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To be immune to variations in illumination, a vision
system needs to be able to decompose images into their
illumination and surface reflectance components. Although
this problemis greatly underconstrained, the human visual
system is able to solve it in diverse situations. Most
computational studies thus far have been concerned with
strategiesfor solving the problem in the restricted domain
of 2-D Mondrians. This domain has the simplifying
characterigic of permitting discontinuities only in the
reflectance distribution while the illumination distribution
is congtrained to vary smoothly. Such approaches prove
inadequate in a 3-D world of painted polyhedra which
allows for the existence of discontinuities in both the
reflectance and illumination distributions. We propose a
two-stage computational strategy for interpreting images
acquired in such a domain.

1. Introduction

Figure 1 illustrates a classic problem for vision
systems: one of the circled edges is due to a change in
surface color (areflectance edge) while the other is due to a
change in surface orientation leading to a change in
illumination (an illuminance edge). In the image, though,
both these transitions have identical luminance profiles.
How might one distinguish between the two situations?
Making this distinction, which humans do effortlesdly, is
important for most vision systems since it enables them to
factor out from the image the varying effects of
illumination from the reflectance distribution intrinsic to
the object [3]. The recovery of such intrinsic propertiesis
important for many visual tasks.

While the importance of such computations has long
been recognized in the machine vision community, the
approaches devel oped so far are capable of functioning only
in highly restricted domains. We wish to develop
techniques that will be somewhat more general, and to that
end we introduce the world of 'painted polyhedra in which
to try out our ideas. We use human perception asaguidein
our investigations, but make no claims of the biological
plausibility of the individual computational steps involved.
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Media Laboratory from Goldstar Co. Ltd. and the Television of
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Figure 1. A typical real world scene. hang&s in surface
reflectance or orientation lead to variations in image
luminance that may have identical profileslocally.

2. Previous work:

The predominant paradigm for analysing images in terms
of their illumination and reflectance componentsis Retinex
[16, 17, 12, 19, 5], motivated by Land's lightness
constancy experiments with ‘Mondrian' stimuli (the term
lightness denotes a perceptual estimate of true reflectance).
Mondrian patterns consist of patches of differently colored
paper pasted on a planar background. The illumination
across the patterns is constrained to vary smoothly. In such
a setup, discontinuities in image luminance coincide
exclusively with reflectance discontinuities in the scene.
Retinex exploits this characteristic to recover the lightness
distribution from a given image. The image is differentiated
and then thresholded to get rid of slow intensity variations
due to illumination. Subsequent reconstitution of the
image through integration leads to the recovery of the
underlying reflectance distribution upto an unknown offset.

While Retinex performs well in the Mondrian domain,
its assumption of a smoothly varying illumination gradient
limits its usefulness in a 3-D world containing painted
polyhedra. The sharp intensity transitions exhibited by
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images in this domain can arise not only from surface
reflectance variations but aso from changes in illumination
across differently oriented faces of the polyhedra. Having no
notion of three-dimensionality, Retinex classifies all such
transitions as being due to reflectance changes - an
interpretation which is often perceptualy and physically
incorrect, asillustrated in figure 2 (cf. [1, 11, 15]).

(a) (b)
Figure 2. Retinex treats both the patterns shown above
identically; asfar asit is concerned, the pattern on the left
isjust another flat Mondrian with three differently colored
patches. The more natural interpretation of pattern (a)
would be as a uniform albedo 3-D cube illuminated in a
particular fashion.

Adelson and Pentland [2] proposed a cost basd
‘workshop metaphor' for interpreting images of simple
painted polyhedra. A set of specialists deal with 3-D shape,
illumination, and reflectance, and seek a least cost modd
for the image. The model was able to ded with some
simple images but did not readily generdize to other
situations.

In the rest of the paper, we describe a new approach that
seems better suited to interpreting images of objects
belonging to the world of painted polyhedra.

3. A new direction:

In the present investigation, our domain consists of
painted polyhedral/origami objects such as those shown in
figure 3. We assume an absence of inter- and intra-object
occlusions and cast shadows. The surfaces shall be assumed
to be qualitatively matte without necessarily being
precisely Lambertian. The scene shall be assumed to be
illuminated with a diffuse ambient and a single distant light
source (see [20] for justification).

Stairs and Stripes

Figure 3. Two sample objects from our domain of interest.
Notice that the figure on the right represents an object
whose physical realization isimpossible.

Our strategy has two stages. The first stage attempts to
use simple local gray-level junction analysis to classify the
observed image edges into the illumination or reflectance
categories. Subsequent processing verifies the global
consistency of these local inferences while also reasoning
about the 3-D structure of the object and the illumination
source direction. Thiswork draws on a host of ideas each of
which merits detailed description. For reasons of space, we
shall lay emphasis on how the various ideas work together
in the overall computational framework for lightness
recovery without describing any individual one in detall.
Further details may be found in [21].

3.1 Gray-level junction analysis:

Figures 1 and 3 demonstrate that edges with identical
intensity profiles can have very different perceptual/
physical interpretations. Local analysis of such profiles,
then, seems unlikely to be capable of classifying edges
differently. Can any other source of local information aid in
distinguishing between reflectance and illumination edges?

In anon-accidental image, an edge representing the line
of join of two differently oriented surfaces necessarily
exhibits either an arrow or Y junction at both its end
points. A reflectance edge that is not deliberately made to
coincide with the corners of the underlying polygonal
surface, on the other hand, exhibits T-junctions at its end-
points (see figure 4). This mapping from scene to images
may be inverted and the existence of particular types of
junctions in the image may be used as evidence for the
presence of particular physical characteristics in  the
underlying scene. Following this line of reasoning, we
may construct a simple junction catalogue that can be used
for classifying scene edges. Figure 5 shows the junction
catalogue used in our implementation. This catalogue is
not exhaustive for all possible polyhedra junction types;
our intent here is only to indicate the basic idea behind the
approach. Besides the afore-mentioned arow and Y
junctions, it also includes the psi-junction aong with
congtraints on the gray-levels that need to be satisfied
before equating an image junction with the reference
junction pattern.

A
L)
D

(a) (b)

Figure 4. Snce an illumination edge represents a line of
join of two differently oriented surfaces S1 and &, lines 'a
and 'b' must be non-collinear in the scene and consequently
in a non-accidental image. However, for a reflectance edge
arising simply out of a change in albedo over different
regions of the same surface (asin (b)), line segments'a’ and
'b" are collinear both in the scene and the image.
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Due to the 1-to-1 relationship between junction-types
and interpretations, no constraint propagéation is required
during the labelling process which simply involves
determining an edge's label from the junction-type it
exhibits at its end-points. An iterative brightness
equalization acrossillumination edges leads, eventually, to
the lightness distribution [21]. For most objects, the labels
derived from both end-points are identica. However,
impossible objects (of the type shown in figure 3) may
exhibit edges whose interpretation changes along their
length. To handle such objects, the 'strength’ of the inferred
label is made to decrease monotonically (linearly, in the
current implementation) from the label inducing end to the
other end. Figures 6 and 7 show some examples of
applying the gray-level junction analysis ideas to images of
synthetic polyhedral/origami objects. All occluding edges

are left unclassified.
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Figure 5. The junction catalogue we used. 'a’, 'b', 'c' and 'd
represent brightness values.
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Figure 6. Two images interpreted by the junction analysis
program.
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Figure 7. Interpreting the image of an 'impossible’ object
using the junction analysis program. The change in shade
from black to white along the labelled edges indicates the
decreasing 'strength’ of the label.

<

The gray-level junction analysis approach predicts that
in the absence of any junctions corresponding to
illumination edges (and therefore to 3-D shapes), an image
should appear to represent aflat painted scene with no 3-D
attributes. That this prediction holds true is demonstrated in
figure 8. By maintaining all other attributes of an image
constant and varying only the geometric structure slightly
to include or abolish particular junction types, the
appearance of the scene can be changed dramatically. This
compelling demonstration highlights the importance of
simple gray-level junction analysis in image interpretation.

Figure 8. By including or excluding junction types that
signal illumination edges in images, a figure may be made

to appear flat or three dimensional. Notice that the top and
bottom halves of both these figures are identical.

3.2 The need for global analysis:

The apparent success of the simple junction analysis
scheme in interpreting the examples so far might induce
one to accept it as the complete solution to the problem we
set out to solve. However, it is simple to show that this
scheme has some fundamental limitations due primarily to
its local nature. Figure 9 is a case in point. Perceptualy,
the image on the left appears to depict a properly sheded
uniform albedo 3-D truncated hexagona pyramid; all the
edges are perceived as arising out of illumination changes.
Theimage on theright is seen as aflat painted pattern with
all the edges arising out of reflectance changes. Our
junction analysis scheme, however, labels al edgesin both
images as illumination edges since al the observed
junctions (arrows and Y's) are associated with illumination
edges in the junction catalogue. The cause of this problem,
of course, isthat the inferences suggested by the catalogue
are justified locally, but the global structure of the image
in figure 9(b) renders them incorrect. Evidently, a process
capable of reasoning about the global structure of the
image is required. Such aglobal scope would also enable it
to verify whether the image gray-levels constitute a
globally 'consistent’ shading pattern. But exactly what do
we mean by 'consistency'?

A pattern of gray-levels shall be considered 'consistent’
if it can be produced by illuminating with a single distant
light source a uniform albedo 3-D structure consistent with
the geometric structure of the pattern. While there ae
clearly infinitely many 3-D structures consistent with the
pattern's geometric structure, we restrict our attention to
those that are perceptualy likely. Also, for reasons
described later, two gray-level patterns shall be considered
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‘equivalent’ if their ordina structures (relative ordering of
the different patches based on their associated gray-levels)
areidentical; precise gray-level matches are not required.

(@) (b)

Figure9. Two figures with identical geometric structures
but very different interpretations. Figure (a) is perceived to
be a shaded 3-D truncated hexagonal prism while figure (b)
appearsto be a flat pattern of paint.

From the definition of gray-level pattern consistency
given above, it is apparent that a method for verifying such
consistency needs to perform two conceptualy different
tasks:

1. it needs to recover a set (possibly singleton) of
perceptually likely 3-D structures consistent with the
geometric structure of the input pattern, and

2. it needs to verify whether (any of) the recovered 3-D
structures can be illuminated with a single distant light
source so as to produce a gray-level pattern equivalent to
the input pattern.

Figure 10 shows this two part strategy. The second part
of the strategy, in essence, attempts to determine whether
the variationsin gray-levels across different faces are due to
shading or changesin intrinsic surface reflectance. We next
describe briefly computational schemes to accomplish esch

of these tasks.

3-D shape \ Shading
consistency
check

Light

Input
source

@ 3-D shape ®)

Figure 10. Our two-part strategy comprises of (a) deriving
the likely 3-D dtructures corresponding to the geometric
configuration of the image, and (b) verifying the structure's
consistency with the image shading pattern.

3.3 Deriving 3-D shapes from 2-D drawings:

As stated earlier, our aim here is to interpret 2-D line-
drawings extracted from the input gray-level patterns in
terms of their perceptually/physically likely 3-D structures.
The difficulty of this task, well documented by sevrd
reserachers[14, 22], arises from its highly underconstrained
nature; any planar line-drawing is geometrically consistent
with infinitely many 3-D structures, as shown in figure 11.

In light of this observation, two questions that need to be
addressed are: 1.what distinguishes the 'correct' 3-D
structure from the rest?, and 2.how might we search for the
‘correct’ structure in the infinite space of all possible 3-D
structures consistent with the given line-drawing?

Figure 11. Any planar line-drawing is geometrically
consistent with infinitely many 3-D structures.

It has long been suggested that the distinguishing
characteristic of a perceptually favored 3-D interpretation is
its low ‘complexity'. The variance of the included angles
has been proposed as a measure of complexity [4, 18];
minimizing this metric leads to perceptualy correct
interpretations for many line drawings. However, we find
that using this metric alone results in unexpected ad
bizarre interpretations for certain figures (see figure 12). We
propose that to properly characterise the perceptualy
‘correct’ interpretations, three types of measures ae
required: angle variance, planarity of faces and overal
compactness; we wish to obtain that 3-D configuration
which, while having planar faces is maximally regular ad
compact so as not to require excessive foreshortening of
any line segment to relate it to the input 2-D drawing. A
similar suggestion was madein [9].

gy

Figure 12. Perceptually incorrect shapes recovered from the
input line-drawings by Marill's algorithm. The shapes ae
shown as states of a 'beads-on-wires model. The 'wires ae
aligned to the line-of-sight and the positions of the beads
represent the depth values associated with each vertex.

The question of how to search for the desred
configuration in the infinite search-space of all possible
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configurations is a tricky one. Traditional approaches
usually involve formulating and then optimizing a
composite cost function (such as a weighted sum of the
relevant metrics [9]). This approach suffers not only from
the need to make ad hoc choices for the relative weights but
also has the same drawbacks that regularizing techniques
have, viz.,, the congructed cost-function might not
represent the original problem. Also, the parameter values
that might be appropriate for one problem instance might
be inappropriate for another.

Our search strategy belongs to the class of 'greedy’
optimization algorithms [6]. Here we only give a
conceptual description of the strategy and refer the reeder to
[21] for aformal treatment of the same. Imagine that one is
given a 2-D line drawing that one wishes to derive the
maximally regular planar 3-D shape of. What kinds of
intermediate stages should one expect to pass through on
way to the final configuration? One natural way of getting
to the desred shape is to incrementaly modify the
originally planar configuration so that at every intermediate
step the most regular planar faceted configuration is
obtained. This can be thought of as doing gradient descent
in regularity space where the points considered in the space
correspond to the different planar-facsted 3-D
configurations. The first local minima reached in this
fashion is reported as the recovered 3-D shape. This
strategy does not require the construction of one composite
cost function from different metrics. Besides obviating the
need for ad hoc choices of parameters, this also has the
desirable result of having the same algorithm work
unchanged on all problem instances. Figure 13 shows two
sample results.

TR

Figure 13. Two examples of 3-D shape recovery using
constraints of symmetry, planarity and compactness.

3.4 Verifying the 'consistency’ of shading:

With a method for recovering 3-D structures from 2-D
line-drawings in hand, we need now to determine whether
the image shading pattern is 'consistent’ with the recovered
structure. In other words, we wish to find out whether there
exist any source directions that would completely account
for al gray-level variations in the image without having to
invoke the hypothesis of surface reflectance changes.

Given a 3-D structure and the gray-levels associated with
each of its faces, the problem of determining the source
direction under the assumption of a precisely specified

reflectance function is not too difficult and closed-form
solutions for this task have aready been described [13, 20,
23]. These methods, however, have some fundamental
limitations. Firstly, because of their dependence on precise
measurements of gray-level values, minor alterations in
image gray-levels can radically ater the computed solution,
even though perceptually they may be of no conseguence at
all. Figure 14 provides an illustration of this problem.

| “q A

A

Before

Figure 14. The various faces of a polyhedral object define
curves of valid light directions in gradient space. The
common point of intersection of all these curves
corresponds to the light direction that would account for the
brightnesses of all faces simultaneously. A dlight alteration
in the gray-level of one of the faces shifts the
corresponding locus of valid light directions and the four
curves (corresponding to the valid source directions for the
four visible faces in this example) no longer have a
common point of intersection implying that the sliced-cube
on theright isno longer consistently shaded. Perceptually,
however, the minor gray-level alteration isinconsequential.

Secondly, such methods rely critically on a precise
specification of the surface reflectance function. Minor
alterations in this function profoundly influence the
computed solution. This is a serious drawback considering
that in most situations, the choice of the reflectance
function is at best an educated guess. What we seek to have
is amethod that would be gracefully tolerant of changes in
the image gray-levels and the specification of surface
reflectance function. Instead of adopting an ad-hoc patch-up
like the use of least-square error minimization, we propose
aqualitatively different paradigm.

One of the key motivating observations behind our
approach is that our perceptual apparatus is far more
sensitive to detecting relations like 'brighter than'/'darker
than' between pairs of adjacent surfaces than to estimating
their absolute brightnesses. Perceptua interpretations of
images are quite stable over aterationsin image gray-levels
that leave the binary relations between adjacent pairs of
surfaces undtered (in a sense, these relations define
perceptual equivalence classes for images). In our approach,
we use only such binary relations extracted from the
underlying images. The other key idea is to use these
relations to constrain the source direction in a manner that
least commits us to a particular reflectance function.
Consider figure 15. If S1 and S2 are two surfaces with
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normals nl and n2 (remember that the 3-D shape of the
object has already been recovered in phase-1 of the strategy)
and Sl appears darker than 2 in the image, then the valid
light directions can be represented on a Gaussian sphere by
one of the two hemispheres formed by a plane passing
through the origin that perpendicularly bisects the vector
joining the tips of the normals n1 and n2 on the sphere
surface. This set of light directions is valid for any
reflectance function that results in a monotonically
decreasing relationship between image luminance and angle
of incidence. We may further constrain the light directions
to lie above the horizontal plane. A light direction chosen
from this set will maintain the ordinal relationship between
the brightnesses of surfaces S1 and S2. Other pairs of
surfaces will similarly define hemispheres of valid light
directions. The complete shading pattern can be considered
consistent if the intersection of al the hemispheres
corresponding to different adjacent surface pairs yiedlds a
finite set. The problem of checking for the consistency of
the observed shading pattern is thus rendered equivalent to
determining whether a set of hemispheres have a non-null
intersection. The non-null intersection set, if obtained,
represents the valid set of light directions. Since (as shown
below) each hemisphereis equivaent to a linear constraint
on the possible positions of the source vector, this
approach lends itself naturally to a linear programming
solution method such as the Fourier-Motzkin elimination
technique [10, 7]. Interestingly, the Perceptron Learning
algorithm [8] is also perfectly suited to solving this
problem. This approach also has the desired properties of
not being critically dependent on precise measurements of
the absolute surface brightness values and not having to
assume a precisely specified formal reflectance model.

7

Figure 15. Two surfaces of known orientation and their
relative brightnesses constrain the light source to lie in a
particular sector of the Gaussian sphere.

34.1. Using linear-programming to determine light
directions from shaded images of polyhedral objects:

Consider the pair of surfaces S1 and S2 with normals
N, and N, respectively. Compute a vector S such that
A(A(p+Nn)/2)=0, Sx(NxNn)=0;

. N>0and S . N, <0if Slis brighter than S2
.M <0and S . N, >0if S2is brighter than S1

The hemisphere of valid directions defined by the surface
pair S1 and S2 then is precisely the set of vectors t

w n v

satisfying the inequality s.t > 0. To constrain the valid
directions to lie above the horizontal plane, we may wish
to enforce the additional inequality z .t = 0 (assuming
without loss of generality that the ground plane is the X-Y
plane). For each adjacent pair of surfaces Si and §j, we get
one such linear inequality , viz. sij . t > 0. We wish to find
avector t (if it exists) that satisfies all these inequalities.
Thisisasimple linear programming problem. There are '€
linear inegudlities for a polyhedral object with '€ internal
edges. Since we are interested only in the direction of t,
there are only two degrees of freedom to be solved for. As
no objective function is being extremized, there will exist
an infinite number of solutionsif there are any solutions at
all. All of these solutions will lie in a convex polygon on
the unit sphere. The sides of this polygon are portions of
great circles corresponding to constraints imposed by some
surface pairs (seefigure 16).

Ve
Figure 16. The solutions to the system of constraints set
up by the various surface pairslie on a convex polygon on
the unit sphere. The sides of this polygon are portions of
great circles corresponding to constraints imposed by some
surface pairs.

3.4.2 Determining the illuminant direction - examples:

We now present some examples illustrating the use of
the aforementioned ideas for checking the consistency of
the observed shading pattern in the image and for
recovering the illuminant direction. Thefirst two examples
comprise of a cube illuminated from two different
directions. The graphical solutions (figure 17) show that
the recovered sets of valid light directions are consistent
with human perception.

The next two examples are more interesting. They ae
the figures that we used to motivate the need for a global
analysis (figure 9). The graphical solutions, (figures 18 ad
19) suggest that while the shading pattern in figure 9(a) is
consistent with the shape recovered by the module
responsible for 3-D shape recovery from 2-D line drawings,
that of figure 9(b) is not. In other words, while a distant
light source can be positioned to illuminate a truncated
hexagonal pyramid shape to make it look similar to figure
9(a), there is no way that it may be made to look like
figure 9(b) by solely manipulating the light direction. The
consistency or inconsistency of the 2-D shading pattern in
the image determines whether the percept obtained is one of
either asolid 3-D shape illuminated in a particular manner
or simply a 2-D pattern of paint.
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=
Figure 17. Computing the set of valid light directions for
the cube image, (a). The darkest sector of the Gaussan
sphere in (b) represents the solution set. The ni's are the
surface normals for the three visible faces of the cube. (c)
and (d): Varying the ordinal relationships between the gray-
levels of the faces of the cube changes the computed
solution set for illuminant directions in a manner
consistent with human perception.

We may mention in passing that situations where a
majority, but not al, of the inequalities are simultaneously
satisfiable have interesting perceptual/physical correlates.
The inequalities left unsatisfied correspond to ‘compound
edges - image brightness transitions that are perceived as
being due simultaneously to changes in illumination and
surface reflectance [21].

Figure 18. Determining the valid light directions for figure
(&) with associated 3-D structure shown in figure (b) using
the Gaussan sphere/surface normal representation. The
darkest sectors in (c) and (d) represent the computed
solution set. Figure (d) shows the Gaussian sphere in (C)
viewed with the line of sight aligned to the polar axis.

@ (M

Figure 19. The system of constraints set up by the surface
pairs of figure (a) do not admit a solution. No region of the
Gaussian sphere satisfies all the constraints. Each of the
three dark sectors of the Gaussian sphere satisfies only four
of the six constraints simultaneously.

3.5. Putting it all together - a summary of the
complete interpretation process:

The process begins with alocal junction analysis of the

image. An asymmetry exists in the confidence levels in
classifying edges as being due to reflectance or illumination
variations. Under the assumption of a generic view-point,
the classification of reflectance edges must necessarily be
correct. An edge initially classified as an illumination edge,
however, might turn out to be a reflectance edge upon
global analysis (as seen in an earlier example). Thus, while
we can be completely confident about the reflectance labels
of the local junction analysis module, the illumination
labels can, at best, be taken to be tentative, to be verified
by subsequent global analysis.
The next step in the interpretation involves a global
analysis of the shading components. This, as described
above, comprises of two basic steps. 3-D shape recovery
from the geometric structure of the image and subsequently
checking the consistency of the image gray-levels and the
recovered 3-D structure. The solutions, besides verifying
the simultaneous satisfiability of all the constraints also
provide information about the valid light directions and the
existence of 'compound edges. This completes the
interpretation process. A summary of al the information
recovered from two simple imagesis shown in figure 20.

We acknowledge the fact that our mode is quite
certainly just a small part of the complete answer to the
guestion of how we interpret 2-D images in terms of their
shading and reflectance components. Several issues, like
how to deal with occlusions and cast shadows, remain to be
explored. What we hope to have accomplished in this paper
is to have provided a beginning of the computational
investigation of the lightness recovery problem in a 3-D
domain.
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Figure 20. A summary of all the information recovered

from two input images.
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