RAPID: A Reachable Anytime Planner for Imprecisely-sensed Domains

Emma Brunskill
Computer Science Department
University of California, Berkeley
Berkeley, CA

Abstract

Despite the intractability of generic optimal par-
tially observable Markov decision process plan-
ning, there exist important problems that have
highly structured models. Previous researchers
have used this insight to construct more effi-
cient algorithms for factored domains, and for
domains with topological structure in the flat
state dynamics model. In our work, motivated
by findings from the education community rele-
vant to automated tutoring, we consider problems
that exhibit a form of topological structure in the
factored dynamics model. Our Reachable Any-
time Planner for Imprecisely-sensed Domains
(RAPID) leverages this structure to efficiently
compute a good initial envelope of reachable
states under the optimal MDP policy in time lin-
ear in the number of state variables. RAPID per-
forms partially-observable planning over the lim-
ited envelope of states, and slowly expands the
state space considered as time allows. RAPID
performs well on a large tutoring-inspired prob-
lem simulation with 122 state variables, corre-
sponding to a flat state space of over 103° states.

1 INTRODUCTION

One of the key questions in artificial intelligence research
is how to make good decisions in large, stochastic, par-
tially observable environments. Though generic optimal
planning for finite-horizon partially observable Markov
decision processes (POMDPs) is known to be PSPACE-
complete (Papadimitriou & Tsitsiklis, 1987), fortunately,
some important POMDP domains have highly structured
models. This insight has been used by previous researchers
to design more efficient POMDP algorithms that leverage
different types of structure. Focussing on domains that ex-
hibit factored structure has led to POMDP planners that
solve some of the largest POMDP problems in the litera-

Stuart Russell
Computer Science Department
University of California, Berkeley
Berkeley, CA

ture, including a hand washing assistance program (Boger
et al., 2005) and a RoboCup rescue task (Paquet et al.,
2005). Other recent work (Dai & Goldsmith, 2007; Diban-
goye et al., 2009) has focused on domains where the flat
state dynamics model limits the possible backtracking to
earlier states, and showed that planning can be performed
more efficiently when this topological structure is present.

In this paper we focus on problems exhibiting both fac-
tored structure and a form of topological structure, and
demonstrate that we can leverage these properties to scale
to very large domains. Such properties are common in
a number of important applications ranging from tutor-
ing to dialogue systems. For example, some prior ed-
ucation studies coarsely approximate a student’s knowl-
edge as a factored set of binary variables, one for each
skill, and infers a precondition graph structure among skills
(known as a “learning hierarchy”) from student data: see
for example Gagneé’s and Briggs (1974) and Close and
Murtagh (1986). Despite this structure, automated tutor
action selection remains challenging as the factored state
space may consist of hundreds of skills. In addition, the
student state is not directly observable, but can be probed
through the use of drill exercises and other student re-
sponses. Modelling a fairly small curriculum of 100 skills
using an atomic-state POMDP framework could require
planning over a state space of size 2!%° ~ 103° which is
far outside the range of generic, flat POMDP solvers.

Specifically we consider constructing policies for POMDPs
that exhibit the following three properties: they are
1. factored,

2. have positive-only effects, and
3. have unique preconditions for each variable.

For compactness, in the rest of the paper we will refer to
Positive-Only effects, Factored, with Unique Preconditions
(POFUP) POMDPs as POFUPP processes. Factored repre-
sentations are those in which the world state is represented
by a vector of variables. Positive-only effects, commonly
leveraged in classical planning, imply that once a binary
variable becomes true, it will not later become false. Be-
fore we describe the third property, recall that in a factored

representation, a given state variable s*’s value on a sub-
sequent time step depends on the action chosen, and the
values of a set of the other state variables (which could in-
clude s* on the previous time slice): in a dynamic Bayes
net (DBN), these would be called the parents of s*. The
unique preconditions assumption implies that there is a sin-
gle set of values of s*’s precondition variables that allow s*
to become true. In all the education learning hierarchies we
examined, there was always a unique set of preconditions
for each variable. It is important to note that while there is
a unique set of preconditions for each state variable, there
are still numerous (potentially exponential in the number
of variables) paths to reach each state. We assume that the
planning objective is to reach a goal state.

Our Reachable Anytime Planner for Imprecisely-sensed
Domains (RAPID) leverages these three structural proper-
ties to construct an initial policy with a computational cost
that scales polynomially with the number of domain vari-
ables, instead of exponentially. RAPID first computes a
solution to the fully observable MDP starting at an initial
state sampled from the initial POMDP belief state. This
process is very fast, taking only time linear in the number of
state variables. RAPID then performs partially-observable
planning over the limited envelope of states reached under
this MDP policy, and then slowly expands the state space
considered as time allows. At most the state space enve-
lope will expand to become the reachable state space given
the initial potential starting states, which is typically much
smaller than the exponential potential state space.

We present promising experimental results on two large
tutoring-inspired simulations. The second problem consists
of 122 variables, or a potential flat state space of over 103C.
RAPID manages to achieve good performance quickly in
both problems, though several comparison planners, in-
cluding a factored approach, fail to find a good policy.

2 RELATED WORK

There has been significant recent progress on planning
in partially observable, stochastic domains. Two of the
fastest generic POMDP planners are HSVI by Smith and
Simmons (2005) and SARSOP by Kurniawati, Hsu and
Lee (2008). Neither approach takes advantage of factored
structure.

A number of prior fully-observable MDP approaches do
leverage factored structure (such as Boutlier, Dearden and
Goldsmidt (2000)). Symbolic Perseus (Boger et al., 2005)
and Symbolic HSVI (Sim et al., 2008) are two offline
POMDP algorithms for factored state spaces which scale
to large problems. In practice both perform fairly similarly
to each other. Online, forward search POMDP planners
can also leverage factored structure, and Paquet, Tobin and
Chaib-draa (2005) used forward search to handle an ex-
tremely large, factored RoboCup rescue problem. How-

ever, their approach and other forward search techniques
typically scale as O((|A||Z|)H) where H is the search
horizon,and |A| and |Z] are, respectively, the action and
observation branching factors. Such approaches will typi-
cally struggle in long horizon problems with a large num-
ber of observations or actions unless value heuristics can
be used to shape the search. Unlike our algorithm, these
factored approaches do not leverage any further structure
in the domain dynamics.

Several recent approaches do seek to leverage topological
structure in the dynamics model similar to the structure im-
plied by our second and third assumptions. Dai and Gold-
smith (2007) leveraged the presence of layered positive-
effect state structure (certain clusters of states cannot be re-
turned to) in their Topological Value Iteration (TVI) MDP
algorithm. Dibangoye et al. (2009) assumed a similar struc-
ture, and used this to create a heuristic Topological Order
Planner (TOP) for POMDPs. These and related approaches
consider structure in the ground state space: in contrast,
our approach considers structure in the factored space. Fo-
cussing on structure in the factored space helps our ap-
proach to scale to large domains as we can often avoid even
enumerating the flat state space.

Finally, our approach is inspired by work in the fully ob-
servable planning community. To scale to very large, fully
observable MDPs, Dean et al. (1995) proposed an any-
time approach which initially restricts MDP planning to a
smaller envelope of reachable states. Gardiol and Kael-
bling (2004) extended this approach to be applicable in
relational MDPs using action-based equivalence. To our
knowledge our RAPID algorithm is the first approach that
performs envelope-based planning in partially observable
environments.

3 PROBLEM DESCRIPTION

We are interested in decision making in POFUP par-
tially observable, stochastic environments that may be
specified by the tuple (S, L, A, Z, by, E, p((s%)'|s%, a), ...
p(z|(s!),a),7(s,a), sq, sT) where

e S is a set of states. The domain consists of L binary-
valued variables s',s2,...,s”, and each state is an
assignment of values (true or false) to all the domain
variables: s = (s%,s2,...,s1).

e Aisasetof actions. Each action a;; is associated with
a particular state variable s° and has the potential to
make only that variable true.! There will generally be
multiple actions associated with the same state vari-
able s*. For example, there could be a drill exercise

! Actions or operators which have a single effect have been
previously described as unary operators (Brafman & Domshlak,
2003).

(a) Precondition graph

(c) States reachable from so = {0,0,0,0,0,0}

Figure 1: The relationship between the precondition vari-
able graph of 6 binary state variables, the possible state
space and transitions, and the reachable state space start-
ing at a particular initial state.

action and a lesson action to help a student understand
two-digit addition.

e Z is a set of observations.

e b is the initial belief state which is a sparse represen-
tation of the possible initial states and associated prob-
abilities. The sum of the probabilities over all possible
initial states is constrained to equal 1.

e E is a precondition graph which specifies for
each state variable s® the set of state variables
sl P2 sPM (equivalent to parents of s’ in a
DBN) that must be true before state variable s’ can
become true. We assume there is a unique conjunction
of precondition variables for each variable (for exam-
ple, s' A s2 can be a precondition, but not s VV s2). As
a concrete example, the precondition graph for a stu-
dent to master the multiplication skill would include
the addition skill as a prerequisite.

e p((s") = false|s' = false,a;;) specifies the proba-
bility of a state variable s* remaining false even when
all s%’s preconditions are satisfied and a relevant ac-
tion a;, is taken. If a state variable s*’s preconditions
are not satisfied, and action a;, is applied, st always
remains false. Continuing the prior example, let a;; be
a multiplication exercise, and s be the multiplication
skill. Then p((s’)’ = false|s' = false,a;;) is the
probability that after trying a multiplication exercise,
a student still may not yet understand multiplication,
even if she has all the necessary preconditions skills
(addition, etc.) as specified in E.

e p(z|(s"), ai;) specifies the probability of receiving a
particular observation given that a particular action a;
is taken, and the resulting value of the action’s asso-
ciated state variable (s°)’. Note that since an action
is only associated with a single variable, only a single
p(z|(s%)’, a;;) will be applicable at each time step.

e 1(s,a,;) is the reward for taking action a;; in state s.
The reward is negative, and depends only on the action
(aka independent of the state) for all states except the
goal state s and terminal state sp.

e s¢ is the goal state. (s, a) is positive or zero.

e sy is the terminal state. s deterministically transi-
tions to sp. sp is a sink state where the reward is O
and the observation probabilities are identical to the
observation probabilities of s¢.

Figure 1 shows the relation between the number of vari-
ables as expressed in a precondition graph, and the poten-
tial state space and state transition graph.

As the states are partially observable, we maintain a dis-
tribution over states, known as the belief state, which is a
sufficient statistic of the history of actions taken and ob-
servations received. The planning objective is to maximize
the expected sum of rewards given the initial belief state bg.
Due to the reward formulation, this is similar to a partially
observable, stochastic shortest path problem.

4 ALGORITHM

Prior flat and factored POMDP approaches typically fail to
scale to domains with a large number of variables. This
often continues to hold true even when, for particular ini-
tial belief states, the reachable state space is significantly
smaller than the full state space.

Instead we draw inspiration from envelope-based planning
algorithms for large fully observable MDPs and extend
these ideas to our POFUPP domains. Dean et al. (1995)
presented the idea of computing a policy for fully observ-
able, flat MDPs by planning only over a smaller envelope
of states. As time allowed, the state envelope was expanded
to include more of the reachable state space.

Algorithm 1 RAPID: REACHABLE ANYTIME PLAN-
NING FOR IMPRECISELY-SENSED DOMAINS

1: Sample an initial state from the initial belief

2: Construct an initial envelope using a deterministic

MDP relaxation that can be solved efficiently.

3: while remaining time do

4: Define & solve a POMDP over the envelope

5

6

Expand the envelope
: end while

To our knowledge RAPID is the first algorithm to take
a similar approach in the context of partially-observable
planning. There are several key technical challenges that
need to be overcome to apply envelope-based planning in
partially observable domains that can be characterized as
POFUPP problems. First, we require an algorithm for ef-
ficiently computing a good initial envelope over the large,
factored, partially observable state space. Second, we need
a method for converting this envelope into a fully defined
POMDP and solving the resulting model. We present so-
lutions for both these challenges, and RAPID’s empirical
efficiency allows us to scale to very large problem sizes.
The RAPID algorithm is summarized in Algorithm 1.

4.1 INITIAL ENVELOPE CONSTRUCTION

Given a POFUPP process M, we first need to construct
an initial envelope of states. Ideally the envelope would
include states that have a reasonable probability of being
visited given a good policy for the partially observable do-
main. The states visited along the optimal MDP solution
starting with one of the possible initial states would seem
intuitively to be reasonable, as the MDP solution forms an
upper bound on the POMDP performance. However, stan-
dard MDP value iteration will be intractable since it scales
as a function of the state space, which in our process is an
exponential function of the number of variables. Even al-
ternate factored solvers will typically be too slow.

Instead we propose an approach which leverages the par-
ticular properties of our structured process by first relaxing
the process to its deterministic, fully observable equivalent,
and use this to very quickly compute a good trajectory be-
tween a start state so and the goal sg.

We first sample a state sg from the initial belief state b.
Given sg, and the variable precondition graph E, RAPID
identifies the state variables whose value is false in sy and
true in the goal state sg. RAPID then computes a topo-
logical order of these state variables given the precondi-
tion graph E. A topological order of these variables is any
linear ordering such that each state variable comes before
all other state variables to which it has outbound arrows in
the precondition graph. For example, in Figure la, state
variable L1 must appear before all other variables, and L2
must appear before L3. As the precondition graph E is a

directed acyclic graph (DAG)?, the topological order can
be computed in time linear in the number of state variables
and precondition conditions (Cormen et al., 1999).

The computed topological state variable ordering (such as
(52,558 ...516)) is converted into a state trajectory be-
tween the start sy and goal state s by simply adding in or-
der each state variable to the original so. Therefore the cost
of generating an initial envelope is simply a linear function
of the number of state variables. In Section 4.5 we will
show that this state trajectory consists of the state variables
visited by following an optimal MDP policy for M starting
at the sampled state sg.

4.2 ENVELOPE POMDP POLICY GENERATION

RAPID proceeds by defining a POMDP P’ over the current
state envelope. We supplement the envelope state space
defined by the state trajectory sequence by two additional
states: a terminal out state s;.,¢, and a terminal goal state
Stg. The definition of an out state follows prior work in
the fully observable envelope literature (Dean et al., 1995).
The dynamics of the states within the envelope are the same
as in the original process M, except if a state transition
lead to a state outside the envelope, then that transition,
and associated probability, are set to go to the s, state.
The out state itself transitions with probability one to the
terminal out sink state s;,,,+ Which has self-loop dynamics.
The separation of S;.,+ and s, is done in order to specify
separate reward functions.

To discourage leaving the envelope, the reward for the out
state is set to a large negative value. s;,,; has reward zero.
Separating S, from s:4,,+ allows there to be a single shot
cost for exiting the envelope.’

The observation model for all states within the envelope
is the same as in the POFUPP M. In contrast to enve-
lope planners for fully observable MDPs where all states,
including the out state, is fully observed, in POMDP do-
mains the out states are most naturally modeled as partially
observable, since they represent the remaining partially ob-
servable states that are not in the envelope. This raises the
interesting side problem of how to represent the observa-
tion probabilities for the out states, which represent the po-
tential observation probabilities of all states outside the en-
velope. In general there will be an exponential (in the num-
ber of variables) states outside of the envelope, and so for
now we take the simple approach of approximating the ob-
servation probability of s,,; by averaging the observation
models of a sampled set of states lying outside the enve-
lope. The observation model of s, is identical to Sgq¢-

2Since actions have positive-only effects, there are also no cy-
cles in the corresponding state dynamics.

3An alternate strategy would be to define rewards over state,
action, next state tuples.

If there is any initial probability over states outside of the
envelope, then a new belief state is defined over only the
envelope state space, with all remaining probability mass
in the out state S,,;.

POMDP P’ can be solved using any generic POMDP plan-
ner with optimality bounds and in our experiments we used
the publicly-available HSVI (Smith & Simmons, 2005).
POMDP planning proceeds until the error bound over the
initial belief state drops below a chosen e-threshold, or a
specified time limit is reached.

Note that the computed policy for POMDP P’ can be used
to act in the original POFUPP M.

4.3 ENVELOPE EXTENSION

If additional planning time is available after the initial pol-
icy is computed, then the state envelope can be expanded.
There are numerous potential strategies for envelope ex-
pansion and in this initial work we used a simple, but em-
pirically effective approach. We consider three possible
methods, in order, for identifying a new state to add to the
envelope; in other words, we try the first method and see if
it identifies a new state to be added, if it does, we stop, else
we run the second method, etc.

The first method samples any potential initial state sg;
which has non-zero probability in the initial belief state by,
but is not yet part of the envelope of states. If all potential
initial states are in the envelope, the second method tries to
find a new non-envelope state by expanding the envelope
fringe. This expansion is performed by starting at a pos-
sible initial state and simulating a trajectory using an €,-
greedy policy* until either a non-envelope state is reached,
or a goal state is reached. This process is repeated until
a non-envelope state is reached or a set number of itera-
tions pass. If no non-envelope states are found, in the third
method, we iterates through each state and tries all applica-
ble actions (given the preconditions the state represents) to
see if a new non-envelope state is reachable. This ensures
that, given enough time, the envelope will grow to reach the
full reachable state space, given the possible initial states
defined by the initial belief state.

Once a non-envelope state is identified, it must be added to
the envelope. In many cases these newly-added states will
be multiple state transitions from the existing envelope of
states. For example, consider a mathematics tutor domain
where to start a student either knows algebra, or algebra and
calculus. If the initial envelope is constructed starting from
the state where the student knows calculus, and then the
state representing the student only knows algebra is added,
there are many missing steps between algebra and calculus
that need to be added in order to compute a reasonable pol-

*The POMDP policy is followed (1—¢,.) fraction of time time,
and a random action is taken e, fraction of the time.

icy for the newly added initial state. To address this, when
a new potential state is added, RAPID re-performs the ini-
tial envelope construction of creating a complete state tra-
jectory to the goal, starting from the newly added state.
This process is very fast, and the main limitation of this
approach is that it can add O(L) states to the envelope
per state, which slows down the POMDP planning process.
However, the benefit of increasing the probability that the
new states will immediately improve the computed policy,
was thought to outweigh this slight shortcoming.

44 PERFORMANCE AND COMPUTATIONAL
COMPLEXITY

First, for completeness, we note that RAPID is guaranteed
to converge to an e-optimal policy, as long as an e-optimal
POMDP planner is used, since RAPID is guaranteed to
eventually expand the envelope to include all states reach-
able from the initial belief state.

Computing a state trajectory from an initial to goal state,
and associated value computations, takes time linear in the
number of variables. The initial envelope will have at most
O(L) states, which means that the initial POMDP planning
will be performed over a state space which is a linear func-
tion of the number of variables. The maximum number of
states in the envelope is the reachable state space, which
is typically much smaller than the potential 27 state space.
The complexity of solving a POMDP depends on the par-
ticular technique. HSVI performs a depth-first roll out, and
updates an explicit representation of an upper and lower
bounds on the POMDP value function along the roll out.
Each lower bound backup and belief update is a quadratic
function of the number of states, so both operations will be
impacted positively by a smaller input state space.

4.5 UPPER BOUNDS FOR POFUPP PROBLEMS

We will shortly prove that the trajectory of states between
a start and the goal state, as computed during envelope ini-
tialization and expansion, consists of states visited by fol-
lowing an optimal policy for the fully observable MDP of
the POFUPP process. We leverage this property to effi-
ciently compute the fully-observable optimal MDP value
of the states within the envelope, which can then be used
to calculate an upper bound on the initial belief state bg.
Such bounds can be useful for at least two reasons. First,
many POMDP solvers (including HSVI and SARSOP) use
upper bounds during planning. Typically these bounds are
computed by solving the MDP, which is known to be an up-
per bound to the POMDP values. However, solving the flat
MDP typically requires multiple backup operations, each
of which requires time polynomial in the number of states.
Second, upper bounds provide useful benchmarks for eval-
uating RAPID’s performance. However, solving the MDP
upper bound over the complete factored space of hundreds

or more variables is computationally infeasible. In contrast,
our approach scales as O(LNyo) where Ny is the number
of initial states with non-zero probabilities.

We now illustrate how we compute the value of the the
states along a trajectory between a start and goal state, as
returned during envelope initialization and expansion. We
first modify the original rewards. Let 7(s_;,a;;) be the
new reward for taking action a;; in a state s_; where state
variable s’ is false but all its preconditions are true. We
define the value of this new reward as:

— T(‘S—ivaij)
~ 1—p((s—i)" = false|s_; = false,a;;)

7:(5_7;7 aij)

Intuitively, 7(s_;, a;;) represents the expected reward/cost
of making state variable s’ true using action a;j, given the
stochasticity of action a;;. To compute the state trajectory
values, we start with the goal state, and traverse the trajec-
tory backwards, at each step selecting the action a;; with
the minimum expected cost 7 required to make the subse-
quent variable s’ in the consecutive state true. The values
are computed simultaneously, by summing up the rewards
during the traversal:

a*(s—;) = argmaxr(s_;,a;;) 2)

J

F(s—i,a®(s—i)) + V(s4i) 3)

where state s, is the same as state s_; except now state
variable s’ is also true. This value computation requires
time linear in the number of variables. This process can
be done at the same time as when the state trajectory is
constructed from the topological order.

Theorem 1. Given a POFUPP M, let My be the fully-
observable MDP version of M, sg be a state sampled from
bo, {50, Straj1, - - ., S} be the state trajectory computed by
the initial envelope method, Ty, be the associated policy,
and V(sg),...,V(sq) be the calculated state trajectory
values. These values and policy represent an optimal policy
and the optimal values of these states in the MDP M.

Vi(s—) =

Proof. (Sketch) The initial topological order constructed is
an optimal plan to the goal from the start state sy for the
deterministic, uniform action-cost, fully observable pro-
cess Mg, ¢ version of the POFUPP M. This is true due
to the particular POFUPP structure assumed. Briefly, the
positive-only effects and the presence of unique precon-
ditions to make a single variable true, imply that all per-
mutations (that respect the precondition structure) of the
same set of state variables will result in the same final state.
As in Mg, s all rewards are constant except at the goal, all
paths of the same length between the same start state and
the goal state will have the same cost. Therefore we can ar-
bitrarily select any ordering that respects the preconditions,
and its value is guaranteed to be optimal (and equal to all
other topological orderings between the same start state and
goal).

6]

To determine the optimal value (and policy) of each state
along the corresponding state trajectory in the determinis-
tic (but with the original action costs/rewards) MDP My
version of M requires considering the state-action values
of each state. From Bellman the state-action value can be
expressed as the immediate reward of taking an action in a
state, plus the future expected reward. As we currently as-
sume each action is deterministic, the state action value of
a state s_;, which is a state where state variable s” is false
but all its preconditions are true, can be expressed as

Qs arj) = 7(s_k, arj) + V(s1r) 4)

where s is the state identical to s_j, except state variable
s* is also true. In the deterministic MDP M, Q(s, ay;)
represents the expected cost of making the state variables
in s true which are false in the current state s. However,
since in a POFUPP process each variable requires a unique
set of precondition variables to be true, the order in which
these state variables are acquired is irrelevant: any order
that satisfies the precondition structure F is equivalent. The
only difference in rewards/costs comes from which action
ay; out of a set of actions ay. is chosen to achieve a state
variable s*; note here that all aj, have the same precon-
ditions, but they may have different costs, different self-
transition probabilities, and different observation probabil-
ities. Therefore, the state trajectory obtained from the topo-
logical order is equal to any other trajectory of states be-
tween sg and the goal GG. Given this, action selection for
each state along the trajectory can be restricted without loss
of optimality to only those actions which pertain to the next
variable to be acquired along the topological order (as spec-
ified by Equation 2). This means that the next state s in
Equation 4 will be identical for all considered actions aj.,
and to find the optimal action it suffices to only consider the
immediate expected reward 7. Therefore the policy and val-
ues in Equation 2 and 3, respectively, represent an optimal
policy and the optimal value for the deterministic MDP.

Finally, the MDP M falls into the class of stochastic short-
est path problems. Therefore the computed value function
and policy for the deterministic MDP Mgy which has no-
self loops (as just specified) using the modified rewards de-
fined in Equation 1 has an identical policy and value func-
tion to the original MDP M (pg.25, Bertsekas and Tsit-
siklis, (1996)). Therefore, the values and policy computed
using Equation 2 and 3 for all states along the trajectory are
guaranteed to be optimal for MDP M. O

Theorem 1 shows that we can efficiently compute the opti-
mal MDP values for states inside the constructed envelope.

Once the envelope includes all possible initial states, we
will have a value on each initial state computed using Equa-
tion 3. We can then compute an upper bound for initial be-
lief state value (V (bg)) by taking the weighted sum of the

add
2 digits
2nd carry

due to Ist carry
add
2 digits
@ . 1 carry . E

1 borrow
2 digit-1 digit

% ® same denom fractions
same denom

ultiply

multiple 1 by multiple
carries digits

subtract
subtract subtract multiple

1 borrow
2 digit-2 digit

add
fractions

req convert

1 denom

add fractions add

subtract

convert

divide
multiple 1
by 1 divisions

divide
multiple
digit by 1

borrows

subtract
borrow
across 0

Figure 2: SmallMath Precondition Graph.

state values:

V(bo) = Zbo(sbz)V(S%) (5)

Ssi

Note that this provides an upper bound to the original PO-
FUPP process: in contrast, any bounds computed by the
POMDP solvers over the envelope only apply to the re-
stricted envelope POMDP P’. We later calculate V (bg) for
our two experimental domains. This bound can be com-
puted in time linear in the product of the number of state
variables and initial possible states.

S EXPERIMENTS

Due to our interest in tutoring applications, we performed
simulation experiments in two tutoring-inspired domains.

5.1 DOMAINS

In both cases, the variable precondition graph construction
was informed by literature from the education communi-
ties: the transition probabilities, observation probabilities
and reward values were chosen by hand.

The first domain, SmallMath, consisted of 19 elemen-
tary math skills, yielding a potential state space of 219 ~
500,000 states. The precondition graph for the skills is
displayed in Figure 2. There are two possible observations,
and 38 actions, 2 for each skill. The first action for a skill,
a “teaching” action, has a high probability of causing the
skill to transition to being true (p = 0.8) if it is not al-
ready and the preconditions for that skill are fulfilled; how-
ever, it does not provide any feedback about whether the
student has successfully acquired the skill. In our exper-
iments we set the probability of each observation is 0.5
for actions 1,3,5,...,37. The second action for each skill
(actions 2.4,. . .,38) loosely corresponds to a practice exer-
cise, and only causes skill acquisition with probability 0.5.
However, practice exercises provide more useful feedback
about whether that skill was acquired: the observation is
true with probability 0.9 if the hidden skill is true, and true

with probability 0.2 if the skill is false. The reward for
reaching the state where all skills are true was set to 10000,
and there was a reward of -1 for all other states and actions.
The initial belief state had three non-zero initial start states.

In the past there have been a number of papers on “learn-
ing hierarchies” in the education literature. Learning hier-
archies consist of ordered hierarchies, or graphs, of skills,
which are very similar to our variable precondition graphs.
Numerous classroom studies have been done to construct
these learning hierarchies from student data, though the
analysis historically treats the data as fully observable
rather than modeling student knowledge as a hidden state.

Given this work, for the second domain, BigMath, we
constructed a larger tutoring-inspired problem consisting
of addition, subtraction, multiplication, and addition and
subtraction of fractions skills. The fraction precondition
graph was derived from Miller and Phillips (1974) and
Uprichard and Phillips (1977). We combined the fraction
precondition structure with the subtraction hierarchy from
Gagné (1974), and the addition, subtraction, multiplication
and division hierarchies from Close and Murtagh (1986).
The full precondition graph is displayed in Figure 3 and
consisted of 122 skills.’> The flat state space is 21?2 which
is over 1030 states. Similar to the first domain, we created
an action space with two potential actions for each skill,
one lesson-like action, and one drill-like action. The ob-
servation and transition probabilities, given the precondi-
tion variables are satisfied, were defined the same way as
in the SmallMath domain. The reward for reaching the state
where all skills are true was set at 100000, and there was
a reward of -1 for all other states and actions. The original
belief state had four non-zero probability initial start states,
consisting of plausible variable subgroups.

Note that the horizon of both problems is quite long. Even
in the deterministic versions of both problems, if the world
state starts with no variables true, the number of steps to
reach the goal is 19 in SmallMath and 122 in BigMath.

SA file displaying this precondition structure is available at
http://www.cs.berkeley.edu/~emma/bigmathpreconditions.pdf

fractions

both denom

Figure 3: Precondition Graph for BigMath. This structure was derived by combining the Miller and Phillips (1974) and
Uprichard and Phillips (1977) learning hierarchies for fractions, with Gagneé and Briggs’ (1974) subtraction hierarchy
and Close and Murtagh’s (1986) addition, subtraction, multiplication and division hierarchy.

As both problems are stochastic, the expected number of
steps can be significantly longer, depending on the initial
belief state distribution. Therefore, both domains exhibit
what are typically known in the POMDP community as the
curse of history, due to the long horizon, and the curse of
dimensionality, due to the problem size.

5.2 SOLUTION PARAMETERS

As stated earlier, we used HSVI to solve the envelope
POMDPs. The maximum horizon for SmallMath was set
at a conservative 450 steps, and for BigMath at 1000 steps.
Identical horizon limits were used when evaluating the em-
pirical reward of the computed policy. The reward for the
out state was set to be -1000 for SmallMath and -100 for
BigMath. As there will typically be some probability that
the state will transition into an out-of-envelope state, and
both problems can require a long horizon of acting to reach
the goal, the out state reward was loosely chosen to discour-
age transitioning to the out state without so severely penal-
izing the transition that the computed policy conservatively
avoids adding any more skills. We did not optimize perfor-
mance by varying this parameter, and other values might
lead to further performance benefits.

HSVI terminates when a terminal time limit is reached or a
minimum distance (e) between the upper and lower bounds
on value of the initial belief state is achieved. In SmallMath
we set the maximum time limit to 1200 seconds and € =
200. In BigMath we set the maximum time limit to 8000
seconds and € = 1000.

5.3 EVALUATION METRICS

After each envelope expansion, we evaluated the envelope
policy reward empirically over multiple episodes of the rel-

evant problem’s max horizon length. For SmallMath we
evaluated the empirical reward for 20 episodes after each
expansion, and for BigMath we evaluated the empirical re-
ward for 5 episodes after each expansion: BigMath is sig-
nificantly more computationally intensive to evaluate due
to the larger state space, and longer problem horizon. We
present results averaged over 5 runs with different initial
seeds for SmallMath and 8 runs for BigMath.

5.4 BASELINES

Even the smaller of the two problems, SmallMath, still re-
quires over 500,000 states to enumerate the exhaustive set
of state variable combinations, which limited the potential
alternate algorithms to compare against.

SARSOP (Kurniawati et al., 2008) is a non-factored state-
of-the-art generic POMDP solver which accepts factored
input files.

Symbolic Perseus (Boger et al., 2005) is a factored-state-
space POMDP solver. Symbolic Perseus was used to
compute a good approximate solution to a factored hand-
washing assistance problem with 13 variables, and over
50 * 106 states.

In some cases the reachable state space may be quite small,
and so we also explored first enumerating the reachable
space, and then using HSVI to compute a POMDP policy
over the reachable states.

We also implemented a simple, very fast, heuristic Fixed
Threshold, No-Forgetting (FTNF) policy similar to poli-
cies used in prior intelligent tutoring systems (Corbett &
Anderson, 1995; Koedinger et al., 1997). At each step,
FTNF identifies the variable with the highest probability of
being true below an input threshold probability, whose pre-
conditions have exceeded this threshold probability. FTNF

11000 . ; " " i x 10° x 10
10000f == === === === === sm=zocm g mm e zo o
c 10/ €y == === == @------ O @PED -~~~ @O0 - O
S 9000t S
5 s
Q ©
2 8000r 5
B 3 8OO O O O O 00 2
5 7000 : 5
£ 6000t g §
2 £ 6D o H
g 50001 £ 5
= [} =
£ 4000f g 40 o s
S [
“E-f’ 3000f < S
s g
Z 2000f 1 20 0 o :?) 2
1000f
0 5 2 3 8 10 0% 0.5 1 15 2 25 3 0= 2 ; 5
Envelope expansion iteration Cumulative time (s) x10* Envelope expansion iteration

(a) SmallMath Reward vs No. Expansions

(b) BigMath Reward vs. Cumulative Time (c) BigMath Reward vs. No. Expansions

Figure 4: Results from both simulations, showing RAPID’s average performance after each round of envelope expansion.
In (a) and (c) results are averaged over multiple algorithm runs. In (b) each RAPID run is shown in a different color, with
circles representing the mean reward of the run’s policy at different times. The dotted line is an upper bound on the initial

belief state value.

executes the action most likely to make that variable true,
and updates the belief probability over that variable. Once
a variable exceeds the input probability threshold, its value
is assumed to be true for the rest of the episode.

Finally, we also computed an upper bound on the value of
the initial belief state using Equation 5.

5.5 RESULTS
5.5.1 SmallMath

We display the performance of RAPID on SmallMath in
Figure 4a. RAPID could generally quickly find a good so-
lution, and its consistency in doing so increased as the com-
putation time increased, as should be expected.

We represented SmallMath in the SARSOP POMDPX for-
mat but found that SARSOP problem initialization con-
sistently tried to exceed our limit of available memory (2
gigabytes). We believe this is because the current imple-
mentation still uses a non-factored dynamics representa-
tion, and a full sized-representation of SmallMath would
require 219 x 219 x 38 entries.

Symbolic Perseus requires specifying the number of sam-
pled belief states to use for planning. When we specified
a small number of beliefs (N=20), the algorithm computed
a solution in 5150s, but the resulting policy could never
find a trajectory to the goal. Using a larger number of be-
liefs (N=120), Symbolic Perseus was still generating belief
points and had yet started computing a policy after 8 hours;
as this well exceeded the time necessary to achieve good
performance in the SmallMath domain using RAPID, we
did not run Symbolic Perseus further.

Given the initial belief selected, the reachable state space
of SmallMath is significantly smaller than the potential

state space size, at only 109 states. It is computationally
tractable to simply enumerate this reachable state space and
run HSVI over the resulting states. This approach yielded
the best performance, with an average reward of 9962 on
200 trials (each consisting of at most 200 steps). This
corresponded to an average of 39 steps to reach the goal
state. The heuristic FTNF policy performed worse than the
RAPID policy over a number of thresholds, and was sig-
nificantly worse (t-test, p<0.001) than the POMDP solu-
tion over the reachable state space at even the best thresh-
old (0.925) examined (FTNF average reward=9947, mean
number of steps to goal=54). These results highlight the ad-
vantage of a POMDP planning approach, which may both
infer the value of earlier variables based on later variable
values, and revisit an earlier variable if later evidence sug-
gests its value is not yet true.

5.5.2 BigMath

RAPID again was able to fairly quickly achieve good per-
formance in this domain. Figure 4b & c display the av-
erage performance after each envelope expansion for dif-
ferent runs versus cumulative running time, and after each
envelope expansion, respectively.

Due to our experience with SARSOP and Symbolic
Perseus on SmallMath, we did not explore their use on Big-
Math, which is a substantially larger problem.

In BigMath, given the chosen initial belief, even the reach-
able space is over millions of states and the potential state
space exceeds 103° states. It was therefore not feasible to
perform standard planning over the reachable space.

We compared FTNF to the performance of RAPID after 4
envelope expansions. Though FTNF is very fast, it gener-
ally performed much worse than RAPID over a wide range
of thresholds (from 0.8 to 0.9999). FTNF with the best

found threshold (0.9999) performed slightly better than
RAPID over an 80 episode simulation, but the difference
was not significant (t-test, p=0.18). Our experience sug-
gests that it may be hard to identify a good threshold for
FTNF in advance, and choosing a too-high value can lead
to overly conservative policies.

6 CONCLUSION & FUTURE WORK

There exist a number of important stochastic, partially ob-
servable problems that exhibit a large amount of structure
that can be used to perform efficient planning. In this pa-
per we focused on problems exhibiting a form of topolog-
ical structure in the factored state space: domains which
possess such structure include student tutoring, dialogue
and potentially assembly tasks. Our RAPID algorithm
leverages this structure to compute an initial state envelope
based on the optimal MDP policy in time linear in the num-
ber of variables. RAPID then performs standard POMDP
planning over this restricted envelope, before expanding the
envelope and re-solving in an anytime fashion. Our exper-
imental results demonstrate RAPID can quickly produce a
good policy for an extremely large factored problem where
the problem structure is constructed using prior precondi-
tion graphs from the education community.

There is ample scope for future work. We intend to explore
additional envelope expansion techniques, such as trying
to bias the new trajectories to the goal to lie within exist-
ing parts of the envelope. In addition, we currently re-solve
the POMDP without considering the previously computed
solution. We believe it should be possible to achieve fur-
ther computational gains by re-using the value function (a-
vectors) computed using the prior envelope, by setting the
value of the additional states to a lower bound on their po-
tential value.® In this paper we have assumed the POMDP
model parameters are provided, but to integrate this in a
real ITS will necessitate learning the model parameters. We
plan to learn model parameters across multiple students’
performances, motivated by the success of prior ITSs (see
Koedinger et al. 1997) that use population-level model pa-
rameters.

Acknowledgements

The authors wish to thank Sarah Finney, Jason Wolfe, Luke
Zettlemoyer and the anonymous reviewers for their helpful
comments. E.Brunskill was supported by a NSF Mathe-
matical Sciences Postdoctoral Fellowship.

References

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic program-
ming. Athena Scientific.

STrivial lower bounds can be computed using the minimum
reward and maximum horizon.

Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., & Mi-
hailidis, A. (2005). A decision-theoretic approach to task as-
sistance for persons with dementia. IJCAI.

Boutilier, C., Dearden, R., & Goldszmidt, M. (2000). Stochastic
dynamic programming with factored representations. Artificial
Intelligence Journal.

Brafman, R., & Domshlak, C. (2003). Structure and complexity
in planning with unary operators. Journal of Artificial Intelli-
gence Research, 18, 315-349.

Close, J., & Murtagh, F. (1986). An analysis of the relation-
ships among computation-related skills using a hierarchical-
clustering technique. Journal for Research in Mathematics Ed-
ucation, 17, 112— 129.

Corbett, A., & Anderson, J. (1995). Knowledge tracing: Model-
ing the acquisition of procedural knowledge. User Modeling
and User-Adapted Interaction, 4, 253-278.

Cormen, T., Leiserson, C., & Rivest, R. (1999). Introduction to
algorithms. McGraw-Hill Book Company.

Dai, P., & Goldsmith, J. (2007). Topological value iteration algo-
rithm for Markov decision processes. IJCAL.

Dean, T., Kaelbling, L. P., Kirman, J., & Nicholson, A. (1995).
Planning under time constraints in stochastic domains. Artifi-
cial Intelligence, 76, 35-74.

Dibangoye, J., Shani, G., Chaib-draa, B., & Mouaddib, A. (2009).
Topological order planner for POMDPs. [JCAL

Gagné, R., & Briggs, L. (1974). Principles of instructional de-
sign. Holt, Rinehard, and Winston.

Gardiol, N. H., & Kaelbling, L. P. (2004). Envelope-based plan-
ning in relational MDPs. NIPS.

Koedinger, K. R., Anderson, J., Hadley, W., & Mark, M. (1997).
Intelligent tutoring goes to school in the big city. International
Journal of Artificial Intelligence in Education, 8, 30—43.

Kurniawati, H., Hsu, D., & W.S., L. (2008). SARSOP: Ef-
ficient point-based POMDP planning by approximating opti-
mally reachable belief spaces. RSS.

Miller, P., & Phillips, E. R. (1974). Developed of a learning hier-
archy for the computational skills of fractional number subtrac-
tion. American Educational Research Association Meeting.

Papadimitriou, C., & Tsitsiklis, J. (1987). The complexity of
Markov decision processes. Mathematics of Operations Re-
search, 12, 441-450.

Paquet, S., Tobin, L., & Chaib-draa, B. (2005). An online
POMBDP algorithm for complex multiagent environments. AA-
MAS.

Sim, H., Kim, K., Kim, J., Chang, D., & Koo, M. (2008).
Symbolic heuristic search value iteration for factored pomdps.
AAAL

Smith, T., & Simmons, R. (2005). Point-based POMDP algo-
rithms: Improved analysis and implementation. UAL.

Uprichard, A. E., & Phillips, E. (1977). An intraconcept analysis
of rational number addition: A validation study. Journal for
Research in Mathematics Education, 8, 7-16.

