
SLAM using Incremental Probabilistic PCA and
Dimensionality Reduction

Emma Brunskill and Nicholas Roy
CSAIL, Massachusetts Institute of Technology

The Stata Centre, 32 Vassar St.
Cambridge, MA 02139

{emmab|nickroy}@mit.edu

Abstract— The recent progress in robot mapping (or SLAM)
algorithms has focused on estimating either point features
(such as landmarks) or grid-based representations. Both of
these representations generally scale with the size of the
environment, not the complexity of the environment. Many
thousand parameters may be required even when the structure
of the environment can be represented using a few geometric
primitives with many fewer parameters. We describe a novel
SLAM model called IPSLAM. Our algorithm clusters sensor
data into line segments using the Probabilistic PCA algorithm,
which provides a data likelihood model that can be used within
a SLAM algorithm for the simultaneous estimation of map and
robot pose parameters. Unlike previous work in extracting
line-based representations from point-based maps, IPSLAM
builds non-point-based maps directly from the sensor data.
We demonstrate our algorithm on mapping part of the MIT
Stata Centre.

Appeared in the Proceedings of the IEEE/RSJ International
Conference of Robotics and Automation (ICRA 2005)

Index Terms— Mapping, Mobile Robotics, PCA, Clustering

I. INTRODUCTION

The recent progress in robot mapping (Simultaneous
Localization and Mapping, or SLAM) algorithms has largely
focused on building maps that either consist of point features
(such as landmarks) or grid-based representations. Both of
these representations are extremely dense; the number of
points or grid cells required to represent some environments
can be in the tens of thousands. The complexity of represen-
tation is unfortunately independent of the structure of the
environment. Even when the structure of the environment
can be represented using a few geometric primitives with a
handful of parameters, the corresponding occupancy grid or
feature set can still be large and complex.

One of the difficulties with building maps of geometric
primitives, however, is that the statistical inference prob-
lem is difficult. In particular, the techniques for extracting
higher-order geometric representations from data do not
give an explicit probability model for the observed data.
Geometric representations can be used to reduce the di-
mensionality of the point-based map representations after
the fact, for example, using principal components analysis
(PCA) or the Hough transform [6] to extract lines from data,
but these algorithms work best at extracting map features
from data that contains mostly random noise such as sensor
error. When the data has not been corrected to compensate
for systematic bias, such as odometry drift, dimensionality
reduction algorithms are unable to extract the latent structure
themselves. If we wish to build low-dimensional, geometric
representations of the environment using SLAM, we need to
be able to solve the chicken-and-egg problem of estimating
the geometric representation of the map and the robot

position. Reducing the map to a set of geometric primitives
that do not provide a likelihood model of the data will not
give us robust SLAM algorithms.

An additional motivation for building a geometric map
in an online manner (as opposed to post-processing a
point-feature map) is to facilitate motion planning. Many
planning algorithms scale with the number of features in the
environment (eg. [3]); by generating low-dimensional maps
online, fast motion planning can result without completing
the map. Additionally, by estimating the uncertainty of the
geometric features online, exploration algorithms designed
to maximize information gain [10] can be used to improve
the map.

Our goal in this paper is to describe a SLAM algo-
rithm called IPSLAM that creates a map composed of
low-dimensional geometric primitives online, directly from
the sensor data. We combine a dimensionality reduction
technique that provides a well-formed probability model,
called Probabilistic Principal Component Analysis [15],
in conjunction with an online mapping algorithm called
FastSLAM [8] to generate maps of the environment based
on line segments. Our contribution is not a novel SLAM
technique, but to show that existing SLAM techniques can
be applied to a novel representation. The number of line
segments is dynamically updated according to the sensor
data. We demonstrate this algorithm on a navigating mobile
robot in MIT’s Stata Centre.

II. THE SLAM PROBLEM

The SLAM problem is typically phrased as estimating
the parameters of the robot’s position while simultaneously
estimating the parameters of the map. Let us denote the
robot’s pose at time t as xt, and the parameters that describe
the world (location of features, free space, etc.) as Θ =
(θ1, θ2, . . . , θn) where each θi corresponds to the parameters
of some feature, such as the position of a landmark. As the
robot receives a control ut at time t, its position changes
probabilistically according to some transition distribution:

p(xt+1|xt, ut). (1)

After each motion the robot receives sensor measurements
zt. These observations are generated according to a distri-
bution that depends on the robot position and the world
state:

p(zt|xt,Θ). (2)

Since we do not know the robot position or the map, the
SLAM problem is that of estimating the joint distribution
over the robot and map state, p(xt,Θ), as controls are given

and sensor measurements are received. The Bayes’ filter is
most commonly used to perform this estimation:

p(xt+1|ut) =

∫

Xt

p(xt+1|xt, ut)p(xt)dxt (3)

p(xt+1,Θ|zt) =
p(zt|xt,Θ)p(xt,Θ)

p(zt)
. (4)

Equations 3 and 4 are updated after each control and
each sensor measurement, to maintain a posterior estimate
p(xt,Θ|zt, ut).

The choice of map representation, or the form for
p(xt,Θ), is a key factor in any SLAM algorithm. In
mapping based on grids, the distribution is typically factored
into a distribution p(xt) and a multinomial p(Θ), both of
which are jointly optimized offline. In Kalman filter-based
SLAM, the joint distribution is represented as a multivariate
Gaussian with some mean and covariance. The Kalman
filter approach is popular because it allows for very efficient
updates in worlds with a small number of parameters and
can be extended to efficient updates in large worlds with
appropriate decomposition [2]. However, because a motion-
sensor update is O(n2) (where n is the total number of
parameters in x and Θ), the estimation problem becomes
progressively more computationally challenging as the size
and complexity of the world increases.

This is one of the primary difficulties in SLAM—the
problem of representational complexity. As the size of the
world increases, so can the complexity of the estimation
problem, even if the structure of the world itself does not
increase significantly in complexity. Estimating a map that
consists of a long corridor should not increase quadratically
in the length of the corridor, but building a point-based
map requires tracking point features down the entire length,
which increases the number of features as the corridor gets
longer. The recent arrival of constant-time SLAM algo-
rithms such as Atlas [2] or the Sparse Extended Information
Filter [13] mean that the statistical inference procedure itself
need not scale at all with the number of features, but the
complexity of the representation still does. This motivates a
potential for low-dimensional geometric representations to
be useful.

III. DIMENSIONALITY REDUCTION

Given a large number of point features that all correspond
to the same environmental structure, a reasonable approach
might be to use a dimensionality-reduction technique to
extract higher-order, lower-dimensional representations that
still capture the data. One such representation is Principal
Components Analysis, that computes a set of basis functions
that can be linearly combined to represent a collection
of data; PCA has been used extensively in the vision
community to find low-dimensional representations of very
high-dimensional images, such as faces [16]. If we apply
PCA to appropriately clustered sets of point features in a
map, we can extract line segments to represent each cluster
of point features, generating very efficient representations,
e.g., a wall containing 1,000 point features in a 2-d world
could be represented using just the 4 parameters of the end-
points of 2-d line segment.

Although this approach has been applied successfully
in a number of applications to convert point-feature-based
models into line-segment based models (e.g. [7], [12], [14]),

the problem is that current SLAM approaches (building the
initial map) still require coping with the representational
complexity of the point-features during the map-building
process. What we would like is to build a model of the
environment directly from line segments.

Tardös et al. [12] demonstrated that higher-order features
can be extracted from directly from collections of sensor
data using the Hough transform however, as with most
existing dimensionality reduction techniques such as PCA or
line fitting, their approach does not contain the probabilistic
models of the data necessary for robust SLAM. Although
PCA can be viewed in probabilistic terms as finding a
low-dimensional manifold that maximizes the likelihood of
the data, but it does not provide a well-formed probability
distribution over the manifold itself. Without a likelihood
model of the data, we cannot compute p(zt|xt,Θ) as in
equation 4.

A. Probabilistic PCA

The Probabilistic PCA algorithm developed by Tipping
and Bishop [15] does provide a way to compute a low-
dimensional representation with a well-formed probability
distribution of higher dimensional data. Let us consider the
problem of fitting some data Z of dimension d to some
lower-dimensional parameterization ζ of dimension q. If this
lower-dimensional parameterization of Z is linear, then we
want some projection matrix W and offset µ so that Z =
Wζ+µ, where µ is the mean offset of the data. However, for
data that only approximates a line (because of measurement
noise, for instance), no such W exists. The best we can do
is minimize the error in representation, typically choosing
to minimize squared-error such as in conventional PCA so
that

W = argmin
W

||Z − Wζ + µ||2. (5)

Instead let us explicitly represent the noise ε present in the
observations:

Z = Wζ + µ + ε (6)

If we assume isotropic noise ε ∼ N(0, σ2
I) and a normal

distribution of the low dimensional parameterization ζ, we
can compute the marginal distribution of Z:

p(ζ) = N (0, 1) = (2π)−q/2 exp

{

−
1

2
ζT
i ζi

}

(7)

p(Z) =

∫

p(Z|ζ)p(ζ)dζ (8)

⇒ p(Z) ∼ N(µ,C) (9)

where
C = WW

T + σ2
I (10)

Equation 8 follows from the total law of probability, and
equation 9 follows from combining equations 8, 6 and 7.
Equation 9 defines a probability model of the high dimen-
sional observations and which means the likelihood of any
observation z can be directly computed given the model
and C. Tipping and Bishop [15] show that the maximum
likelihood estimates of the parameters WML, σ2 and µ
occur when µ is equal to the mean of the observations,
and

WML = U(Λ − σ2
I)1/2

R (11)

where R is an arbitrary rotation matrix and U and Λ are
the principal eigenvectors and eigenvalues respectively of
the observation covariance matrix,

S =
1

N

N
∑

i=1

(zi − µ)(zi − µ)T , (12)

for N observations in Z. At the maximum likelihood point
(where W = WML) the maximum likelihood estimate for
σ2 is

σ2
ML =

1

d − q

d
∑

j=q+1

λj (13)

where λj is the jth eigenvalue of the observation covariance
matrix (eigenvalues are ordered by descending magnitude).
In the case of computing the 1-D parameterization of 2-
D data, σ2

ML is just the eigenvalue of the non-principal
component, or in other words, the variance perpendicular
to the principal component of the observations.

Notice that we can recover conventional PCA by maxi-
mizing

lim
σ2→0

L(p(Z)), (14)

that is, the likelihood of the data as σ2 goes to 0. This would
allow us to recover W from the data (and a low-dimensional
representation), but would not provide a probability model
of the data.

There are two key properties to this model that are
beneficial to the problem at hand. First we now have
an explicit probability model of the data, p(Z), allowing
us to compute the likelihood of any observation. Second,
this probability model also can be used to compute the
parameters for a mixture of such models using Expectation-
Maximization as described by Tipping and Bishop [15].
Therefore, given a known set of features, this method can be
used to compute the set of 1-D principle components which
maximizes the likelihood of the data. For example, once
the number of walls n is estimated, probabilistic principal
component analysis (PPCA) can be used to compute the
set of n 1-D vectors that maximize the likelihood of the
underlying 2-D laser range data points.

σ

λ: Principle Component

cluster center

Laser Observations

µ

Fig. 1. Probabilistic Principal Components Analysis.

Two immediate issues arise when using this approach in
an incremental fashion to do SLAM. The first is how to de-
termine the number of features (or number of mixtures) over
which to perform PPCA, since this is typically not known in
advance. The second is how to do PPCA incrementally so
that as new data arrives, the parameters of the old features
are updated accordingly.

B. Determing the Number of Low Level Features

The problem of estimating the number of line segments
present in the environment, or the number of mixtures to be
used in PPCA, is very similar to the problem of determining
K in the K-means algorithm. Without prior knowledge of

the domain, it can be very difficult to pre-select the correct
number of clusters, yet important, since both K-means and
mixtures of PPCA perform poorly with bad choices of
the K or the number of mixtures. To remedy this problem,
Pelleg and Moore [9] created X-means, an algorithm which
determines the best K (out of a range of Ks) number of
clusters for a dataset. Their algorithm uses the Baysian
Information Criteria to determine when to split a cluster into
two. Hammerly and Elkan [4] improved upon their result
in an algorithm G-means which uses the Anderson-Darling
(AD) statistic to split clusters until the data allocated to each
cluster passes the hypothesis of being normally distributed
(A2(Q) > 1.035, which corresponds to the probability the
distribution is Gaussian is > 99%). This result avoids the X-
means assumption of the data being spherically distributed
about a center.

In our approach we integrate G-means with PPCA to pro-
duce an algorithm which determines online the best number
of mixtures and the best parameters of those mixtures to fit
the data at hand. The parameters of the model are further
improved by excluding outlier points (those points whose
probability under the cluster that maximizes their likelihood
is less than a given threshold, typically 1%) and recomputing
the clusters’ parameters.

C. Incremental Probabilistic PCA

In online SLAM, a robot moves through a new environ-
ment. At each time step, the robot receives new observations
and integrates these observations into a map and estimate
of its trajectory. Probabilistic PCA, in combination with G-
means, produces a mixture of K low dimensional models
when given a set of observations. To compute maps incre-
mentally, a simple solution would be to store all observa-
tions, and at each new time step add in the new observations
and re-run PPCA+G-means on the entire dataset. However,
this approach is undesirable for two reasons. First, it be-
comes intractable to store all raw observations if the robot
is on a prolonged period of exploration. More importantly,
it is computationally expensive to run PPCA+G-means on
the entire observation set at each time step.

Instead, we propose to maintain only a compact rep-
resentation of the incremental map using the principal
components and variances obtained from PPCA. At each
new time step, a new set of observations are received.
These new observations are processed by PPCA+G-means
to produce a set of K ′ new clusters or principal components
that succinctly represent the new observations. These K ′

clusters are then merged with the K clusters of the prior map
representing the state of the world up through the previous
time step. There are two main components to the merge
procedure: the cluster correspondance problem (determining
the mapping between old clusters and new clusters) and
the cluster parameters update problem (how to merge two
associated clusters).

D. Cluster Correspondence

Cluster association is determined by calculating a metric
between every pair (ki ∈ K, k′

j ∈ K ′) pair of clusters.
For each pair of clusters, first the dot product is computed
between the normalized principal component vectors of the
two clusters. If the dot product is below certain threshold
(in our experiments, a difference in angle of 60◦ was used,

chosen experimentally) then the distance measure is set
to +∞, to indicate that these two clusters should not be
merged. Otherwise, if the cluster centers are within the sum
of the principal variances of the two clusters, another metric
is computed. Alternatively, the distance between the cluster
centers is used as a metric.

Cluster matching is done greedily by sequentially match-
ing the next pair of clusters that have the smallest distance
metric up to some distance threshold.

E. Cluster Merging

Once cluster association has been performed, the map
parameters must be updated. If an old cluster has no match,
its parameters are left unchanged. If a new cluster has no
match, it is added to the new map only if it has the support
of a sufficient number of observations, and its non-principal
component variance is low. The motivation here is to add
in new features to the map only if they are well defined
(represent 1-D features well, as represented by low non-
principal component variance (see figure 2 and note that if
σ2 is small the model becomes line-like)) and help explain
a good number of the new observations.

For cluster pairs (k′, k), their parameters must be merged
to compute a new cluster. This is done using a variant of
Weng et. al. [17]’s Incremental Principal Component Anal-
ysis (IPCA) algorithm. IPCA provides a way to iteratively
re-estimate the principal components of a data set without
requiring the storage of all data. Let zm be the mth d-
dimensional observation and A =

∑m
i=1(zi − µ)(zm − µ)T

be the dxd sample covariance matrix. Then letting xi be the
ith normalized estimate of an eigenvector of A (and λ the
corresponding eigenvalue) yields

Axi =
m

∑

i=1

(zi − µ)(zi − µ)T xi = λxi ≡ vm (15)

Note that by maintaining vm the current estimate of the
eigenvalue and eigenvector can be computed by λ = ||v||
and xi = v/||v||. By initially setting v0 to the principal
component of the first observation set, recursive estimation
of vm is possible.

vm =
m − 1

m
vm−1 +

1

m
(zm −µ)(zm −µ)T vm−1

||vm−1||
(16)

This has the intuitive effect of pulling the old estimate of
the principal component towards the new observations.

The *s are the cluster centres for the existing

The clusters are merged based
on Incremental PCA into this
posterior cluster.

cluster and a new cluster

Fig. 2. The process of incorporating a new cluster into the existing map.
This procedure allows the computation of merged princi-

pal components from an old and new cluster. The merged

cluster center is computed by taking a weighted average
of the old and new cluster centers. See figure 2 for an
illustration of this procedure.

IV. FAST SLAM

So far we have described how to incrementally compute
a set of clusters or line segments that represent a map of
the environment. We now explain how the line segment
estimation is used to produce a complete SLAM model.

A. Robot Pose Estimation

Robot pose estimation is computed using particle filtering
in a manner similar to Thrun’s FastSLAM [13]. A collection
of particles S representing possible robot trajectories and
current poses is maintained. At each time step t, each
particle i generates a new estimate of the robot’s pose using
the new translation and rotation odometry reading ut

s
[i]
t ∼ p(s

[i]
t |ut, s

[i]
t−1) (17)

where Gaussian noise associated with translation and rota-
tion is added as part of the motion model.

B. Map Estimation

At each time step t, a new set of environmental observa-
tions Z is received. Then each particle i computes a map
of the environment represented by a set of line segments
or clusters Ci using the incremental probabilistic principal
component analysis procedure described above.

C. Particle Resampling

Initially all particles simply update the robot’s pose based
on the new odometry reading. This creates a particle set
whose distribution is independent of the environmental
observations. To correct for this, importance sampling [11]
weights each particle based on the likelihood of the ob-
servations given the particle pose, and performs weighted
resampling to generate a new particle set. In the present
scenario, PPCA provides a probability distribution over the
data for a given cluster. A particle i’s weight wi at iteration
t is thereby computed by:

wi =

|Z[t]|
∏

j=1

max p(z
[t]
j |Ci) (18)

In other words, each measurement is assigned to the cluster
that maximizes its probability, and so the weight of a particle
represents the likelihood it assigns to the current set of
observations Z

[t].
Particles are then resampled with replacement before the

next time step. The complete algorithm can be seen in
table I.

V. EXPERIMENTAL RESULTS

Our algorithm was tested on a dataset collected from
the MIT Stata center. 201 particles were used. Figure 4a
shows the true robot trajectory compared to the mean
particle trajectory over time. The alignment is generally
good; unfortunately this data set does not close the large
loop entirely, but we see that the small loop in the trajectory
is closed appropriately, and the small shift at the end of the
trajectory would no doubt be corrected with more data. (It is
possible to introduce arbitrary error in the L2 norm between

(a) Corrected trajectory and true trajectory (b) Low-dimensional Clusters

(c) Registered laser data (d) Reconstructed laser data

Fig. 4. The map built from SLAM using the low-dimensional representation. (a) The corrected trajectory is the solid black line, and the true trajectory
is the solid grey line. The true trajectory was found by tracking the robot’s position in a pre-built grid map. (b) The constructed map, represented by
the clusters. (c) The map as represented by registered laser data. (d) The map as represented by the low-dimensional projection of laser data.

Fig. 3. The map built from pose estimates given by raw odometry. As
expected, the error in the pose estimates accumulates and the resulting map
is poor.

a perfect map and ground truth by rotating the map about
the start pose before comparison. The trajectory shown here
follows a correction procedure to shift and rotate the map
back to the best orientation possible for minimizing error.)

Figure 4b shows the map clusters associated by the mean
particle on top of the laser data. Note that the clusters are
probability distributions, not line segments, and are therefore
plotted by showing one standard deviation of the data like-
lihood distribution on either side of the cluster center; the
clusters may seem shortened but are capable of representing
more structure than is plotted. Data points whose likelihood

under any cluster was lower than a threshold (0.01) were
not used in computing cluster parameters, and data with
probability less than 10−8 are not displayed. The map has
clearly captured the majority of the high level structure of
the environment, using a fraction of the parameters needed
for a point based representation. Indeed, the final mean
particle map consisted of 33 clusters, approximately .5%
of the parameters needed to represent the full point-based
representation. Figure 4c shows the mean particle robot
trajectory through the environment.

In addition, the reconstruction of the raw data points
was computed by assigning data points to the cluster that
maximized their likelihood, projecting down to the low
dimensional representation, and then re-projecting up to the
high dimensional space. Figure 4d shows the reconstructed
data points. As would be desired, the reconstructed data
points provide a nice, low noise representation of the
environment.

VI. RELATED WORK

There is a large body of work on SLAM and only the most
relevant results will be discussed here. Tardós et. al. [12]
used the Hough transform to group observations into point
or plane features when performing concurrent mapping and
localization (CML). Similar this paper’s approach, they
create new features from a set of new measurements, and

.
1) i=1
2) Initialize particle filter S with odometry reading i
3) Collect first set of observations Z0

4) for each particle sk ∈ S

a) Run PPCA+G-means on observations Z0 and out-
put a set of clusters C

b) wk = p(Z0|C)

5) Resample the particles with replacement using weights
w

6) While i < num observation sets
a) Update each particle’s position using the new

odometry reading
b) Collect new observations Zi

c) for each particle sk ∈ P

i) Run PPCA+G-means on observations Zi and
output a set of clusters Cnew

ii) Map new clusters Cnew to old clusters C
where possible

iii) for j=1:number of matching cluster pairs
A) Use IPCA to merge cluster pair j into

cluster Cmerge,j

iv) Copy all unmatched old clusters to Cmerge

v) If a new cluster has a low non-principal-
component variance and sufficient number of
new observations Z belonging to it, add it to
Cmerge

vi) wk = p(Zi|C)

d) Resample the particles with replacement using
weights w

TABLE I

THE IPSLAM ALGORITHM

then fuse features together. However, our approach utilizes
a line-based representation.

Our approach to robot pose estimation and particle
resampling draws heavily from Thrun’s FastSLAM [13]
approach. However, our line-based map representation is
fundamentally different to the landmark representation used
in FastSLAM and therefore our map estimation approach is
novel. Our representation is closely related to Thrun et al.’s
Expectation-Maximization approach to line-segment extrac-
tion [14], however, our algorithm is an on-line approach to
SLAM, rather than a post-processing step on the map.

Artac̆ et. al [1] used incremental PCA to store low-
dimensional representations of images taken by a mobile
robot as it moved around an environment. Comparing test
images to these stored low-dimensional representations pro-
duced a good estimation of the location of the robot during
acquisition of the test images. However, this work does not
attempt to solve the problem of simultaneous localization
and mapping.

VII. CONCLUSION

In this paper, we have described the IPSLAM algorithm,
an algorithm for simultaneously localizing a robot and esti-
mating a map of the environment based on low-dimensional
geometric representation. The number of features in the
environment is estimated dynamically using an approach
that draws from the G-means algorithm [4]. Using this
algorithm we are able to generate good low-dimensional
representations of environmental structure using many fewer
parameters than conventional point-based or grid-based rep-
resentations. The algorithm is near-real-time, in that the
major loss of real-time performance can be attributed to
the language implementation (Matlab). We intend to re-

implement the algorithm and demonstrate real-time perfor-
mance shortly.

There do not exist good metrics for comparing map
quality, however, visual comparison of our generated map
suggests it corresponds well with a map built using a grid-
based representation, including detecting smaller details like
doors. Notice that the passageway appears to be partially
blocked across between the two main segments of the
map—this is in fact a doorway that is partially closed in
the dataset.

The generated map does contain some errors, however.
The incremental PCA algorithm is not based on a likelihood
model and does make errors in merging clusters periodically.
We intend to extend the incremental PCA algorithm to
incorporate the full data likelihood model in future work.
Additionally, a major source of error in the map is the
fact that the MIT Stata Centre is a particularly difficult
environment to model using straight-line segments, because
many of the walls are in fact not flat or square. For example,
the lower-right portion of the map, represented by a roughly
pentagon-shaped outline of line segments. This is in fact
a curved wall segment, which requires many small linear
models to accurately represent. One possible extension to
the IPSLAM model is to capture curved segments using
non-linear PCA or Principal Curves models [5].

REFERENCES

[1] M. Artac̆, M. Jogan, and A. Leonardis. Mobile robot localization
using an incremental eigenspace model. In ICRA, volume 2, 1025–
1030, September 2002.

[2] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller.
An atlas framework for scalable mapping. In ICRA, volume 2, 1899–
1906, September 2003.

[3] H. J. S. Feder, J. J. Leonard, and C. M. Smith. Adaptive mobile robot
navigation and mapping. Inter. Journal of Robotics Research, Special
Issue on Field and Service Robotics, 18(7): 650–668, July 1999.

[4] Greg Hammerly and Charles Elkan. Learning the k in k-means.
Neural Information Processing Systems, 15, 2004.

[5] T. Hastie and W. Stuetzle. Principal curves. Journal of the American
Statistical Association, 84(406): 502–516, 1989.

[6] P.V.C. Hough. Machine analysis of bubble chamber pictures. In
Proceedings of the International Conference on High Energy Accel-
erators and Instrumentation, CERN, 1959.

[7] Paul MacKenzie and Gregory Dudek. Precise positioning using
model-based maps. In ICRA, 1615–1621, San Diego, CA, May 1994.

[8] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM:
A factored solution to the simultaneous localization and mapping
problem. In AAAI, 2002.

[9] Dan Pelleg and Andrew Moore. X-means: Extending k-means with
efficient estimation of the number of clusters. In ICML, 2000.

[10] Robert Sim and Gregory Dudek. Effective exploration strategies for
the construction of visual maps. In IROS, 2003.

[11] A. Smith and A. Gelfand. Bayesian statistics without tears: a
sampling-resampling perspective. Amer. Statistician, 46: 84–88, 1992.

[12] J. D. Tardós, J. Neira, P. M. Newman, and J. J. Leonard. Robust
mapping and localization in indoor environments using sonar data.
Inter. Journal of Robotics Research, 21(4):311–330, April 2002.

[13] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte. Simultaneous localization and mapping with sparse extended
information filters. Inter. Journal of Robotics Research, 2004. To
Appear.

[14] S. Thrun, C. Martin, Y. Liu, D. Hahnel, R. Emery-Montemerlo,
D. Chakrabarti, W. Burgard. A real-time expectation-maximization
algorithm for acquiring multiplanar maps of indoor environments
with mobile robots. IEEE Trans. Robotics and Automation, 20(3):
433–443, June 2004.

[15] M. E. Tipping and C. M. Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society, Series B, 21(3):
611–622, 1999.

[16] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of
Cognitive Neuroscience, 3(1): 71–86, 1991.

[17] J. Weng, Y. Zhang, and W. Hwang. Candid covariance-free incremen-
tal principle component analysis. PAMI, 25(8): 1034–1040, 2003.

