an instance of a Named supertype specified in the grammar as a match target; supertypes

thus are akin to wild cards. Note that if both [A] and [B] are defined to be subtypes of [Element], a

pattern specification … Element []. Element [] … would match both sequences [A] followed

by [B], and [B] followed by [A]; this allows for order-independent grammars.

192 B. Boguraev, M. Neff

123

type system, vertical configurational constraints can be interleaved within the

normal pattern-matching operations.

In essence, AFst addresses the problem of explicitly specifying the route through

the lattice as part of a regular pattern within the FST backbone by delegating the

annotation lattice traversal to UIMA’s native iterators—with suitable provisions for

control.

UIMA iterators are customizable with a broad set of methods for moving forwards

and backwards, from any given position in the text, with respect to a range of

ordering functions over the annotations. Primary among these are: start/end

location, type, and type priority. This last parameter refers to the intuitive notion of

specifying an ordering of types with respect to which should be returned first, when

an iterator encounters multiple type annotations over the same text span; among

other things, priorities among types are crucial for encoding tree-like information

via annotation spans (Sect. 2; see also 5.4 below).

A key insight in our design is that a compiled transition graph specifies exactly

the type of annotation required by any given transition. At points in the lattice where

this is ambiguous, the notation allows to choose among alternative outgoing

annotations. (There is a default interpretation, given a particular type hierarchy and

system of type priorities.) Our insight thus translates into the dynamic construction

of a special kind of typeset iterator, which is different for every grammar as it

depends on the set of types over which the grammar is defined.

As a simple example, the noun phrase grammar earlier in this section tests, at

all transition points, for a single annotation type: [Token]. Consequently, no

matter how dense the annotation lattice, iterating over [Token]s only, in text

order, would be adequate for the AFst runtime interpreter, as it tries to apply this

grammar.

This typeset iterator mediates annotation lattice traversal in a fashion

corresponding to threading through it a route consistent with the set of types

relevant to the grammar, and no more. It is configured to emit a stream of only those

annotation instances referenced in a grammar file, according to a left-to-right

traversal of the annotations store, and compliant with type priorities where a fan-out

point in the lattice is reached. For instance, if a grammar is concerned not just with

[Token]s, but with, say, [NP] annotations as well, the question what to do at points

in the lattice where instances of both kinds of annotation share a start position, is

resolved by default with the iterator returning the one with higher priority

(presumably, the [NP]); this strategy resonates with intuitions for analytics

development, but it can be overriden.

Grammar-level specification of horizontal and vertical constraints is compiled

into a particular sequence of matches over annotations. The iterator-generated

stream of annotations is the input to the AFst interpreter, as it captures the annotation

sequence over which the pattern is applied. This, then, is overlayed over the lattice.

In effect, the typeset iterator removes the fan-out aspects of lattice traversal and

replaces them with a single pass-through route which behaves just like an

unambiguous stream of ‘like’ objects. The following section examines this in more

detail.

A framework for traversing dense annotation lattices 193

123

5 Support for navigational control

The previous section outlined how the symbol notation captures extensions to the

notion of FS-based operations, to apply to a stream of ‘like’ objects: in this case,

annotations picked—in a certain order—from an annotations store. Since these can

be complex feature-structure objects, the symbol notation uses appropriate syntax,

designed to inspect the internal make-up of annotation instances. This syntax

additionally incorporates part of the mechanism whereby the AFst interpreter

constructs the annotations stream paired, at execution time, with the FST graph for a

given grammar. Also, as we shall see below, there are iterator-directed statements in

the grammar itself. In other words, the route projection discussed in the previous

section, which results in a linearization of a particular path in the dense lattice, is

carried out by navigational directives both at symbol and grammar notation levels.

Here we look at the range of devices which select the elements of annotation lattice

appropriate to present to the FS matching machinery.

As we have already described (Sect. 4.2), route selection is delegated to the UIMA

iteration subsystem: at a higher level of abstraction, an iterator is responsible for

traversing the lattice in such a way that from the AFst interpreter point of view, there

is always an annotation instance presented, unambiguously, as the next() object to

be inspected (according to the transition graph). The type of this instance is defined

with respect to a subset of all the types in the annotations store; the exact manner of

this definition, and mechanisms for unambiguously selecting the next() one, are

discussed in Sect. 5.1 below.

The other aspect of the navigation problem, complementary to route selection, is

that of navigation control. Asserting control is, in effect, distributed among

configuring a suitable UIMA iterator and using extensions to the notation (largely for

symbols, less so at a grammar level) capable of informing the iterator.

We allow for a range of mechanisms for specifying, and/or altering, the iteration;

accordingly, there are notational devices in the AFst language for doing this. Broadly

speaking, at grammar level there are three kinds of control:

• ‘typeset’ iterator, inferred from the grammar,

• declarations concerning behavior with respect to a match,

• distributing navigation among different grammars, via grammar cascading.

These controls mediate the left-to-right behavior of the interpreter. Additionally,

at symbol specification level, devices exist for shifting the traversal path of the

interpreter, in an up-and-down (vertical) direction.

5.1 Iterator induction

As we have seen, a transition symbol explicitly specifies the annotation type it needs

to inspect at a given state. Therefore, by examining a grammar, it is possible to

derive a complete set of the annotation types of interest to this grammar. A typeset
iterator, then, is a dynamically constructed14 instance of a UIMA iterator, which filters

14 At grammar load time, when the interpreter is initialized.

194 B. Boguraev, M. Neff

123

for a subset of types from the larger application’s type system, and is configured for

unambiguous traversal of the annotations store.

In the previous section, we already showed that the grammar fragment in

Sect. 4.1, for example, would induce the construction of a typeset iterator filtered for

[Token]s only, no matter how many and what other types are in the type system. Of

course, there is nothing special about [Token]’s, which are just types in a type

system. A different grammar, for example, may conceive of relabeling [NP]

annotations to the left and right of a [VG] (verb group) as [Subj] and [Obj]; this

would be agnostic of [Token]s, as it would scan the annotations store for [NP] and

[VG] instances only.

More than one type may (and likely will) end up in the iterator filter, either by

explicit reference on a grammar symbol or implicitly, as a result of the grammar

specifying a common supertype as licensing element on a transition. At points in the

lattice, then, where more than one of the types of interest have a common ‘begin’

offset, the iterator will—in line with its unambiguous nature, and crucially for

effectively linearizing the lattice—have to make a choice of which annotation to

return as the next() one.

By default, the typeset iterator follows the natural order of annotations in the

UIMA annotations store: first by start position ascending, then by length descending,

then by type priority (see Sect. 2). Type priorities thus control the iteration over

annotations; they are particularly important in situations where annotations are

stacked one above the other, with the ‘vertical’ order conveying some meaningful

relationship between types. A representation for proper names, like the one outlined

in Sect. 2, would capture—by means of explicit priority definition—statements like

[PName] is above [Title] and [Name], and [Name] is above [First]/[Last].

Similarly, it is via priorities that we can capture intuitions like: [Sentence] sits

‘higher’ in the lattice vertical order than [Phrase], which is itself above [Token]s.15

With its broader filter, the typeset iterator for a grammar like the one outlined

above (relabeling [NP]-[VG]-[NP] triples as [Subj]-[VG]-[Obj], and additionally

making references to [Token]s) would face traversal ambiguities at points where the

[NP] and [VG] annotations start—as there are underlying [Token]s starting there as

well. The iterator will, however, behave unambiguously, according to the priority

constraints above;16 this default behavior is largely consistent with grammar

writers’ intuitions. We will shortly show how to alter this behavior.

Conversely, there may be situations where a pattern may be naturally specifiable

in terms of lower-level (priority-wise) annotation types, but the navigation regime

needs to account for presence of some higher types in the annotations store, even if

they are not logically part of the pattern specification.

Consider an application for which both an address and a date annotator need to

be developed. Numbered tokens may be part of a street address, they also might be

interpreted (within some orthographic conventions) as years. Both annotators traffic

15 Note that, while appealing to ‘common intuitions’ in the interpretation of ‘longer [PName]

annotations stand for nodes in a tree hierarchy above shorter [Name] annotations’ (Sect. 2), it is essential

for the system’s completeness and correctness that such relationships are explicitly encoded in a set of

priority declarations.
16 Assuming that [Phrase] is declared a common supertype to both [NP] and [VG].

A framework for traversing dense annotation lattices 195

123

in [Token]s. However, if there are [Address] annotations in the store already, a

[Date] annotator should not ‘descend’ under them, to inspect [Address]-internal

[Token]s: in the context of [Address] annotation over ‘‘1600 Pennsylvania
Avenue’’, there is no point in tagging ‘‘1600’’ as a [Year]; in fact, it would be wrong

to do so. Yet we have seen no natural way in which date patterns might be made

aware of (pre-annotated) address fragments. Still, this is a common situation in

pipelined text processing environments, where multiple annotators of varied

provenance operate in sequence, but not necessarily sharing knowledge of each

other.

5.2 Grammar-wide declarations

In such situations, another device comes into play: a system of declarations has been

developed to control both the matching and the iteration components of the

framework.

With respect to the earlier example, where [Address]-internal numbered tokens

need to be kept invisible to the AFst interpreter, types external to a grammar can be

explicitly brought into the typeset iterator filter by means of an honour declaration:

Without the honour declaration, the grammar fragment above would induce a

typeset iterator over [Token]s. The pattern would trigger over a fragment within the

[Address] span of ‘‘ … 1650 Sunset Boulevard’’, posting [Year] over ‘‘1650’’. The

declaration adds [Address] to the typeset iterator filter; when the interpreter gets to

the point in the lattice where both [Token] and [Address] annotations start at

‘‘1650’’, the effect of the declarations will be to guide the choice according to the

intent of the grammar writer, namely to prevent inspection of the [Token]s under

[Address]. (We assume here that the address grammar is applied before the date

grammar; see grammar cascading below.)

Other declarations affecting navigation are boundary, focus, match, and

advance. Typically, the scope of the iterator is defined with respect to a covering

annotation type; by default, this is [Sentence]. The intent here is to prevent posting of

new annotations across sentence boundaries. The boundary declaration caters for

other situations where the scope of pattern application is important: we would not

want to, for instance, have the [Subj]-[Obj] relabeling pattern (outlined in Sect. 5.1)

to trigger across the boundary of certain clause types, a "boundary % Clause [];"

declaration sees to that. Note that there may be multiple boundary annotations.

196 B. Boguraev, M. Neff

123

We are now in a position to give a more precise definition of our typeset iterator.

It is defined as a sub-iterator under a boundary annotation, with the first annotation

of a type in the set that starts at or after the beginning of the boundary annotation

and finishing with the last one of a type in the set that ends at or before the end of

the boundary annotation.

The focus declaration allows restricting the operation of a grammar to just those

segments of the text source ‘below’ one or more focus annotation types. Arbitrary

constraints (and arbitrary levels of nesting) can be specified on a focus type. This

caters to situations where different (sets of) grammars are appropriate to e.g.

different sections of documents, and allows for re-targeting of grammars.

A match declaration controls how the iterator decides what match(es) to return

as successful; usual parameters here include "match % all;", or "match %

longest;", which is the default.

Finally, an advance declaration specifies how/where to restart the iterator

immediately upon a successful match. By default, the iterator starts again with the

next annotation after the last one it posts. This allows any specified right context (to

the pattern just applied) to be considered for the next match (the current pattern).

There are two alternative behaviors that can be invoked via this declaration: an

"advance % skip;" or "advance % step;". In the former case, the iterator is

advanced to the first position after the end of the match; in the latter, the iterator is

advanced to the next position after the start of the match. A skip directive thus

does not examine right context to a prior match; the alternative (step) regime is

useful in situations where more fine-grained context examination is essential for

pattern application.

The procedural aspects of match and advance are not unfamiliar: pattern-

matching systems like GATE and CPSL (Common Pattern Specification Language;

Appelt and Onyshkevych 1996) appeal to similar notions. We highlight here the fact

that while not directly affecting navigation per se, these declarations affect the

iterator behavior, and thus play into the mix of devices whereby the grammar writer

can fine-tune the pattern application process.

The scope of all declarations is the entire grammar. Note that it is always possible

to partition a grammar and derive an equivalent grammar cascade, with different

declarations applying to the pattern subsets in the multiple grammar sources.

5.3 Grammar cascading

In fact, grammar cascading is the third global mechanism for controlling navigation.

Cascades of grammars were originally conceived as a device for simplifying the

analysis task, by building potentially complex structures by partial, incremental,

analysis and from the bottom up (e.g. first find [NP] annotations, then do some more

syntactic phrase analysis, and only then use all the information in the annotations

store to promote some [NP]s to [Subject]s).

Grammar cascading, however, has an additional role to play in facilitating

navigation, especially in dense annotation spaces with multiple annotations present

over the same text span. The more annotation types referenced by a grammar, the

A framework for traversing dense annotation lattices 197

123

harder for a grammar writer it is to anticipate conflict situations with multiply-

layered annotations, which would require explicit navigational control through the

grammar (as described in Sect. 5.4 below). Conversely, smaller grammars lead to

iterators with smaller number of types in their filter; this, in its own turn, eases the

grammar writer’s burden of having to be explicit about lattice traversal.

Separating the patterns which target related subsets of types into different

grammars achieves, in effect, a stratification of the annotations store. Different

patterns, at different levels of granularity of specification, can be concisely and

perspicuously stated as separate grammars, without bringing too many different

annotation types (especially from different levels of analysis and representation),

into the typeset iterator’s filter.

5.4 Up-down attention shifts

There are two primary notational devices for redirecting the iterator’s attention in

vertical, as opposed to horizontal, direction. One of them deals with situations we

encountered earlier: how to register a match over a ‘higher’ annotation, while

simultaneously detecting a particular pattern over its components. In Sects. 5.1 and

5.2 we saw how to point the typeset iterator at the higher, or lower, level of

traversal. Here, we introduce another special purpose iterator: a mixed iterator, for

dual scanning regimes.

Mixed iteration is essential for a common task in pattern matching over layered

annotations stores: examining a ‘composite’ annotation’s inner contour (cf. [PName]

in Sect. 2). We already saw examples of this, such as collecting titled proper names

only, or proper names whose [Last] components satisfy some constraint (Sect. 2),

or matching on noun phrases with temporal premodifiers (Sect. 4.1). Arguably, this

kind of traversal can be realized as a single-level, left-to-right, scan over annotations

with appropriately rich and informative feature structure make-up (i.e. have features

carry the information whether a [PName] instance has a [Title] annotation

underneath it). In effect, this would require earlier (upstream) annotators to

‘anticipate’ the kinds of queries to be posed later—and ‘cache’ the answers as

feature values on the annotation they post.

However, in an environment where annotators can (and will) operate indepen-

dently of each other, and where, furthermore, annotations from different processes

can coexist, we cannot rely on consistent application of disciplined recording of

annotation inner structure exclusively by means of features.

In order to see whether a sequence of annotations that a higher annotation spans

conforms to certain configurational constraints, what we would need to commu-

nicate to the interpreter amounts to the following complex directive:

• test for an annotation of a certain type, with or without additional constraints on

its features;

• upon a successful match, descend under this annotation;

• test whether a given pattern matches exactly the sequence of lower annotations

covered by the higher match

198 B. Boguraev, M. Neff

123

• if the sub-pattern matches, pop back (ascend) to a point immediately after the

higher level annotation;

• succeed,

• and then proceed.

Implementationally, the ‘upper iterator’ is stacked, the current annotation

becomes the boundary annotation, a new typeset sub-iterator is instantiated with the

lower types in its filter, and the next lower level is linearized for execution.

The notational device used for such an operation employs a pair of push and pop
operators, available as meta-specifiers on symbols. Conceptually, if Higher […] is

a symbol matching an annotation which could be covering other annotations,

"Higher […,@descend]" would signal the ‘descend under’ operation. (The match-

ing @descend and @ascend are instances of interpreter directives—notational

devices which, while syntactically conforming to elements in an AFst symbol

specification, function as signals to the interpreter to shift to a higher/lower lattice

traversal line.)

Dual scanning offers a way to perform tree traversal, in annotation configurations

where overlayed, edge-anchored annotations encode a tree structure, by means of

interpreting full/partial alignment and relative coverage of spans. Consider the

following convention:

• an annotation corresponds to a tree node;

• two annotations with different spans belong to the same sub-tree if their spans

are strictly overlapping: i.e. the span of one must completely cover the span of

the other;

• the annotation with the longer span defines a node which is ‘above’ the node for

the annotation with the shorter span;

• if the two annotations are co-terminous at both ends, the annotation with higher

priority (see Sect. 2) defines the higher node of the two in the sub-tree.

Remembering the tree structure implied by the lattice configuration for ‘‘General
Ulysses S. Grant’’ (Sect. 2), the following expression encodes, in effect, a query

against the set of PName trees in the database, which will match all proper names of

the form ‘‘General … Grant’’:

In a number of situations, inspecting configurational properties of the annotation

lattice requires an operation conceptually much simpler than tree traversal. The

@descend/@ascend mechanism requires that the grammar writer be precise: the

A framework for traversing dense annotation lattices 199

123

entire sequence of annotations at the lower level needs to be consumed by the sub-

iterator pattern, and the exact number of level shifts (stack push and pop’s) have to

be specified, in order to get to the right level of interest.

In contrast, the expressive power of the notation gains a lot just by being able

to query certain positional relationships among annotations in vertical direction.

Different interpreter directives, again cast to fit into the syntax of AFst symbols,

test for relative spans overlap, coverage, and extent. Symbols specifying such

configurational queries may look like the following.

The first example matches only on sentence-initial [Token]s, the second tests if

there is a proper name ([PName]) within the span of a [Subject], and the third one

examines whether a [PName] annotation is co-terminous with an [NP] annotation.

The inventory of such directives is small; in addition to the three examples

above, there is also _below. In contrast to the way @descend/@ascend operates,

here inspection of appropriate context above, or below, is carried out without

disturbing the primary, left-to-right iterator movement. This improves the clarity of

pattern specification, results in a more efficient runtime characteristics, and allows

for testing for configurational constraints among two levels of a lattice separated by

arbitrary (and perhaps unknown in advance) number of intermediate layers.

6 Conclusion

This paper focuses largely on support for navigating through annotation spaces:

i.e. those aspects of a notational system whereby patterns over annotation sequences

and constraints over annotation configurations can be succinctly expressed and

efficiently carried out by an interpreter largely operating over an FST graph. The full

language specification can be found in (Boguraev and Neff 2007). The AFst

framework is fully implemented as a UIMA annotator, complete with grammar and

symbol compilers and a runtime engine. A number of optimizations (most

prominently to do with pre-indexing of all instances of annotations from within the

current typeset iterator, and maintaining order and span information on all possible

routes through the lattice instantiating only the iterator type set) ensure efficient

performance in the light of real data.

The framework supports diverse analytic tasks. Most commonly, it has been used

to realize a range of named entity detection systems, in a variety of domains. Named

entity detection has typically been interleaved with shallow syntactic parsing, also

implemented as a cascade of AFst grammars (Boguraev 2000). The ability to mix,

within the same application, syntactic and semantic operations over an annotations

store offers well known benefits like generalizing over syntactic configurations with

certain distributional properties—e.g. for terminology identification in new domains

200 B. Boguraev, M. Neff

123

(Park et al. 2002). More recently, we combined fine-grained temporal expression

parsing (realized as a kind of named entity recognition for time expressions) with

shallow parsing for phrase, and clause, boundaries, for the purposes of extracting

features for classification-based temporal anchoring (Boguraev and Ando 2005).

The bulk of the grammar formalism evolved from the requirements of ‘linear’

pattern specification. It is, however, considerations of e.g. constraining patterns to

certain contexts only, expressly managing lattice traversal at higher levels

of a grammar cascade, and resolving ambiguities of choice between e.g. lexical

(token-based), semantic (category-based), and syntactic (phrase-based) annotations

over identical text spans, that have informed extensions of the formalism to do

specifically with lattice traversal, and have motivated the notational devices

described in the previous sections. Issues of reconciling syntactic phrase boundaries

with semantic constraints on e.g. phrase heads, especially where semantic informa-

tion is encoded in types posted by upstream annotators unaware of constraints upon

the grammars intended to mine them, have largely led to the design of our different

iterator regimes, up-and-down attention shifts, scan controls, and principles of type

priority specification and use.

Most recently, we have encountered situations where due to proliferation of

semantic types in rich domains (we outlined this scenario in the [Actor]/

[Director]/[Producer] example in Sect. 2), the density of the annotation lattice is

very high. A strictly unambiguous iteration regime—with its requisite needs for

up/down attention shifts and priority specification—may not be the optimal way to

search through an annotations store. After all, if the upstream annotator(s)

responsible for depositing the plethora of types in the annotations store do not have

a uniform and consistent notion of priorities, it may be the case that such a notion

cannot be inferred at the point where a set of AFst grammars come to play.

This motivates one of the principal items in our future work list: extending the

runtime system with a new iterator, designed to visit more than one annotation at a

given point of the input. Informally, this is to be thought of as a ‘semi-ambiguous’

iterator: it will still be like a typeset iterator, but in situations where instances of

more than one type (from its type set) are encountered in the same context, the

iterator will visit all of them (in contrast to choosing the higher priority one, or

following explicit @descend/@ascend directives). This appears similar in spirit to

JAPEs iteration regime (Sect. 3); there are differences, however, mainly in the fact

that we still require the type filtering, in order to control single-path traversal of the

lattice outside of the areas where ambiguous regime makes sense—this is necessary

to deal with situations where conflicting annotation layers have been deposited by

upstream annotators.

From an implementation point of view, the AFst architecture already allows for

‘plugging’ in of different iterators, effectively swapping the (default) unambiguous

typeset iterator with the semi-ambiguous variant outlined above. Given the

inherently grammar-wide ‘scope’ of an iterator, the ability to cascade grammars

allows for mixing different iterators while still processing the same input.

An additional extension of the framework is motivated by the observation

that with the extended expressiveness of annotation-based representational

schemes—especially in line with UIMA’s feature-based subsumption hierarchy of

A framework for traversing dense annotation lattices 201

123

types—syntactic trees can be directly encoded as sets of annotations, by means of

heavy use of pointer-based feature system where a (type-based) tree node explicitly

refers to its children (also type-based tree nodes). Such a representation differs

substantially from the implied tree structure encoded in annotations spans (as

outlined in Sects. 2 and 5.4). Within the iterator plug-in architecture discussed here,

such tree traversal can be naturally facilitated by a special-purpose, ‘tree walk’

iterator. Note that this is a different, and potentially more flexible, solution than

one deploying tree-walking automata, like reported for instance in (Srihari et al.

2008)—as it naturally addresses the variability in encoding schemes mediating

between tree characteristics (possibly dependent upon linguistic theory and

processing framework) and the corresponding annotation-based representation.

Finally, we note that the framework described here operates over text-consuming

annotations. Not all annotations-based representational schemes are bounded by such

an assumption. For instance, recent work on identifying relations in unstructured text

tends to represent a relation among two (or more) entities in the text as a feature

structure with references to annotations, not necessarily spanning any text itself.

While references to annotations can be captured and manipulated in AFst, it will need

to be extended to handle non-consuming (zero-length) annotations.

These proposed extensions would complete the set of devices necessary for

annotation lattice navigation, no matter how dense the lattice might be. Overall, the

AFst formalism—and in particular the notational components for considering, and

reacting to, both horizontal and vertical contexts—offers a perspicuous, efficient,

scalable and portable mechanism for exploring and mining dense annotation spaces.

References

Appelt, D. E., & Onyshkevych, B. (1996). The common pattern specification language. In Proceedings of
a workshop held at Baltimore, Maryland (pp. 23–30). Morristown, NJ, USA: Association for

Computational Linguistics.

Bird, S. (2006). NLTK: The natural language toolkit. In Demonstration session, 45th annual meeting of
the ACL. Sydney, Australia.

Bird, S., Buneman, P., & Tan, W.-C. (2000). Towards a query language for annotation graphs. In Second
international language resources and evaluation conference. Athens, Greece.

Bird, S., & Liberman, M. (2001). A formal framework for linguistic annotation. Speech Communication,
33(1–2), 23–60.

Boguraev, B. (2000). Towards finite-state analysis of lexical cohesion. In Proceedings of the 3rd
international conference on finite-state methods for NLP, INTEX-3. Liege, Belgium.

Boguraev, B., & Ando, R. K. (2005). TimeML-compliant text analysis for temporal reasoning. In

Nineteenth international joint conference on artificial intelligence (IJCAI-05). Edinburgh, Scotland.

Boguraev, B., & Neff, M. (2007). An annotation-based finite state system for UIMA: User documentation

and grammar writing manual. Technical report, IBM T.J. Watson Research Center, Yorktown

Heights, New York.

Cassidy, S. (2002). XQuery as an annotation query language: A use case analysis. In: Third international
language resources and evaluation conference. Las Palmas, Spain.

Cunningham, H. (2002). GATE, a general architecture for language engineering. Computers and the
Humanities, 36(2), 223–254.

Cunningham, H., Maynard, D., & Tablan, V. (2000). JAPE: A Java annotation patterns engine. Technical

Memo CS-00-10, Institute for Language, Speech and Hearing (ILASH), and Department of

Computer Science, University of Sheffield, Sheffield.

202 B. Boguraev, M. Neff

123

Cunningham, H., & Scott, D. (2004). Software architectures for language engineering. Special Issue.

Natural Language Engineering, 10(4).

Dale, R. (2005). Industry watch. Natural Language Engineering, 11, 435–439.

Droẑdẑyński, W., Krieger, H.-U., Piskorski, J., Schäfer, U., & Xu, F. (2004). Shallow processing with

unification and typed feature structures—Foundations and applications. Künstliche Intelligenz,
(1), 17–23.

Ferrucci, D., & Lally, A. (2004). UIMA: An architectural approach to unstructured information

processing in the corporate research environment. Natural Language Engineering, 10(4). Special

Issue on Software Architectures for Language Engineering.

Grefenstette, G. (1999). Light parsing as finite state filtering. In A. Kornai (Ed.), Extended finite state
models of language, studies in natural language processing, (pp. 86–94). Cambridge UK:

Cambridge University Press.

Grover, C., Matheson, C., Mikheev, A., & Moens, M. (2000). LT-TTT: A flexible tokenisation tool. In

Proceedings of the second international conference on language resources and evaluation,

(pp. 1147–1154). Spain.

Hahn, U., Buyko, E., Tomanek, K., Piao, S., McNaught, J., Tsuruoka, Y., & Ananiadou, S. (2007). An

annotation type system for a data-driven NLP pipeline. In Linguistic annotation workshop (the
LAW); ACL-2007. Prague, Czech Republic.

Ide, N., & Romary, L. (2004). International standard for a linguistic annotation framework. Natural
Language Engineering, 10(4). Special Issue on Software Architectures for Language Engineering.

Ide, N., & Suderman, K. (2007). GrAF: A graph-based format for linguistic annotation. In Linguistic
annotation workshop (the LAW); ACL-2007. Prague, Czech Republic.

Lai, C., & Bird, S. (2004). Querying and updating treebanks: A critical survey and requirements analysis.

In Australasian language technology workshop. Sydney.

Park, Y., Byrd, R., & Boguraev, B. (2002). Automatic glossary extraction: Beyond terminology

identification. In Proceedings of the 19th international conference on computational linguistics
(COLING), (pp. 772–778). Taiwan.

Silberztein, M. (2000). INTEX: An integrated FST development environment. Theoretical Computer
Science, 231(1), 33–46.

Simov, K., Kouylekov, M., & Simov, A. (2002). Cascaded regular grammars over XML documents. In

Proceedings of the second international workshop on NLP and XML (NLPXML-2002). Taipei,

Tawian.

Srihari, R. K., Li, W., Cornell, T., & Niu, C. (2008). InfoXtract: A customizable intermediate level

information extraction engine. Natural Language Engineering.

Verhagen, M., Stubbs, A., & Pustejovsky, J. (2007). Combining independent syntactic and semantic

annotation schemes. In Linguistic annotation workshop (the LAW); ACL-2007. Prague, Czech

Republic.

A framework for traversing dense annotation lattices 203

123

	A framework for traversing dense annotation lattices
	Abstract
	Multi-faceted annotation representations
	Dense annotation lattices

	Challenges of lattice navigation
	Related work: patterns over annotations
	Elements of annotation-matching formalism
	Pattern specification
	Navigational constraints

	Support for navigational control
	Iterator induction
	Grammar-wide declarations
	Grammar cascading
	Up-down attention shifts

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

