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Abstract—An important component of human-robot interac-
tion is that people need to be able to instruct robots to move to
other locations using naturally given directions. When giving
directions, people often make mistakes such as labelling errors
(e.g., left vs. right) and errors of omission (skipping important
decision points in a sequence). Furthermore, people often use
multiple levels of granularity in specifying directions, referring
to locations using single object landmarks, multiple landmarks
in a given location, or identifying large regions as a single
location. The challenge is to identify the correct path to a des-
tination from a sequence of noisy, possibly erroneous directions.
In our work we cast this problem as probabilistic inference:
given a set of directions, an agent should automatically find the
path with the geometry and physical appearance to maximize
the likelihood of those directions. We use a specific variant
of a Markov Random Field (MRF) to represent our model,
and gather multi-granularity representation information using
existing large tagged datasets. On a dataset of route directions
collected in a large third floor university building, we found that
our algorithm correctly inferred the true final destination in 47
out of the 55 cases successfully followed by humans volunteers.
These results suggest that our algorithm is performing well
relative to human users. In the future this work will be
included in a broader system for autonomously constructing
environmental representations that support natural human-
robot interaction for direction giving.

I. INTRODUCTION

As robots become part of daily life, one essential capa-

bility they must have is to be able to interpret and follow

human directions in natural human environments. However,

people are notoriously poor at giving directions. Firstly,

the directions may be noisy or incorrect; people confuse

left and right, distance estimates are frequently wrong, and

instructions for important decision points may be missing.

Furthermore, and more importantly, people do not always

share the same perception or representation of an environ-

ment. People will often refer to aspects of the environment at

different levels of granularity: one person might say “go past

the sofa” whereas another might say “walk past the living

room.” Successful direction giving requires recognizing that

both of these observations are consistent references to the

same location. This requires more than using an ontology to

recognize different class levels of an object, such as realizing

“futon” is related to “sofa.” Rather it requires knowledge of

what scenes tend to have similar objects and labels, such as

a kitchen is likely to include a sink and a refrigerator.

We address the problem of determining the correct path

through a known environment from a sequence of noisy

and ambiguous directions. We cast this as a probabilistic
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inference problem: given a set of directions an agent must

infer the most likely hidden sequence of physical regions

corresponding to the given directions. In the current work

we assume that the map is segmented in advance into a set

of regions, such as by using a SLAM algorithm to construct

a hybrid map (see e.g. [13]) or by hand. Our long term

goal is to have robots autonomously construct appropriate

representations of the environment that they then use to

reliably and correctly infer human level directions.

In addressing this challenge, we make two contributions.

Firstly, we show that a specific variant of a Markov Random

Field (MRF) is a better inference model than existing infer-

ence techniques for compensating for errors in the directions.

We argue that using probabilistic inference creates a robust

and flexible approach: flexibility comes from allowing users

to use the representation most natural to them, and robustness

comes from using a MRF algorithm to infer the most likely

complete path. In large environments where there may be

considerable ambiguity and more than one instance of a

particular landmark or area, such as schools or businesses

with large numbers of offices, bathrooms and kitchens,

reasoning about the full trajectory instead of making local

decisions may be particularly helpful.

Our second contribution is to use a specific MRF model

that allows us to handle directions (or observations) provided

at multiple levels of granularity, such as referring to a region

by an abstract name (terms such as “kitchen” or “office”), or

by a specific object contained in the region (terms such as

“microwave” or “computer”). We learn a multi-granularity

model from an existing, large, tagged dataset that allows

us to infer relationships between known concepts and novel

keywords in the directions. The specific dataset we use is

Flickr, a dataset of photographs which are tagged with labels

by users. By analyzing tags, we can automatically compute

shared probabilities between different types of objects, such

as the probability of a “microwave” label when a “kitchen”

label is also present. These relationships could be achieved

by hand labeling a large corpus; however in addition to being

time consuming, this has the the drawback that objects not

present in the original labeled corpus can cause problems

when applying these learned groupings to new environments.

The paper commences with a discussion of related work

in Section II. We then present our approach in Section III,

starting with some background on probabilistic inference

of time-series data, followed by details of our specific

algorithm. In Sections IV and VI we evaluate our approach

and then conclude.



II. RELATED WORK

Within the robotics community there has been recent

interest in utilizing the structure of the environment when

interacting with humans, and a number of researchers have

understood the need to characterize space by a hierarchy of

elements contained in each place [1], [2], [3]. For example,

an office area is likely to entail a desk and a computer.

This previous work utilizes semantic networks that have been

created by hand, but there is no sense of uncertainty in their

spatial models of how likely objects are to appear with oth-

ers. By utilizing hand-constructed semantic representations,

researchers have enabled their robots to communicate with

people in a meaningful although limited way, and do not

consider the use of directions through the environment.

There has, however, been a significant amount of work

on how people give natural-language directions. Michon and

Denis [4] found that pedestrians perceive landmarks as a use-

ful part of route directions: the authors concluded that when

people refer to landmarks they are attempting to provide an

abstract topological map, and use landmarks to guide people

through difficult or uncertain parts of that environment.

In [5], Stoffel constructs a geometric model from which

he takes into account topological relationships, visibility

within areas, and the generation of route descriptions. In

his model, he considers a number of spatial relationships,

but does not use uncertainty or landmarks when generating

the route descriptions. MacMahon et a. [6] created a system

for automatically following natural language route directions.

The focus of this system was to infer implicit actions from

linguistic conditional phrases with no information about

the environment topology. The authors presented results in

a virtual maze-like environment with landmarks such as

butterflies. The authors’ algorithm performed well relative

to humans: their approach is mostly orthogonal to the one

presented in this paper, and it is possible that by combining

some aspects of this system with our own could result in a

strong system. One of the conclusions of their study was that

landmarks are incredibly important for navigation.

In [7], the authors learned to extract spatial relationships

from grid maps. These relationships are given only at a local

level. Directions such as “robot, go to the pillar” are parsed

from natural language and turned into logical expressions.

Gribble et al. [8] described a robotic wheelchair based

upon the Spatial Semantic Hierarchy: their system could

potentially follow directions over an extended period, but the

authors did not evaluate their assertions. Similarly, Muller

et. al [9] described directing a semi-autonomous wheelchair

through an environment, where commands take the form of

“enter right door.” However, the authors did not describe

how they dealt with arbitrary landmarks or uncertainty in the

locations. Both approaches appear to make hard decisions

on directions based on known landmarks and the spatial

directions, in contrast to our approach which computes the

globally most likely path.

III. MARKOV RANDOM FIELDS

We now briefly introduce Markov Random Fields (MRFs)

which are the graphical models we use to represent the

relationship between physical locations and verbal directions.

In the next section we will describe in more detail how we

can use MRF inference to find the most likely sequence of

states for a given set of observations as a method to find

the most likely path of physical locations corresponding to

a user’s spoken directions.

MRFs are undirected graphical models in which related

variables are linked with an edge in order to convey a

dependency between the two variables xi and xj . This

dependency is encoded by a feature function φ(xi, xj). Our
MRF consists of a discrete set of states S and a discrete set
of observations Z. At each time t the world transitions to a
new state st and yields a new observation of the new state,

zt. We assume each observation variable zt is only connected

with the state value at the same time step, st, and the feature

function relating the two is the same for all times t:

φ(zt, st) = φ(zt|st) = φ(z|s) ∀t.

In other words, there is an observation model that relates

observations to states, and this model is fixed for all time.

There will also be interdependencies between the state

variables themselves. We assume that our model follows

a N -th order Markov process, where N will be defined

below. This means that state variable st will be conditionally

dependent on st−N , st−N+1, . . . , st−1. This dependency will

be encoded by a feature function φ(st|st−1, . . . , st−N ). The
value of this feature function for a particular set of state

values is proportional to the probability of transitioning to

state st = v given a particular set of past values for the
prior N states. Note that this is only proportional to this

distribution since the feature functions between the states

are not normalized, (
∑

st∈S φ(st|st−1, . . . , st−N ) 6= 1). The
full model is shown in Figure 1.

Our MRF is closely related to a hidden Markov model

(HMM). The relation between observations and states is

similar to the relationship encoded in HMMs; as in HMMs,

states in our model are hidden and information about them

is only provided through the observations emitted. However,

our feature functions are not normalized to sum to 1, unlike

the feature functions in HMMs used to define the transition

and observation probability tables. The absence of normal-

ization in a MRF allows us to avoid a specific bias during

HMM inference of favoring states with a smaller number

of potential next states in their transition model (the “label

bias” problem [10]). The importance of avoiding this bias in

direction inference will be discussed in later sections.

MRFs can be used to address a range of important

questions, including what is the most likely state sequence

s1, s2, . . . sT given a series of observations z1, z2, . . . , zT ,

argmax
s1,...,sT

p(s1, . . . , sT |z1, . . . , zT ). (1)



Fig. 1. Specialized Markov Random Field variant used in our approach.

Using Bayes rule this is proportional to

argmax
s1,...,sT

φ(z1, . . . , zT |s1, . . . , sT )φ(s1, . . . , sT ).

Using the conditional dependencies expressed in our model

we can re-express Equation 1 as:

argmax
s1,...,sT

p(s1)φ(z1|s1)

T∏

t=2

φ(zt, |st)φ(st, st−1, . . . , st−N )

This final expression can be evaluated efficiently using a

Viterbi-style algorithm [11].

A. Direction interpretation as inference

We will use our specific MRF to perform direction in-

ference. In our model, states represent the physical regions

of an environment. For example, Figure 2 shows the third

floor of a building, segmented into a non-overlapping set

of contiguous physical regions. Each region is associated

with a set of objects that are present in that region: in the

current work object labeling is done by hand but in the future

we intend this to be performed with an object recognition

algorithm. The observations are keywords occurring in a

set of directions, such as sofa, kitchen, or monitor. The

objective is to compute the most likely sequence of physical

regions, given a set of observations (directions). Evaluating

the likelihood of sequences requires that we specify the

correct transition and observation model probabilities for our

problem.

1) Transition Probabilities: In our approach the physical

connectivity of the space helps define the feature function

encoding the dependencies between prior and future states.

In particular, the feature function is zero for all next states

st = Ri which are not physically adjacent to the prior state

region st−1 = Rj :

φ(st =Ri|st−1 =Rj ,. . . ,st−N ) = 1 if Adjacent(Ri, Rj)

= 0 otherwise

where the Adjacent function is true if it is possible to
directly transition between regions Ri and Rj and false

otherwise. For example, in Figure 2 regions R1 and R3

are adjacent. A region is also considered to be adjacent to

itself. In addition, in a set of directions it is not expected

Fig. 2. Stata center segmented into regions. Adjacent regions are shaded
differently to highlight the region boundaries.

that the agent will backtrack to previously visited regions.

In our initial experiments we only used first order feature

functions for the state transitions, and we found that this

caused the agent to occasionally return to earlier visited

regions, or oscillate, particularly in similar places where the

observation model could not uniquely identify the area. Our

N -th order feature functions for the state transitions allow
us to expressly prohibit this, by setting the feature function

value to zero for revisiting states earlier than the state st−2

φ(st = Ri|∃t̃ ∈ t − N, . . . , t − 3 st̃ = Ri) = 0.

We set N according to the length of the given direction set.
Finally, in order to ensure that in absence of any observa-

tions, all paths of equal length have the same probability, the

feature function values themselves are set to 1 for all allowed

transitions. For example, starting in a region connected to five

others, the feature function for the next state taking on any

of the five next potential region values would be equal to 1.

If the first region had instead been connected to two other

regions, the feature function value for each of those regions

would also have been 1. In this way, transitions through

highly connected regions do not receive a lower likelihood

than transitions through regions with low connectivity. Note

that this is a key distinction from Hidden Markov models

which would require the feature function value to sum to

1 over all the next potential regions for any current region,

which results in highly connected regions having a lower

probability of transitioning to other regions compared to

regions that are only adjacent to a few regions.

2) Observation Probabilities: we could pre-compute the

model for a complete set of observation probabilities for all

observations (aka directions) we expect to receive. However,

this pre-computation will inevitably lead to failures when

someone gives directions using novel vocabulary. Instead,



we represent regions using a fixed set of abstract types, but

we compute the observation model online from the nouns in

the parsed directions. These keywords could refer to specific

objects o such as ‘monitor” or “microwave” or types of
regions y, such as “kitchen” or “office.” In order to perform
inference we need to compute the probability that each map

region generated a particular observation, p(zi|Rj) for all
regions j and keywords i. We will assume that each region
Rj is associated with a list of objects that were detected in

that region dj1, dj2, . . . , djD. We assume that these object

detections are not perfect: that there is a probability θfp1

for a particular object o1 that we get a false positive, and a

probability θfn1 that our object detector fails to detect when

there really is an object o1 in the region. Given this, the

probability that there is an object o1 in region Rj given a

detection dj1 is

p(o1|dj1, Rj) = p(o1|dj1) = 1 − θfp1,

namely, the true positive rate of the object detector.

If zi instead refers to a region type, such as “kitchen” (K),
then we use the object detections found in the region Rj to

infer the probability that Rj is a kitchen:

p(z = K|Rj , dj1, dj2, . . . , djD) = p(z = K|dj1, dj2, . . . , djD)

Applying Bayes rule (using K to represent z = K) we get

p(K|dj1, . . . , djD) =
p(dj1, dj2, . . . , djD|K)p(K)

p(dj1, dj2, . . . , djD)

=
∑

O

p(dj1, dj2, . . . , djD, O|K)p(K)

p(dj1, dj2, . . . , djD)

where O is a particular set of objects present in a region
and. Here we are introducing and summing over possible

object sets O. We assume that object detections are only
dependent on the objects present in the environment (and

not the environment type), so we can re-express this as

p(K|dj1,. . . , djD)=
∑

O

p(dj1, dj2,. . ., djD|O)p(O|K)p(K)

p(dj1, dj2, . . . , djD)

We next make the simplifying assumption that the probability

of each object is independent conditioned on the region type

(as in a naive Bayes model), and that each object detection

depends on whether or not that particular object is present

p(K|dj1, . . . , djD) =
∑

O

p(K)
∏D

l=1
p(djl|ol)p(ol|K)

p(dj1, dj2, . . . , djD)

∝
∑

O

p(K)

D∏

l=1

p(djl|ol)p(ol|K). (2)

This sum should be over all possible object sets O: if there
are NO objects in the world, there would be 2NO potential

object sets, corresponding to the possibility that each object

is or is not truly present in a particular region. For a large

number of objects this is intractable: instead we approximate

this sum by considering only objects that were detected in

a particular region. This effectively means that we consider

false detections but not missed object detections.

To make this concrete, consider the case of when there is

only 1 possible object in the world (o1) and we have detected

this object (dj1) in region Rj . Then Equation 2 becomes

p(K|dj1) ∝ p(K)[p(dj1|¬o1)p(¬o1|K) + p(dj1|o1)p(o1|K)]

= p(K)θfp1p(¬o1|K) + (1 − θfp1)p(o1|K).

In other words, the likelihood that region Rj is a kitchen,

given that object 1 was detected there is proportional to the

probability that either there is or is not truly object 1 in that

region, and the associated probabilities related to that.

At a high level, this allows us to create a model that

is more robust to the probability that our detections are

incorrect. In the case that we have a perfect object detector,

this model simplifies as expected.

In order to compute Equation 2 for each region, we must

be able to evaluate the probability of an object being present

or not present in a particular region type (p(o|z = K) and
p(¬o|z = K)). We do this by using a Flickr image dataset.
We constructed our dataset by first using WordNet to find all

hyponyms for environmental areas (such as hallway, office,

etc): this produced approximately 2000 words. Flickr was

queried with each of those terms, and around 500 images

were downloaded for each term, along with all the associated

tags for those 500 images. Given this set of images and tags,

we performed simple counting to compute the probabilities

p(Object|RegionType) =
p(Object, RegionType)

p(RegionType)

=
NTagOR/NI

NTagR/NI

=
NTagOR

NTagR

where NI is the total number of images in the set, NTagR

is the number of images with a tag of RegionType
and NTagOR is the number of images with tags of both

RegionType and Object. The benefit of using Flickr is
two-fold: it is an existing labeled dataset, and it is a very

large set of images, labeled by a huge number of users.

Therefore we expect the probabilities of particular objects

being associated with particular region types to be more

reliable than if we were to hand label a small set of regions

and use these to compute the model probabilities. Here we set

the probability of a false detection θfp manually to be 90%
for all object categories: soon we intend to use an automatic

object detector and will use its associated false positive rate.

In summary, given a set of observations, we first parse

the directions and extract a set of keywords. We then use

MRF inference to compute the probability that each keyword

corresponds to each region given the keywords, the transition

probabilities, and observation probabilities. We then extract

the most likely sequence of regions, with two additional

modifications. First we constrain the search for the most

likely region sequence to start at the known first location

in the sequence: we anticipate that our approach will be



Algorithm 1 Algorithm

1: Input: English directions D, Map M segmented into

regions R, list of objects detected in each region O, and
transition model representing connectivity between the

regions φ(st|st−D, . . . , st−1)
2: Parse sentence and extract keywords d1, d2, . . . , dN from

D (“Leave the office and turn right into the hallway”
goes to d1=”Office”, d2=”Right”, d3=”Hallway”)

3: Compute observation model for each extracted keyword

which is a noun given each of the map regions R.
(φ(d1 =′′ Office′′|R1), . . . φ(d1 =′′ Office′′|RN ))

4: Run the Viterbi algorithm on the keywords using the

transition model and observation model.

5: Return the most likely sequence of regions output from

Viterbi.

Fig. 3. One of the images taken of region R12 in the dataset. The objects in
a region were used to compute the probability of a region being a particular
type of area, such as a kitchen or office.

used in settings where a human is giving instructions to a

robot that is present in the room with the human to some

other region, and so it is reasonable to assume the start

location is known. Second, our current transition model is

very simple and does not include information about the

agent’s orientation, or directional information such as “turn

right.” However, whenever an instruction such as “right” or

“left” is encountered, it is often an indication that the agent is

about to change physical regions. Therefore, whenever such

a keyword is encountered, the transition probability of a self

transition is set to zero, to force a transition to an adjacent

region.

An overview of our approach is presented in Algorithm 1.

IV. EVALUATION

In order to evaluate our algorithm we gathered directions

from 11 volunteers on a set of 10 possible pairs of regions,

resulting in 80 total sets of directions. Each volunteer was

given the segmented map shown in Figure 2 and asked to

write, in whatever way was natural to the person, directions

from the start region to the end region, with the goal of

communicating this route to another person that does not

have a map. User volunteers were familiar with the space,

# correct destination / # correct destination /
Human performance Total samples

Humans 55/55 (100%) 55/80 (68.8%)

Algorithm 47/55 (85%) 47/80 (58.75%)

Random guessing 4.4/55 (8%) 4.4/80 (7.8%)

TABLE I

RESULTS ON DIRECTION ACCURACY

and were encouraged to review the area before writing

directions if he or she was unsure of how to give directions

between each pair of regions.

From these user directions, keywords were extracted by

hand, and the algorithm presented in the prior section was run

to extract the most likely sequence of regions given the set of

observations. Figure 4 gives an example of one of the routes

that volunteers were asked to write down directions for, as

well as the volunteer directions given, extracted keywords

and most likely state sequence output.

In order to fairly evaluate the performance of our algo-

rithm, it was important to first ascertain how good the human

directions were. To estimate this we tried giving each of

the directions to a different volunteer. In each test, the set

of directions for a particular route was read out loud by

one of the paper authors as the volunteer tried to follow

those directions. If the volunteer thought he/she was lost

the trial is finished and the directions were classified as

wrong/insufficient. If the volunteer ended up at the wrong

destination the directions were also classified as wrong or

insufficient. If the volunteer finished at the correct destination

the directions were classified as correct. In some scenarios

people got confused and thought if they did not already

have a very good knowledge of the environment they would

have been lost. These direction sets were also classified as

wrong. Note that some volunteers had an advantage over

generic users, since some volunteers had already given a set

of directions for the routes they were tested on. Therefore

we expect our evaluation of the average percentage of

time humans could follow other humans’ directions to be

potentially an overestimate of the general case.

Our subjects could correctly infer the final destination

region from someone else’s directions in 55 examples (on

average 68.75% of the time), and the MRF correctly inferred

the destination in 47 examples. Though both results leave

significant room for improvement, our automated approach

compares favorably with human performance. It also indi-

cates that this environment is challenging. Note that random

guessing would result in a correct answer only 7.8% of the

time, since there are 18 regions in the environment: this

would yield an expected number of 4.4 correct answers.

These results are displayed in Table I.

Despite its generally encouraging performance (compared

to humans), there were some routes that our algorithm

performed very poorly on, such as navigating from R16 to
R12. This was a short path from the elevators to another
office area, but the quickest path involves going through

R15, which is a sprawling office bracketed by two sets of



Route : R08 to R04

Directions: “Head down the hallway with the open area

on your left, and railing on your left. At the end of

the hallway take a left, and head through the open area

with the computers on your right, and then head into the

conference room across the bridge on your right.”

Parsed keyword sequence:

1 hall 7 computer
2 left 8 right
3 balcony 9 conferenceroom
4 left 10 bridge
5 hall 11 right
6 left 12 conferenceroom

Recognized Path:

1 R08 (lounge) 5 R04 (conference room)

2 R10 (hall) 6 R05 (office)

3 R07 (hall) 7 R04 (conference room)

4 R05 (office)

Fig. 4. Sample route, directions given by one volunteer for this route,
extracted direction keywords provided as input to the algorithm, and the
output best region sequence of the algorithm.

glass doors. This area is quite confusing for humans, and

the directions given for this area often involved some extra

redundant observations and lots of additional comments. For

example, one set of directions given were:

1. With your back to the elevators, head

through the glass doors on your left.

2. Follow the hallway past the biolab,

and through the doors at the end, and

all the way down the hallway.

3. At the end, with the open area on

your right, take a left and head into

the office area.
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Fig. 5. Percentage of correct directions as a function of route path length.

. The extracted keywords for this sequence were ‘elevators’,

’doors’, ’null’, ’left’, ’hall’, ’doors’, ’hall’, ’right’, ’null’,

’left’, ’office’, ’office’. The most likely sequence of regions

found by the algorithm was ‘R16 elevators’, ’R15 office’,

’R11 hall’, ’R09 hall’, ’R07 hall’, ’R06 office’, ’R06 office’,

which is far past the desired end trajectory. Similar results

were found for this route from some of the other directions.

One interesting thing about this set of directions is that

information about side regions is given multiple times, such

as “past the biolab” and “with the open area on your right.”

We will discuss this further in the future work section.

However, it is exciting that in some cases the algorithm

performed much better than humans. For example, for the

route between R6 to R2 only 2 out of 6 people got the final
destination correctly, but the algorithm got it correct in all

6 cases. Figure 5 shows the results as a function of path

length. Using a MRF does significantly better than a HMM

as expected. Recall that the major difference between our

MRF model and the HMM model is whether the transition

probabilities are normalized. This normalization means that

highly connected regions will have a much lower transition

probability than regions with few adjacent regions. There-

fore, particularly as the path length gets longer, the HMM

will tend to favor paths with regions with few connections, in

order to maximize the probability. Our MRF model does not

have this disadvantage, and performs better, particularly as

the path length increases. Overall our MRF algorithm shows

encouraging results and with further improvements, it may be

possible to be competitive with human performance across

all path lengths, though further testing is needed.

V. FUTURE WORK

The work presented makes up a first encouraging initial

step towards our longer term goal of a completely au-

tonomous system for direction following. We are currently

working on the following extensions to the algorithm:

• Skipped observations. In giving directions, people

sometimes skip observations of regions by using higher

level action instructions. For example, “Leave the office



area and walk with the wall on your right until you

see the kitchen” could be used to specify how to walk

from R12 to R2, but there are no observations given
of the regions R9, R6, or R5 that the follower must
traverse on the way to kitchen R2. We are currently
extending the algorithm to include potential skips in

the observation sequence (“null” observations in the

sequence where a state transition occured). We are

taking a string matching alignment approach to this

problem, and preliminary results on hand inserting skips

in the observation direction sequence are promising.

• Alternate descriptions. In our original model we assume

that people provide “feed forward” descriptions, in

which the only regions described are along the chosen

route. However, in our instruction set people sometimes

refer to regions or objects that are adjacent to the

region that a person or agent should be in presently,

such as “with the open area to your right.” People

also sometimes use negative information, such as “if

you have reached the drug store you have gone too

far.” Incorporating both types of information is likely

to significantly improve our algorithm’s performance. A

simple way to incorporate observations of side regions

would be to modify the observation model p(z|s) for
each region to include observations associated with the

region itself and with adjacent regions. In addition, in

certain tasks the speaker may backtrack to past regions,

though we expect that to be unlikely in the types of

problems we are interested in (since our current focus

is not on environment “tours”).

• Improved parsing. Our current parser automatically ex-

tracts the nouns and simple direction terms (such as

“right” or “left”) in the order they are presented. People

however use rich linguistic structure to encode their

directions, such as “turn into the office, after going

past the kitchen and the bathroom,” which would be

currently parsed so the kitchen and bathroom appear to

come after the office, instead of before.

• Automatic map and region generation. In the longer

term our goal is to use a robot to automatically build a

region based representation of the environment, perhaps

by using past hybrid metric-topological map building

algorithms (e.g. [12], [13]). During this map building

the robot will also take photos (such as shown in

Figure 3) and automatically detect what objects are

present in the photo, and associate these objects with the

appropriate map region. We have already made progress

on this challenge but our object detection method did

not yet have high enough recognition rates to be used in

the current presented work. After improving this we will

be able to use these regions and object detections in our

direction inference algorithm. We are also interested in

examining the impact of the chosen map segmentation

on the ability of the robot to infer the correct path: a

range of segmentations may enable successful inference.

• Interactive direction giving. We are also currently pur-

suing work where the original set of directions provided

is only the start of a dialogue between a human and a

robot: the robot can then ask clarification questions in

order to ascertain the correct path or destination. We are

taking a decision theoretic approach to this problem, in

which asking additional questions involves a cost of the

potential annoyance factor to the human.

VI. CONCLUSION

We have posed the problem of direction following as

a probabilistic inference problem, framing the objective as

inferring the hidden sequence of physical regions refered to

by a given set of human directions. Our model correctly

computed the true destination at a rate of 85% compared to

humans. We are encouraged by these results and think our

future work may make our approach even more competitive.
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