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Abstract
In this paper we consider the problem of online
stochastic optimization of a locally smooth func-
tion under bandit feedback. We introduce the
high-confidence tree (HCT) algorithm, a novel
anytime X -armed bandit algorithm, and derive
regret bounds matching the performance of state-
of-the-art algorithms in terms of the dependency
on number of steps and the near-optimality di-
mension. The main advantage of HCT is that it
handles the challenging case of correlated ban-
dit feedback (reward), whereas existing meth-
ods require rewards to be conditionally indepen-
dent. HCT also improves on the state-of-the-art
in terms of the memory requirement, as well as
requiring a weaker smoothness assumption on
the mean-reward function in comparison with the
existing anytime algorithms. Finally, we discuss
how HCT can be applied to the problem of policy
search in reinforcement learning and we report
preliminary empirical results.

1. Introduction
We consider the problem of maximizing the sum of the
rewards obtained by sequentially evaluating an unknown
stochastic function. This problem is known as stochas-
tic optimization under bandit feedback or X -armed ban-
dit, since each function evaluation can be viewed as pulling
one of the arms in a generic arm space X . Our objective is
to minimize the cumulative regret relative to selecting at
each step the global maximum of the function. In partic-
ular, we focus on the case where the reward obtained by
pulling an arm (i.e., evaluating the function in a point) may
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depend on prior history of evaluations and outcomes. This
implies that the reward, conditioned on its corresponding
arm, is not an independent and identically distributed (iid)
random variable, in contrast to prior work onX -armed ban-
dits (see e.g., Munos, 2013; Kleinberg et al., 2013; Bubeck
et al., 2011a). X -armed bandit with correlated reward is
relevant to many real-world applications, including internet
auctions, adaptive routing, and online games. As one im-
portant example, we show that the problem of policy search
in an ergodic Markov Decision Process (MDP), a popular
setting for learning in unknown MDPs, can be framed as an
instance of the setting we consider in this paper (Sect. 5).

Our approach builds on recent advances in X -armed ban-
dits for iid settings (Bull, 2013; Djolonga et al., 2013;
Bubeck et al., 2011a; Srinivas et al., 2009; Cope, 2009;
Kleinberg et al., 2008; Auer et al., 2007). Under regularity
assumptions on the mean-reward function (e.g., Lipschitz-
smoothness), these methods provide formal guarantees on
the cumulative regret, which is proved to scale sub-linearly
w.r.t. the number of steps n. To obtain this regret, these
methods heavily rely on the iid assumption. To handle
non-iid settings, we introduce a new anytimeX -armed ban-
dit algorithm, called high-confidence tree (HCT) (Sect. 3).
Similar to the HOO algorithm of Bubeck et al. (2011a),
HCT makes use of a covering binary tree to explore the
arm space. The tree is constructed incrementally in an op-
timistic fashion, where the exploration of the arm space
is guided by upper bounds on the largest reward of the
arms covered by a particular node. Our key insight is
that to achieve small regret it is enough to expand an op-
timistic node only when the estimate of its mean-reward
has become sufficiently accurate. Under mild ergodicity
and mixing assumptions, this allows us to obtain an ac-
curate estimate of the reward of a particular arm even in
the non-iid setting. Despite handling a more general case
of non-iid feedback, our regret bounds matches (Sect. 4.1)
that of HOO (Bubeck et al., 2011a) and zooming algorithm
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(Kleinberg et al., 2008), both of which only apply to iid set-
ting, in terms of dependency on the number of steps n and
the near-optimality dimension d (Sect. 2). An important
part of the proof of this result is the development of concen-
tration inequalities for non-iid episodic random variables
(Sect. 4). In addition to this result, the structure of our
HCT approach has a favorable sub-linear space complexity
of O(nd/(d+2)

(log n)2/(d+2)

) and a linearithmic runtime
complexity, making it suitable for scaling to big data sce-
narios. These results meet or improve the space and time
complexity of prior work designed for iid data (Sect. 4.2).
Finally, we demonstrate the benefit in simulations (Sect. 6).

2. Preliminaries
The optimization problem. Let X be a measurable space
of arms. We formalize the optimization problem as an in-
teraction between the learner and the environment. At each
time step t, the learner pulls an arm xt in X and the envi-
ronment returns a reward rt � [0, 1] and possibly a context
yt � Y , with Y a measurable space (e.g., the state space of
a Markov decision process). Whenever needed, we explic-
itly relate rt to the arm pulled by using the notation rt(x).
The context yt and the reward rt may depend on the his-
tory of all previous rewards, pulls, and contexts as well as
the current pull xt. For any time step t > 0, the space of
histories H t := ([0, 1] × X × Y)t is defined as the space
of past rewards, arms, and observations (with H

0

= �).
An environment M corresponds to an infinite sequence of
time-dependent probability measures M = (Q

1

, Q
2

, . . . ),
such that each Qt : H t�1

× X � M ([0, 1] × Y) is a
mapping from the history H t�1

and the arm space X to the
space of probability measures on rewards and contexts. Let
Z = ([0, 1] × X × Y), at each step t we define the ran-
dom variable zt = (rt, xt, yt) � Z and we introduce the
filtration F t as a �-algebra generated by (z

1

, z
2

, . . . , zt).
At each step t, the arm xt selected is F t�1

-measurable
since it is based on all the information available up to time
t − 1. In general, the pulling strategy of the learner can be
expressed as an infinite sequence of measurable mappings
( 

1

, 
2

, . . . ), where  t : H t�1

� M (X ) maps H t�1

to
the space of probability measures on arms. We now refine
this general setting with two assumptions on the reward-
generating process.

Definition 1 (Time average reward). For any x � X , S >
0 and 0 < s ≤ S, the time average reward is r̄s!S(x) :=
1/(S − s+ 1)

P
S
s0=srs0(x).

We now state our first assumption which guarantees that
the mean of the process is well defined (ergodicity).

Assumption 1 (Ergodicity). For any x � X , any s > 0 and
any sequence of prior pulls (x

1

, x
2

, . . . , xs�1

), the pro-
cess (zt)t>0

is such that the mean-reward function f(x) :=
lim S!1E(r̄s!S(x)|Fs�1

) exists.

This assumption implies that, regardless of the history of
observations Fs�1

, if arm x is pulled infinitely many times
from time s, then the time average reward converges in ex-
pectation to a fixed point which only depends on arm x and
is independent from the past history Fs�1

. We also make
the following mixing assumption (see e.g., Levin et al.,
2006, Chap. 4).
Assumption 2 (Finite mixing time). There exists a con-
stant � ≥ 0 (mixing time) such that for any x � X ,
any S > 0, any 0 < s ≤ S and any sequence of prior
pulls (x

1

, x
2

, . . . , xs�1

), the process (zt)t>0

is such that
we have that |E[

P
S
s0=s(rs0(x) − f(x))

��Fs�1

]| ≤ �.

This assumption implies that the stochastic reward process
induced by pulling arm x can not substantially deviate from
f(x) in expectation for more than � transient steps. Note
that both assumptions trivially hold if each arm is an inde-
pendent iid process: in this case f(x) is the mean-reward
of arm x and � = 0.

Given the mean-reward f , we assume that the maximizer
x⇤

=argmaxx f(x) exists and we denote the correspond-
ing maximum f(x⇤

) by f⇤. We measure the performance
of the learner over n steps by its regret Rn w.r.t. the f⇤,
defined as Rn := nf⇤ −

P
n
t=1

rt. The goal of learner, at
every 0 ≤ t ≤ n, is to choose a strategy  t such that the
regret Rn is as small as possible.

Related models. Although the learner observes a context
yt at each time t, this problem differs from the contex-
tual bandit setting (see e.g., Slivkins, 2009). In contextual
bandits, the reward rt is random realization of a function
r(xt, yt) of the selected arm and input context yt. The con-
textual bandit objective is typically to minimize the regret
against the optimal arm in the context provided at each step,
yt, i.e. x⇤

t = argmax r(x, yt). A key difference is that in
our model the reward, and next context, may depend on the
entire history of rewards, arms pulled, and contexts, instead
of only the current context and arm, and we define f(x)
only as the average reward obtained by pulling arm x. In
this sense, our model is related to the reinforcement learn-
ing (RL) problem of trying to find a policy that maximizes
the long run reward. Among prior work in RL our setting
is similar to the general reinforcement learning model of
Lattimore et al. (2013) which also considers arbitrary tem-
poral dependence between rewards and observations. The
main difference is that here we consider the regret in undis-
counted reward scenario, whereas the focus of Lattimore
et al. (2013) is on proving PAC-bounds in the discounted
reward case. Another difference is that in our model, un-
like that of Lattimore et al. (2013), the observation and ac-
tion spaces need not to be finite (see further discussion in
Sect. 5).

The cover tree. Similar to recent optimization meth-
ods (e.g., Bubeck et al., 2011a), our approach seeks to min-
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imize the regret by building an estimate of f using an in-
finite binary covering tree T , in which each node covers a
subset of X . We denote by (h, i) the node at depth h and
index i among the nodes at the same depth (e.g., the root
node which covers X is indexed by (0, 1)). By convention
(h+1, 2i− 1) and (h+1, 2i) refer to the two children of the
node (h, i). The area corresponding to each node (h, i) is
denoted by Ph,i � X . These regions must be measurable
and, at each depth, they partition X with no overlap, i.e.,

P
0,1 = X

Ph,i = Ph+1,2i�1

� Ph,2i �h ≥ 0 and 1 ≤ i ≤ 2

h.

For each node (h, i), we define an arm xh,i � Ph,i, which
is pulled whenever the node (h, i) is selected.

We now state a few additional geometrical assumptions.

Assumption 3 (Dissimilarity). The space X is equipped
with a dissimilarity function ` : X 2 � R such that
`(x, x0

) ≥ 0 for all (x, x0
) � X 2 and `(x, x) = 0.

Given a dissimilarity `, the diameter of a subset A � X is
defined as diam(A) := supx,y2A `(x, y), while an `-ball of
radius " > 0 and center x � X is defined as B(x, ") :=

{x0 � X : `(x, x0
) ≤ "} .

Assumption 4 (Local smoothness). We assume that there
exist constants ⌫

2

, ⌫
1

> 0 and 0 < ⇢ < 1 such that for all
nodes (h, i):

(a) diam(Ph,i) ≤ ⌫
1

⇢h

(b) � xo
h,i � Ph,i s.t. Bh,i := B(xo

h,i, ⌫2⇢
h
) � Ph,i,

(c) Bh,i � Bh,j = �,

(d) For all x � X , f⇤ − f(x) ≤ `(x⇤, x).

These assumptions coincide with those in (Bubeck et al.,
2011a), except for the weaker local smoothness (Asm. 4.d),
where the function is assumed to be Lipschitz between any
two arms x, x0 close to the maximum x⇤ (i.e., |f(x) −
f(x0

)| ≤ `(x, x0
)), while here we only require the func-

tion to be Lipschitz w.r.t. the maximum. Finally, we
characterize the complexity of the problem using the near-
optimality dimension, which defines how large is the set of
✏-optimal arms in X . For the sake of clarity, we consider a
slightly simplified definition of near-optimality dimension
w.r.t. (Bubeck et al., 2011a).

Assumption 5 (Near-optimality dimension). Let ✏ =

3⌫
1

⇢h and ✏0 = ⌫
2

⇢h < ✏, for any subset of ✏-optimal
nodes X✏ = {x � X : f⇤ − f(x) ≤ ✏} , there exists a
constant C such that N

�
X✏, `, ✏0

�
≤ C(✏0)�d, where d is

the near-optimality dimension of f and N (X✏, `, ✏0) is the
✏0-cover number of X✏ w.r.t. the dissimilarity measure `.

Algorithm 1 The HCT algorithm.
Require: Parameters ⌫

1

> 0, ⇢ 2 (0, 1), c > 0, tree structure
(Ph,i)h�0,1i2

i and confidence �.
Initialize t = 1, Tt = {(0, 1), (1, 1), (1, 2)}, H(t) = 1,
U

1,1(t) = U
1,2(t) = +1,

loop
if t = t+ then . Refresh phase

for all (h, i) 2 Tt do

Uh,i(t) bµh,i(t) + ⌫
1

⇢h +

r
c2 log(1/˜�(t+))

Th,i(t)

end for;
for all (h, i) 2 Tt Backward from H(t) do

if (h, i) 2 leaf(Tt) then
Bh,i(t) Uh,i(t)

else
Bh,i(t) min

⇥
Uh,i(t), max

j2{2i�1,2i}
Bh+1,j(t)

⇤

end if
end for

end if;
{(ht, it), Pt} OptTraverse(Tt)

if Algorithm HCT-iid then
Pull arm xht,it and observe rt
t = t+ 1

else if Algorithm HCT-� then
Tcur = Tht,it(t)
while Tht,it(t) < 2Tcur AND t < t+ do

Pull arm xh,i and observe rt
(ht+1

, it+1

) = (ht, it)
t = t+ 1

end while
end if
Update counter Tht,it(t) and empirical average bµht,it(t)

Uht,it(t) bµht,it(t) + ⌫
1

⇢h +

r
c2 log(1/˜�(t+))

Tht,it
(t)

UpdateB(Tt, Pt, (ht, it))

⌧h(t) =
c2 log(1/˜�(t+))

⌫2

1

⇢�2ht

if Tht,it(t) � ⌧ht(t) AND (ht, it) =leaf(T ) then
It = {(ht + 1, 2it � 1), (ht + 1, 2it)}
T  T [ It

Uht+1,2it�1

(t) = Uht+1,2it(t) = +1
end if

end loop

3. The High Confidence Tree algorithm
We now introduce the High Confidence Tree (HCT) algo-
rithm. Throughout this discussion, a function evaluation
corresponds to the reward received from pulling an arm.
We first describe the general structure of HCT, before dis-
cussing two particular variants: HCT-iid, designed for the
case when arm rewards are iid, and HCT-� which han-
dles the correlated feedback case, where the reward from
pulling an arm may depend on all prior arms pulled and
resulting outcomes. Alg. 1 shows the structure of the algo-
rithm for HCT-iid and HCT-� and their minor differences.

The general structure. The HCT algorithm relies on a
binary covering tree T provided as input to construct a hi-
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Algorithm 2 The OptTraverse function.
Require: Tree T

(h, i) (0, 1), P  (0, 1)
T
0,1 = ⌧

0

(t) = 1;
while (h, i) /2 Leaf(T ) AND Th,i(t) � ⌧h(t) do

if Bh+1,2i�1

� Bh+1,2i then
(h, i) (h+ 1, 2i� 1)

else
(h, i) (h+ 1, 2i)

end if
P  P [ {(h, i)}

end while
return (h, i) and P

Algorithm 3 The UpdateB function.
Require: Tree T , the path Pt, selected node (ht, it)

if (ht, it) 2 Leaf(T ) then
Bht,it(t) = Uht,it(t)

else
Bht,it(t) = min

⇥
Uht,it(t), max

j2{2it�1,2it}
Bht+1,j(t)

⇤

end if;
for all (h, i) 2 Pt � (ht, it) backward do

Bh,i(t) = min

⇥
Uh,i(t), max

j2{2i�1,2i}
Bh+1,j(t)

⇤

end for

erarchical approximation of the mean-reward function f .
At each node (h, i) of the tree, the algorithm keeps track
of some statistics regarding the arm xh,i corresponding to
node (h, i). These include the empirical estimate bµh,i(t) of
the mean-reward of xh,i computed as

bµh,i(t) :=
1

Th,i(t)

Th,i(t)X

s=1

rs(xh,i), (1)

where Th,i(t) is the number of times node (h, i) has been
selected in the past and rs(xh,i) denotes the s-th reward
observed after pulling xh,i (while we previously used rt to
denote the t-th sample of the overall process). As explained
in Sect. 2, although a node is associated to a single arm xh,i,
it also covers a full portion of the input space X , i.e., the
subset Ph,i. Thus, similar to the HOO algorithm (Bubeck
et al., 2011a), HCT also maintains two upper-bounds, Uh,i

and Bh,i, which are meant to bound the mean-reward f(x)
of all the arms x � Ph,i. For any node (h, i), the upper-
bound Uh,i is computed as

Uh,i(t) := bµh,i(t) + ⌫
1

⇢h +

s

c2
log(1/˜�(t+))

Th,i(t)
, (2)

where t+ = 2

blog(t)c+1 and ˜�(t) := min{ c
1

�/t, 1} . Intu-
itively speaking, the second term is related to the resolution
of node (h, i) and the third term accounts for the uncer-
tainty of bµh,i(t) in estimating f(xh,i). The B-values are
designed to have a tighter upper bound on f(x) by taking
the minimum between Uh,i for the current node, and the

maximum upper bound of the node’s two child nodes, if
present.1 More precisely,

Bh,i(t)=

8
><

>:

Uh,i(t) (h, i)2 leaf(Tt)

min[Uh,i(t), max

j2{2i�1,2i}
Bh+1,j(t)] otherwise.

(3)

To identify which arm to pull, the algorithm traverses the
tree along a path Pt obtained by selecting nodes with maxi-
mum Bh,i until it reaches an optimistic node (ht, it), which
is either a leaf or a node which is not pulled enough w.r.t.
to a given threshold ⌧h(t), i.e., Th,i(t) ≤ ⌧h(t) (see func-
tion OptTraverse in Alg. 2). Then the arm xht,it � Pht,it

corresponding to selected node (ht, it) is pulled.

The key element of HCT is the condition to decide when
to expand the tree. We expand a leaf node only if we have
pulled its corresponding arm a sufficient number of times
such that the uncertainty over the maximum value of the
arms contained within that node is dominated by the size
of the subset of X it covers. Recall from Eq. 2 that the
upper bound Uh,i is composed of two terms beside the em-
pirical average reward. The first (⌫

1

⇢h) is a constant that
depends only on the node depth and from assumptions 3
and 4 it follows that it bounds the possible difference in
the mean-reward function between the representative arm
for this node and all other arms also contained in this node,
i.e., the difference between f(xh,i) and f(x) for any other
x � Ph,i. The second term depends only on t and decreases
with the number of pulls. At some point, the second term
will become smaller than the first term, implying that the
uncertainty over the rewards in Ph,i becomes dominated
by the potential difference in the mean-reward of the arms
in the node. This means that the domain Ph,i is too large,
and thus the resolution of the current approximation of f
in that region needs to be increased. Therefore HCT waits
until these two terms become of the same magnitude before
expanding a node. This happens when the number of pulls
Tht,it(t) exceeds a threshold

⌧h(t) := c2
log(1/˜�(t+))⇢�2ht

⌫2
1

. (4)

(see Sect. A of the supplement for further discussion). It
is at this point that expanding the node to two children can
increase the accuracy of the approximation of f(x), since
⌫
1

⇢h+1 ≤ ⌫
1

⇢h. Therefore if Tht,it(t) ≥ ⌧h(t), the algo-
rithm expands the leaf, creates both children leaves, and set
their U -values to +∞ . Furthermore, notice that this expan-
sion only occurs for nodes which are likely to contain x⇤.
In fact, OptTraverse does select nodes with big B-value,
which in turn receive more pulls and are thus expanded

1Since the node’s children together contain the same input
space as the node (i.e., Ph,i = Ph+1,2i�1

[ Ph,2i), the node’s
maximum cannot be greater than the maximum of its children.
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first. The selected arm xht,it is pulled either for a single
time step (in HCT-iid) or for a full episode (in HCT-�),
and then the statistics of all the nodes along the optimistic
path Pt are updated backwards. The statistics of all the
nodes outside the optimistic path remain unchanged.

As HCT is an anytime algorithm, we periodically need to
recalculate the node upper bounds to guarantee their valid-
ity with enough probability (see supplementary material for
a more precise discussion). To do so, at the beginning of
each step t, the algorithm verifies whether the B and U val-
ues need to be refreshed or not. In fact, in the definition of
U in Eq. 2, the uncertainty term depends on the confidence
˜�(t+), which changes at t = 1, 2, 4, 8, . . .. Refreshing the
U and B values triggers a “resampling phase” of the inter-
nal nodes of the tree Tt along the optimistic path. In fact,
the second condition in the OptTraverse function (Alg. 2)
forces HCT to pull arms that belong to the current opti-
mistic path Pt until the number of pulls Th,i(t) becomes
greater than ⌧h(t) again. Notice that the choice of the confi-
dence term ˜� is particularly critical. For instance, choosing
a more natural ˜�(t) would tend to trigger the refresh (and
the resampling) phase too often thus increasing the compu-
tational complexity of the algorithm and seriously affecting
its theoretical properties. On the other hand, the choice of
˜�(t+) limits the need to refresh the U and B values to only
O(log(n)) times over n rounds and guarantees that U and
B are valid upper bounds with high probability.

HCT-iid and HCT-�. The main difference between the
two implementations of HCT is that, while HCT-iid pulls
the selected arm for only one step before re-traversing the
tree from the root to again find another optimistic node,
HCT-� pulls the the representative arm of the optimistic
node for an episode of Tcur steps, where Tcur is the num-
ber of pulls of arm xh,i at the beginning of episode. In
other words, the algorithm doubles the number of pulls of
each arm throughout the episode. Notice that a similar ap-
proach has been used before in other methods working with
ergodic processes, such as the UCRL algorithm for ergodic
MDPs (Jaksch et al., 2010). The additional stopping condi-
tion in the loop is such that not all the episodes may actually
finish after Tcur steps and double the number of pulls: The
algorithm may interrupt the episode when the confidence
bounds of B and U are not valid anymore (i.e., t ≥ t+)
and perform a refresh phase. The reason for this change is
that in order to accurately estimate the mean-reward given
correlated bandit feedback, it is necessary to pull an arm
for a series of pulls rather than a single pull. Due to our as-
sumption on the mixing time (Asm. 2), pulling an arm for
a sufficiently long consecutive number of steps will pro-
vide an accurate estimate of the mean-reward even in the
correlated setting, thus ensuring that the empirical average
bµh,i actually concentrates towards their mean value (see
Lem. 2). It is this mechanism, coupled with only expand-

ing the nodes after obtaining a good estimate of their mean
reward, that allows us to handle the correlated feedback set-
ting. Although in this sense HCT-� is more general, we do
however include the HCT-iid variant because whenever the
rewards are iid it performs better than HCT-�. This is due
to the fact that, unlike HCT-iid, HCT-� has to keep pulling
an arm for a full episode even when there is evidence that
another arm could be better. We also notice that there is
a small difference in the constants c

1

and c: in HCT-iid
c
1

:=

8

p
⇢/(3⌫

1

) and c := 2

p
1/(1 − ⇢), whereas HCT-�

uses c
1

:=

9

p
⇢/(4⌫

1

) and c := 3(3�+ 1)

p
1/(1 − ⇢).

4. Theoretical Analysis
In this section we analyze the regret and the complexity of
HCT . All the proofs are reported in the supplement.

4.1. Regret Analysis

We start by reporting a bound on the maximum depth of
the trees generated by HCT .

Lemma 1. Given the threshold ⌧h(t) in Eq. 4, the depth
H(n) of the tree Tn is bounded as

H(n) ≤ H
max

(n) = 1/(1 − ⇢) log(n⌫2
1

/(2(c⇢)2)). (5)

This bound guarantees that HCT never expands trees be-
yond depth O(log n). This is ensured by the fact the HCT
waits until the mean-reward of a node is sufficiently well
estimated before expanding it and this implies that the num-
ber of pulls exponentially grows with the depth of tree, thus
preventing the depth to grow linearly as in HOO.

We report regret bounds in high probability, bounds in ex-
pectation can be obtained using standard techniques.

Theorem 1 (Regret bound of HCT-iid). Let Assump-
tions 3–5 hold and at each step t, the reward rt is indepen-
dent of all prior random events. Then the regret of HCT-iid
in n steps is, with probability 1 − �,2

Rn ≤ O
��

log (n/�)
�
1/(d+2)

n(d+1)/(d+2)

�
.

Remark (the bound). We notice that the bound perfectly
matches the bound for HOO up to constants (see Thm. 6
in (Bubeck et al., 2011a)). This represents a first sanity
check w.r.t. the structure of HCT , since it shows that chang-
ing the structure of HOO and expanding nodes only when
they are pulled enough, preserves the regret properties of
the algorithm. Furthermore, this result holds under milder
assumptions than HOO. In fact, Asm. 4-(d) only requires f
to be Lipschitz w.r.t. to the maximum x⇤. Other advantages
of HCT-iid are discussed in the Sect. 4.2 and 6.

2Constants are provided in Sect. A of the supplement.
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Although the proof is mostly based on standard techniques
and tools from bandit literature, HCT has a different struc-
ture from HOO (and similar algorithms) and moving from
iid to correlated arms calls for the development of a signif-
icantly different proof technique. The main technical issue
is to show that the empirical average bµh,i computed by av-
eraging rewards obtained across different episodes actually
converges to f(xh,i). In particular, we prove the follow-
ing high-probability concentration inequality (see Lem. 6
in the supplement for further details).
Lemma 2. Under Assumptions 1 and 2, for any fixed node
(h, i) and step t, we have that, w.p. 1 − �,

|bµh,i(t) − f(xh,i)| ≤ (3�+ 1)

s
2 log(5/�)

Th,i(t)
+

� log(t)

Th,i(t)
.

Furthermore Kh,i(t), the number of episodes in which
(h, i) is selected, is bounded by log

2

(4Th,i(t)) + log

2

(t).

This technical lemma is at the basis of the derivation of the
following regret bound for HCT-�.
Theorem 2 (Regret bound of HCT-�). Let Assumptions 1–
5 hold and that rewards are generated according to the gen-
eral model defined in Sect. 2. Then the regret of HCT-iid
after n steps is, w.p. 1 − �,

Rn ≤ O
⇣�

log (n/�)
�
1/(d+2)

n(d+1)/(d+2)

⌘
.

Remark (the bound). The most interesting aspect of this
bound is that HCT-� achieves the same regret as HCT-iid
when samples are non-iid. This represents a major step
forward w.r.t. the existing algorithms, since it shows that
the very general case of correlated rewards can be managed
as well as the simpler iid case. In Sect. 5 we discuss how
this result can be used in policy search for MDPs.

4.2. Complexity

Time complexity. The run time complexity of both ver-
sions of HCT is O(n log(n)). This is due to the bounded-
ness of the depth H(n) and by the structure of the refresh
phase. By Lem. 1, we have that the maximum depth is
O(log(n)). As a result, at each step t, the cost of travers-
ing the tree to select a node is at most O(log n), which
also coincides with the cost of updating the B and U val-
ues of the nodes in the optimistic path Pt. Thus, the total
cost of selecting, pulling, and updating nodes is no larger
than O(n log n). Notice that in case of HCT-�, once a
node is selected is pulled for an entire episode, which fur-
ther reduces the total selection cost. Another computational
cost is represented by the refresh phase where all the nodes
in the tree are actually updated. Since the refresh is per-
formed only when t = t+, then the number of times all the
nodes are refreshed is of order of O(log n) and the bound-
edness of the depth guarantees that the number of nodes

to update cannot be larger than O(2

logn
), which still cor-

responds to a total cost of O(n log n). This implies that
HCT achieves the same run time as T-HOO (Bubeck et al.,
2011a). Though unlike T-HOO, our algorithm is fully any-
time and it does not suffer from the extra regret incurred
due to the truncation and the doubling trick.

Space complexity. The following theorem provides bound
on space complexity of the HCT algorithm.

Theorem 3. Under the same conditions of Thm. 2, let Nn

denote the space complexity of HCT-�, then we have that

E(Nn) = O(log(n)2/(d+2)nd/(d+2)

).

This result guarantees that the space complexity of HCT-�
scales sub-linearly w.r.t. n. An important observation is
that the space complexity of HCT-� increases slower, by
a factor of eO(n1/(d+2)

), than its regret. This implies that,
for small values of d, HCT does not require to use a large
memory space to achieve a good performance. An interest-
ing special case is the class of problem with near-optimality
dimension d = 0. For this class of problems the bound
translates to a space complexity of O(log(n)), whereas the
space complexity of alternative algorithms may be as large
as n (see e.g., HOO). The fact that HCT-� solves the op-
timization problem using only a relatively small memory
space makes it a suitable choice for big-data applications,
where the algorithms with linear space complexity can not
be used due to very large size of the dataset.

Switching frequency. Finally, we also remark another in-
teresting feature of HCT-�. Since an arm is pulled for an
entire episode before another arm could be selected, this
drastically reduces the number of switches between arms.
In many applications, notably in reinforcement learning
(see next section), this can be a significant advantage since
pulling an arm may correspond to the actual implementa-
tion of a complex solution (e.g., a position in a portfolio
management problem) and continuously switch between
different arms might not be feasible. More formally, since
each node has a number of episodes bounded by O(log n)
(Lem. 2), then the number of switches can be derived from
the number of nodes in Thm. 3 multiplied by O(log n),
which leads to O(log(n)(d+4)/(d+2)nd/(d+2)

).

5. Application to Policy Search in MDPs
As discussed in Sect. 2, HCT is designed to handle the very
general case of optimization in problems with strong cor-
relation among the rewards, arm pulls, and contexts, at dif-
ferent time steps. An important subset of this general class
is represented by the problem of policy search in infinite-
horizon ergodic Markov decision processes.

A MDP M is defined as a tuple �S,A , P�whereS is the set
of states, A is the set of actions, P : S× A � M (S× [0, 1])



Online Stochastic Optimization under Correlated Bandit Feedback

is the transition kernel mapping each state-action pair to a
distribution over states and rewards. A (stochastic) policy
⇡ : S � M (A ) is a mapping from states to distribution
over actions. Policy search algorithms (Scherrer & Geist,
2013; Azar et al., 2013; Kober & Peters, 2011) aim at find-
ing the policy in a given policy set which maximizes the
long-term performance. Formally, a policy search algo-
rithm receives as input a set of policies G= {⇡✓; ✓ � ⇥} ,
each of them parameterized by a parameter vector ✓ in a
given set ⇥ � �d. Any policy ⇡✓ � G induces a state-
reward transition kernel T : S × ⇥ � M (S × [0, 1]).
T relates to the state-reward-action transition kernel P
and the policy kernel ⇡✓ as follows T (ds0, dr|s, ✓) :=R
u2A P (ds0, dr|s, u)⇡✓(du|s). For any ⇡✓ � G and ini-

tial state s
0

� S, the time-average reward over n steps is
µ⇡✓

(s
0

, n) := 1/nE[
Pn

t=1

rt], where r
1

, r
2

, . . . , rn is the
sequence of rewards observed by running ⇡✓ for n steps
staring at s

0

. If the Markov reward process induced by ⇡✓
is ergodic, µ⇡✓

(s
0

, n) converges to a fixed point indepen-
dent of the initial state s

0

. The average reward of ⇡✓ is thus
defined as µ(✓) := limn!1 µ⇡✓

(s
0

, n). The goal of policy
search is to find the best ✓⇤ = argmax✓2⇥

µ(✓).3

It is straightforward now to match the MDP scenario to the
general setting in Sect. 2, notably mapping ⇥ to X and
µ(✓) to f(x) (further details are provided in Sect. D of the
supplement). This allows us to directly apply HCT-� to
the problem of policy search. The advantage of HCT-�
algorithm w.r.t. prior work is that, to the best of our knowl-
edge, it is the first policy search algorithm which provides
finite sample guarantees in the form of regret bounds on the
performance loss of policy search in MDPs (see Thm. 2),
which guarantee that HCT-� suffers from a small sub-
linear regret w.r.t. ⇡✓⇤ . Also, it is possible to prove that
the policy induced by HCT-� has a small simple regret,
that is, the average reward of the policy chosen by HCT-�
converges to µ(✓⇤) with a polynomial rate.4 Another in-
teresting feature of HCT-� is that it can be used in large
(continuous) state-action problems since it does not make
any restrictive assumption on the size of state-action space.

Related work. A related work to HCT-� is the UCCRL
algorithm by Ortner & Ryabko (2012), which extends the
original UCRL algorithm (Jaksch et al., 2010) to contin-
uous state spaces. Although a direct comparison between
the two methods is not possible, it is interesting to notice
that the assumptions used in UCCRL are stronger than for
HCT-�, since they require both the dynamics and the re-
ward function to be globally Lipschitz. Furthermore, UC-
CRL requires the action space to be finite, while HCT-�
can deal with any continuous policy space. Finally, while

3Note that ⇡✓⇤ is optimal in the policy class G and it may not
coincide with the optimal policy ⇡⇤ of the MDP.

4Refer to Bubeck et al. (2011a); Munos (2013) for how to
transform cumulative regret bounds to simple regret bounds.

HCT-� minimizes the regret against the best policy in G,
UCCRL targets the performance of the actual optimal pol-
icy of the MDP at hand. Another relevant work is the
OMDP algorithm of Abbasi et al. (2013) which deals with
the problem of RL in continuous state-action MDPs with
adversarial rewards. OMDP achieves a sub-linear regret
under the assumption that the space of policies is finite.

6. Numerical Results
In this section we provide preliminary simulation results to
demonstrate some properties of HCT .

Setup. We focus on minimizing the regret across re-
peated noisy evaluations of the garland function f(x) =

x(1− x)(4−
p
| sin(60x)|) relative to repeatedly selecting

its global optima.5 We evaluate the performance of each al-
gorithm in terms of the per-step regret, eRn = Rn/n. Each
run is n = 10

5 steps and we average the performance on
10 runs. For all the algorithms compared in the following,
parameters6 are optimized to maximize their performance.

I.i.d. setting. In the first experiment we compare HCT-
iid to the truncated hierarchical optimistic optimization
(T-HOO) algorithm (Bubeck et al., 2011a). T-HOO is a
state-of-the-art X -armed bandit algorithm, developed as a
computationally-efficient alternative of HOO. In Fig. 1 we
show the per-step regret, the runtime, and the space require-
ments of each approach. As predicted by the theoretical
bounds, the per-step regret eRn of both HCT-iid and T-HOO
decreases rapidly with number of steps. Though the big-O
bounds are identical for both approaches, empirically we
observe that in this setting HCT-iid outperforms T-HOO by
a large margin. Similarly, though the computational com-
plexity of both approaches matches in the dependence on
the number of time steps, empirically we observe that our
approach outperforms T-HOO (Fig. 1). Perhaps the most
significant expected advantage of HCT-iid over T-HOO for
iid settings is in the space requirements. HCT-iid has a
space requirement for this domain that scales logarithmi-
cally with the time step n, as predicted by Thm. 3. In con-
trast, in this domain we observe a polynomial growth of
memory usage for T-HOO. These patterns mean that HCT-
iid can achieve a very small regret using a sparse cover tree
with only few hundred nodes, whereas T-HOO requires or-
ders of magnitude more nodes than HCT-iid.

Correlated setting. In this setting, we compare HCT-�
to PoWER, a standard RL policy search algorithm (Kober
& Peters, 2011), on a continuous-state-action MDP con-
structed out of the garland function.7 PoWER uses an

5We discuss the properties of the garland function in Sect. C.
6For both HCT and T-HOO we introduce a tuning parameter

used to multiply the upper bounds, while for PoWER we optimize
the window for computing the weighted average.

7See Sect. C of the supplement for details.
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Figure 1. Comparison of the Performance of HCT-iid and the Previous Methods under the iid Bandit Feedback.
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Figure 2. Comparison of the Performance of HCT� � and the Previous Methods under Correlated Bandit Feedback (MDP setting)

Expectation Maximization approach to optimize the pol-
icy parameters. We also compare our algorithm with T-
HOO, although this algorithm is designed for the iid set-
ting and it may fail to converge to the global optimum un-
der correlated bandit feedback. Fig. 2 shows per-step re-
gret of the 3 approaches in the MDP. Only HCT-� suc-
ceeds in finding the globally optimal policy, since only for
HCT-� the average regret tends to converge to zero (as
predicted by Thm. 2). The PoWER method finds worse
solutions than both stochastic optimization approaches for
the same amount of computational time, likely due to us-
ing EM which is known to be susceptible to local optima.
On the other hand, its primary advantage is that it has a
very small memory requirement. Overall this illustrates
the benefit of HCT for online MDP policy search, since
it can quickly (as a function of samples and runtime) find
a global optima, and is, to our knowledge, one of the only
policy search methods guaranteed to do so.

7. Discussion and Future Work
In this paper we introduced a new X -armed bandit algo-
rithm for optimization under bandit feedback and prove re-
gret bounds and simulation results for it. Our approach im-
proves on existing results to handle the important case of
correlated bandit feedback. This allows HCT to be applied
to a broader range of problems than prior X -armed bandit
algorithms, such as policy search in continuous MDPs.

In the current version of HCT we assume that the learner
has access to the information regarding the smoothness of
function f(x) and the mixing time �. In many problems
those information are not available to the learner. In the

future it would be interesting to build on prior work that
handles unknown smoothness in iid settings and extend it
to correlated feedback. For example, Bubeck et al. (2011b)
require a stronger global Lipschitz assumption and propose
an algorithm to estimate the Lipschitz constant. Other work
on the iid setting include Valko et al. (2013) and Munos
(2011), which are limited to the simple regret scenario, but
who only use the mild local smoothness assumption we de-
fine in Asm. 4, and do not require knowledge of the dis-
similarity measure `. On the other hand, Slivkins (2011)
and Bull (2013) study the cumulative regret but consider
a different definition of smoothness related to the zoom-
ing concept introduced by Kleinberg et al. (2008). Finally,
we notice that to deal with unknown mixing time, one may
rely on data-dependent tail’s inequalities, such as empirical
Bernstein inequality (Tolstikhin & Seldin, 2013; Maurer &
Pontil, 2009), replacing the mixing time with the empiri-
cal variance of the rewards. In the future we also wish to
explore using HCT in other problems that can be modeled
as optimization with correlated bandit feedback. For exam-
ple, HCT may be used for policy search in partially observ-
able MDPs (Vlassis & Toussaint, 2009; Baxter & Bartlett,
2000), as long as the POMDP is ergodic.
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Munos, Rémi. From bandits to monte-carlo tree search:
The optimistic principle applied to optimization and
planning. Foundations and Trends in Machine Learning,
2013.

Ortner, Ronald and Ryabko, Daniil. Online regret bounds
for undiscounted continuous reinforcement learning. In
Bartlett, P., Pereira, F.c.n., Burges, C.j.c., Bottou, L., and
Weinberger, K.q. (eds.), Advances in Neural Information
Processing Systems 25, pp. 1772–1780, 2012.

Scherrer, Bruno and Geist, Matthieu. Policy search: Any
local optimum enjoys a global performance guarantee.
arXiv preprint arXiv:1306.1520, 2013.

Slivkins, Aleksandrs. Contextual bandits with similarity
information. CoRR, abs/0907.3986, 2009.

Slivkins, Aleksandrs. Multi-armed bandits on implicit met-
ric spaces. In Advances in Neural Information Process-
ing Systems, pp. 1602–1610, 2011.

Srinivas, Niranjan, Krause, Andreas, Kakade, Sham M.,
and Seeger, Matthias. Gaussian process bandits with-
out regret: An experimental design approach. CoRR,
abs/0912.3995, 2009.

Tolstikhin, Ilya O and Seldin, Yevgeny. PAC-bayes-
empirical-bernstein inequality. In Advances in Neural
Information Processing Systems, pp. 109–117, 2013.

Valko, Michal, Carpentier, Alexandra, and Munos, Rémi.
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A. Proof of Thm. 1
In this section we report the full proof of the regret bound of HCT-iid.

We begin by introducing some additional notation, required for the analysis of both algorithms. We denote the indicator
function of an event E by IE . For all 1 ≤ h ≤ H(t) and t > 0, we denote by I h(t) the set of all nodes created by the
algorithm at depth h up to time t and by I +

h (t) the subset of I h(t) including only the internal nodes (i.e., nodes that are not
leaves), which corresponds to nodes at depth h which have been expanded before time t. At each time step t, we denote
by (ht, it) the node selected by the algorithm. For every (h, i) � T , we define the set of time steps when (h, i) has been
selected as Ch,i := { t = 1, . . . , n : (ht, it) = (h, i)} . We also define the set of times that a child of (h, i) has been selected
as Cch,i := Ch+1,2i�1

S
Ch+1,2i. We need to introduce three important steps related to node (h, i):

• ¯th,i := maxt2Ch,i t is the last time (h, i) has been selected,

• ˜th,i := maxt2Cc
h,i

t is the last time when any of the two children of (h, i) has been selected,

• th,i := min{ t : Th,i(t) > ⌧h(t)} is the step when (h, i) is expanded.

The choice of ⌧h. The threshold on the the number of pulls needed before expanding a node at depth h is determined so
that, at each time t, the two confidence terms in the definition of U (Eq. 2) are roughly equivalent, that is

⌫
1

⇢h = c

s
log(1/˜�(t+))

⌧h(t)
=� ⌧h(t) =

c2 log(1/˜�(t+))

⌫2
1

⇢�2h.

Furthermore, since t ≤ t+ ≤ 2t then

c2

⌫2
1

⇢�2h ≤ c2 log(1/˜�(t))

⌫2
1

⇢�2h ≤ ⌧h(t) ≤
c2 log(2/˜�(t))

⌫2
1

⇢�2h, (6)

where we used the fact that 0 < ˜�(t) ≤ 1 for all t > 0. As described in Section 3, the idea is that the expansion of a node,
which corresponds to an increase in the resolution of the approximation of f , should not be performed until the empirical
estimate bµh,i of f(xh,i) is accurate enough. Notice that the number of pulls Th,i(t) for an expanded node (h, i) does not
necessarily coincide with ⌧h(t), since t might correspond to a time step when some leaves have not been pulled until ⌧h(t)
and other nodes have not been fully resampled after a refresh phase.

We begin our analysis by bounding the maximum depth of the trees constructed by HCT-iid.

Lemma 1 Given the number of samples ⌧h(t) required for the expansion of nodes at depth h in Eq. 4, the depth H(n) of
the tree Tn is bounded as

H(n) ≤ H
max

(n) =
1

1 − ⇢
log

⇣ n⌫2
1

2(c⇢)2

⌘
.

Proof. The deepest tree that can be developed by HCT-iid is a linear tree, where at each depth h only one node is expanded,
that is , |I +

h (n)| = 1 and |I h(n)| = 2 for all h < H(n). Thus we have

n =

H(n)X

h=0

X

i2Ih(n)

Th,i(n) ≥
H(n)�1X

h=0

X

i2Ih(n)

Th,i(n) ≥
H(n)�1X

h=0

X

i2I+

h (n)

Th,i(n) ≥
H(n)�1X

h=0

X

i2I+

h (n)

Th,i(th,i)

(1)

≥
H(n)�1X

h=0

X

i2I+

h (n)

⌧h,i(th,i) ≥
H(n)�1X

h=1

c2

⌫2
1

⇢�2h ≥ (c⇢)2

⌫2
1

⇢�2H(n)

H(n)�1X

h=1

⇢�2(h�H(n)+1),

where inequality (1) follows from the fact that a node (h, i) is expanded at time th,i only when it is pulled enough, i.e.,
Th,i(th,i) ≥ ⌧h(th,i). Since all the elements in the summation over h are positive, then we can lower-bound the sum by its
last element (h = H(n)), which is 1, and obtain

n ≥ 2

(c⇢)2

⌫2
1

H(n)⇢�2H(n) ≥ 2

(c⇢)2

⌫2
1

⇢�2H(n),
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where we used the fact that H(n) ≥ 1. By solving the previous expression we obtain

⇢�2H(n) ≤ n
⌫2
1

2(c⇢)2
=� H(n) ≤ 1

2

log

⇣ n⌫2
1

2(c⇢)2

⌘
/ log(1/⇢).

Finally, the statement follows using log(1/⇢) ≥ 1 − ⇢.

We now introduce a high probability event under which the mean reward for all the expanded nodes is within a confidence
interval of the empirical estimates at a fixed time t.

Lemma 3 (High-probability event). We define the set of all the possible nodes in trees of maximum depth H
max

(t) as

L t =

[

T :Depth(T )H
max

(t)

Nodes(T ).

We introduce the event

Et =
⇢
�(h, i) � L t,�Th,i(t) = 1..t :

���bµh,i(t) − f(xh,i)

��� ≤ c

s
log(1/˜�(t))

Th,i(t)

�
,

where xh,i � Ph,i is the arm corresponding to node (h, i). If

c = 2

r
1

1 − ⇢
and ˜�(t) =

�

t
8

r
⇢

3⌫
1

,

then for any fixed t, the event Et holds with probability at least 1 − �/t6.

Proof. We upper bound the probability of the complementary event as

P[Ec
t ] ≤

X

(h,i)2Lt

tX

Th,i(t)=1

P
��bµh,i(t) − µh,i

�� ≥ c

s
log(1/˜�(t))

Th,i(t)

�

≤
X

(h,i)2Lt

tX

Th,i(t)=1

2 exp

✓
− 2Th,i(t)c

2

log(1/˜�(t))

Th.i(t)

◆

= 2 exp

�
− 2c2 log(1/˜�(t))

�
t|L t|,

where the first inequality is an application of a union bound and the second inequality follows from the Chernoff-Hoeffding
inequality. We upper bound the number of nodes in L t by the largest binary tree with a maximum depth H

max

(t), i.e.,
|L t| ≤ 2

H
max

(t)+1. Thus

P[Ec
t ] ≤ 2(

˜�(t))2c
2

t2Hmax

(t)+1.

We first derive a bound on the the term 2

H
max

(t) as

2

H
max

(t) ≤ pow

 
2, log

2

✓
t⌫2

1

2(c⇢)2

◆ 1

2 log

2

(e)(1�⇢)

!
≤
✓

t⌫2
1

2(c⇢)2

◆ 1

2(1�⇢)

,

where we used the upper bound H
max

(t) from Lemma 1 and log

2

(e) > 1. This leads to

P[Ec
t ] ≤ 4t

�
˜�(t)
�
2c2
✓

t⌫2
1

2(c⇢)2

◆ 1

2(1�⇢)

.
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The choice of c and ˜�(t) as in the statement leads to

P[Ec
t ] ≤ 4t

✓
8

p
⇢/(3⌫

1

)�/t

◆ 8

1�⇢
✓
t⌫2

1

(1 − ⇢)

8⇢2

◆ 1

2(1�⇢)

= 4t
�
�/t
� 8

1�⇢
�
⇢/(3⌫

1

)

� 1

1�⇢ t
1

2(1�⇢)

✓
⌫
1

√
1 − ⇢√
8⇢

◆ 1

1�⇢

≤ 4�t1�
8

1�⇢+
1

2(1�⇢)

✓√
1 − ⇢

3

√
8

◆ 1

1�⇢

≤ 4

3

√
8

�t
�2⇢�13

2(1�⇢) ≤ �t�13/2 ≤ �/t6,

which completes the proof.

Recalling the definition the regret from Sect. s:preliminaries, we decompose the regret of HCT-iid in two terms depending
on whether event Et holds or not (i.e., failing confidence intervals). Let the instantaneous regret be �t = f⇤ − rt, then we
rewrite the regret as

Rn =

nX

t=1

�t =

nX

t=1

�tIEt +

nX

t=1

�tIEc
t
= RE

n +REc

n . (7)

We first study the regret in the case of failing confidence intervals.

Lemma 4 (Failing confidence intervals). Given the parameters c and ˜�(t) as in Lemma 3, the regret of HCT-iid when
confidence intervals fail to hold is bounded as

REc

n ≤
√
n,

with probability 1 − �
5n2

.

Proof. We first split the time horizon n in two phases: the first phase until
√
n and the rest. Thus the regret becomes

REc

n =

nX

t=1

�tIEc
t
=

p
nX

t=1

�tIEc
t
+

nX

t=
p
n+1

�tIEc
t
.

We trivially bound the regret of first term by
√
n. So in order to prove the result it suffices to show that event Ec

t never
happens after

√
n, which implies that the remaining term is zero with high probability. By summing up the probabilities

P[Ec
t ] from

√
n+ 1 to n and applying union bound we deduce

P
 n[

t=
p
n+1

Ec
t

�
≤

nX

t=
p
n+1

P[Ec
t ] ≤

nX

p
n+1

�

t6
≤
Z

+1

p
n

�

t6
dt ≤ �

5n5/2
≤ �

5n2

.

In words this result implies that w.p. ≥ 1 − �/(5n2

) we can not have a failing confidence interval after time
√
n. This

combined with the trivial bound of
√
n for the first

√
n steps completes the proof.

We are now ready to prove the main theorem, which only requires to study the regret term under events { Et} .

Theorem 1 (Regret bound of HCT-iid). Let � � (0, 1), ˜�(t) = 8

p
⇢/(3⌫

1

)�/t, and c = 2

p
1/(1 − ⇢). We assume that

assumptions 3–5 hold and that at each step t, the reward rt is independent of all prior random events and E(rt|xt) = f(xt).
Then the regret of HCT-iid after n steps is

Rn ≤ 3

✓
2

2d+7⌫2(d+1)

1

C⌫�d
2

⇢d

(1 − ⇢)d+7

◆ 1

d+2

✓
log

⇣
2n

�
8

r
3⌫

1

⇢

⌘◆ 1

d+2

n
d+1

d+2

+ 2

p
n log(4n/�),

with probability 1 − �.
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Proof. Step 1: Decomposition of the regret. We start by further decomposing the regret in two terms. We rewrite the
instantaneous regret �t as

�t = f⇤ − rt = f⇤ − f(xht,it) + f(xht,it) − rt = �ht,it +
b
�t,

which leads to a regret (see Eq. 7)

RE
n =

nX

t=1

�ht,itIEt +

nX

t=1

b
�tIEt ≤

nX

t=1

�ht,itIEt +

nX

t=1

b
�t =

eRE
n +

bRE
n. (8)

We start bounding the second term. We notice that the sequence { b�t} nt=1

is a bounded martingale difference sequence
since E(b�t|F t�1

) = 0 and |b�t| ≤ 1. Therefore, an immediate application of the Azuma’s inequality leads to

bRE
n =

nX

t=1

b
�t ≤ 2

p
n log(4n/�), (9)

with probability 1 − �/(4n2

).

Step 2: Preliminary bound on the regret of selected nodes and their parents. We now proceed with the study of the
first term eRE

n, which refers to the regret of the selected nodes as measured by its mean-reward. We start by characterizing
which nodes are actually selected by the algorithm under event Et. Let (ht, it) be the node chosen at time t and Pt be the
path from the root to the selected node. Let (h0, i0) � Pt and (h00, i00) be the node which immediately follows (h0, i0) in Pt

(i.e., h00
= h0

+ 1). By definition of B and U values, we have that

Bh0,i0(t)=min

h
Uh0,i0(t);max

�
Bh0

+1,2i0�1

(t);Bh0
+1,2i0(t)

�i
≤ max

�
Bh0

+1,2i0�1

(t);Bh0
+1,2i0(t)

�
=Bh00,i00(t), (10)

where the last equality follows from the fact that the OptTraverse function selects the node with the largest B value. By
iterating the previous inequality for all the nodes in Pt until the selected node (ht, it) and its parent (hp

t , i
p
t ), we obtain that

Bh0,i0(t) ≤ Bht,it(t) ≤ Uht,it(t), �(h0, i0) � Pt

Bh0,i0(t) ≤ Bhp
t ,i

p
t
(t) ≤ Uhp

t ,i
p
t
(t), �(h0, i0) � Pt − (ht, it)

by definition of B-values. Thus for any node (h, i) � Pt} , we have that Uht,it(t) ≥ Bh,i(t). Furthermore, since the root
node (0, 1) which covers the whole arm space X is in Pt, thus there exists at least one node (h⇤, i⇤) in the set Pt which
includes the maximizer x⇤ (i.e., x⇤ � Ph⇤,i⇤ ) and has the the depth h⇤ ≤ hp

t < ht.8 Thus

Uht,it(t) ≥ Bh⇤,i⇤(t).

Uhp
t ,i

p
t
(t) ≥ Bh⇤,i⇤(t)

(11)

Notice that in the set Pt we may have multiple nodes (h⇤, i⇤) which contain x⇤ and that for all of them we have the
following sequence of inequalities holds

f⇤ − f(xh⇤,i⇤) ≤ `(x⇤, xh⇤,i⇤) ≤ diam(Ph⇤,i⇤) ≤ ⌫
1

⇢h
⇤
, (12)

where the second inequality holds since x⇤ � Ph⇤,i⇤ .

Now we expand the inequality in Eq. 11 on both sides using the high-probability event Et. First we have

Uht,it(t) = bµht,it(t) + ⌫
1

⇢ht
+ c

s
log(1/˜�(t+))

Tht,it(t)
≤ f(xht,it) + c

s
log(1/˜�(t))

Tht,it(t)
+ ⌫

1

⇢ht
+ c

s
log(1/˜�(t+))

Tht,it(t)

≤ f(xht,it) + ⌫
1

⇢ht
+ 2c

s
log(1/˜�(t+))

Tht,it(t)
, (13)

8Note that we never pull the root node (0, 1), therefore ht > 0.
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where the first inequality holds on E by definition of U and the second by the fact that t+ ≥ t (and log(1/˜�(t)) ≤
log(1/˜�(t+))). The same result also holds for (hp

t , i
p
t ) at time t:

Uhp
t ,i

p
t
(t) ≤ f(xhp

t ,i
p
t
) + ⌫

1

⇢h
p
t
+ 2c

s
log(1/˜�(t+))

Thp
t ,i

p
t
(t)

. (14)

We now show that for any node (h⇤, i⇤) such that x⇤ � Ph⇤,i⇤ , then Uh⇤,i⇤(t) is a valid upper bound on f⇤:

Uh⇤,i⇤(t) = bµh⇤,i⇤(t) + ⌫
1

⇢h + c

s
log(1/˜�(t+))

Th⇤,i⇤(t)

(1)

≥ bµh⇤,i⇤(t) + ⌫
1

⇢h
⇤
+ c

s
log(1/˜�(t))

Th⇤,i⇤(t)

(2)

≥ f(xh⇤,i⇤) + ⌫
1

⇢h
⇤ (3)

≥ f⇤,

where (1) follows from the fact that t+ ≥ t, on (2) we rely on the fact that the event Et holds at time t and on (3)
we use the regularity of the function w.r.t. the maximum f⇤ from Eq. 12. If an optimal node (h⇤, i⇤) is a leaf, then
Bh⇤,i⇤(t) = Uh⇤,i⇤(t) ≥ f⇤. In the case that (h⇤, i⇤) is not a leaf, there always exists a leaf (h+, i+) such that x⇤ � Ph+,i+

for which (h⇤, i⇤) is its ancestor, since all the optimal nodes with h > h⇤ are descendants of (h⇤, i⇤). Now by propagating
the bound backward from (h+, i+) to (h⇤, i⇤) through Eq. 3 (see Eq. 10) we can show that Bh⇤,i⇤(t) is still a valid upper
bound of the optimal value f⇤. Thus for any optimal node (h⇤, i⇤) at time t under the event Et we have

Bh⇤,i⇤(t) ≥ f⇤.

Combining this with Eq. 13, Eq. 14 and Eq. 11 , we obtain that on event Et the selected node (ht, it) and its parent (hp
t , i

p
t )

at any time t is such that

�ht,it = f⇤ − f(xht,it) ≤ ⌫
1

⇢ht
+ 2c

s
log(1/˜�(t+))

Tht,it(t)
.

�hp
t ,i

p
t
= f⇤ − f(xhp

t ,i
p
t
) ≤ ⌫

1

⇢h
p
t
+ 2c

s
log(1/˜�(t+))

Thp
t ,i

p
t
(t)

.

(15)

Furthermore, since HCT-iid only selects nodes with Th,i(t) < ⌧h(t) the previous expression can be further simplified as

�ht,it ≤ 3c

s
log(2/˜�(t))

Tht,it(t)
, (16)

where we also used that t+ ≤ 2t for any t. Although this provides a preliminary bound on the instantaneous regret of the
selected nodes, we need to further refine this bound.

In the case of parent (hp
t , i

p
t ), since Thp

t ,i
p
t
(t) ≥ ⌧hp

t
(t), we deduce

�hp
t ,i

p
t
≤ ⌫

1

⇢h
p
t
+ 2c

s
log(1/˜�(t+))

⌧hp
t
(t)

= 3⌫
1

⇢h
p
t , (17)

This implies that every selected node (ht, it) has a 3⌫
1

⇢ht�1-optimal parent under the event Et.

Step 3: Bound on the cumulative regret. We first decompose eRE
n over different depths. Let 1 ≤ H ≤ H(n) a constant
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to be chosen later, then we have

eRE
n =

nX

t=1

�ht,itIEt ≤
H(n)X

h=0

X

i2Ih(n)

nX

t=1

�h,iI
(ht,it)=(h,i)IEt

(1)

≤
H(n)X

h=0

X

i2Ih(n)

nX

t=1

3c

s
log(2/˜�(t))

Th,i(t)
I
(ht,it)=(h,i)

(2)

≤
H(n)X

h=0

X

i2Ih(n)

Th,i(n)X

s=1

3c

s
log(2/˜�(¯th,i))

s

≤
H(n)X

h=0

X

i2Ih(n)

Z Th,i(n)

1

3c

s
log(2/˜�(¯th,i))

s
ds ≤

H(n)X

h=0

X

i2Ih(n)

6c
q
Th,i(n) log(2/˜�(¯th,i))

= 6c
HX

h=0

X

i2Ih(n)

q
Th,i(n) log(2/˜�(¯th,i))

| {z }
(a)

+6c

H(n)X

h=H+1

X

i2Ih(n)

q
Th,i(n) log(2/˜�(¯th,i))

| {z }
(b)

(18)

where in (1) we rely on the definition of event Et and Eq. 16 and in (2) we rely on the fact that at any time step t when the
algorithm pulls the arm (h, i), Th,i is incremented by 1 and that by definition of ¯th,i we have that t ≤ ¯th,i . We now bound
the two terms in the RHS of Eq. 18. We first simplify the first term as

(a) =

H(n)X

h=0

X

i2Ih(n)

q
Th,i(n) log(2/˜�(¯th,i)) ≤

HX

h=0

X

i2Ih(n)

q
⌧h(n) log(2/˜�(n))

=

HX

h=0

|I h(n)|
q
⌧h(n) log(2/˜�(n)), (19)

where the inequality follows from Th,i(n) ≤ ⌧h(n) and ¯th,i ≤ n. We now need to provide a bound on the number of nodes
at each depth h. We first notice that since T is a binary tree, the number of nodes at depth h is at most twice the number
of nodes at depth h − 1 that have been expanded (i.e., the parent nodes), i.e., |I h(n)| ≤ 2|I +

h�1

(n)|. We also recall the
result of Eq. 17 which guarantees that (hp

t , i
p
t ), the parent of the selected node (ht, it), is 3⌫

1

⇢ht�1 optimal, that is, HCT
never selects a node (ht, it) unless its parent is 3⌫

1

⇢ht�1 optimal. From Asm. 5 we have that the number of 3⌫
1

⇢h-optimal
nodes is bounded by the covering number N (3⌫

1

/⌫
2

", l, ") with " = ⌫
1

⇢h. Thus we obtain the bound

|I h(n)| ≤ 2|I +

h�1

(n)| ≤ 2C(⌫
2

⇢(h�1)

)

�d, (20)

where d is the near-optimality dimension of f around x⇤. This bound combined with Eq. 19 implies that

(a) ≤
HX

h=0

2C⌫�d
2

⇢�(h�1)d

q
⌧h(n) log(2/˜�(n)) ≤

HX

h=0

2C⌫�d
2

⇢�(h�1)d

s
c2 log(1/˜�(n+

))

⌫2
1

⇢�2h
log(2/˜�(n))

≤ 2C⌫�d
2

c log(2/˜�(n+

))

⌫
1

⇢d
HX

h=0

⇢�h(d+1) ≤ 2C⌫�d
2

c log(2/˜�(n+

))

⌫
1

⇢d
⇢�H(d+1)

1 − ⇢
. (21)

We now bound the second term of Eq. 18 as

(b)
(1)

≤

vuuut
H(n)X

h=H+1

X

i2Ih(n)

log(2/�(¯th,i))

vuuut
H(n)X

h=H+1

X

i2Ih(n)

Th,i(n)
(2)

≤

vuuut
H(n)X

h=H+1

X

i2Ih(n)

log(2/˜�(¯th,i))
√
n (22)

where in (1) we make use of Cauchy-Schwarz inequality and in (2) we simply bound the total number of samples by n.
We now focus on the summation in the first square root. We recall that we denote by ˜th,i the last time when any of the two
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children of node (h, i) has been pulled. Then we have the following sequence of inequalities.

n =

H(n)X

h=0

X

i2Ih(n)

Th,i(n) ≥
H(n)�1X

h=0

X

i2I+

h (n)

Th,i(n) ≥
H(n)�1X

h=0

X

i2I+

h (n)

Th,i(˜th,i)
(1)

≥
H(n)�1X

h=0

X

i2I+

h (n)

⌧h(˜th,i)

≥
H(n)�1X

h=H

X

i2I+

h (n)

⌧h(˜th,i) ≥
H(n)�1X

h=H

X

i2I+

h (n)

⇢�2hc2 log(1/˜�(˜t+h,i))

⌫2
1

≥ c2⇢�2H

⌫2
1

H(n)�1X

h=H

⇢2(H�h)
X

i2I+

h (n)

log(1/˜�(˜t+h,i))
(2)

≥ c2⇢�2H

⌫2
1

H(n)�1X

h=H

X

i2I+

h (n)

log(1/˜�(˜t+h,i))),

(23)

where in (1) we rely on the fact that, at each time step t, HCT-iid only selects a node when Th,i(t) ≥ ⌧h,i(t) for its parent
and in (2) we used that ⇢2(H�h) ≥ 1 for all h ≥ H . We notice that, by definition of ˜th,i, for any internal node (h, i)
˜th,i = max(

¯th+1,2i�1

, ¯th+1,2i). We also notice that for any t
1

, t
2

> 0 we have that [max(t
1

, t
2

)]

+

= max(t+
1

, t+
2

). This
implies that

n ≥ c2⇢�2H

⌫2
1

H(n)�1X

h=H

X

i2I+

h (n)

log(1/˜�([max(

¯th+1,2i�1

, ¯th+1,2i)]
+

))

(1)

=

c2⇢�2H

⌫2
1

H(n)�1X

h=H

X

i2I+

h (n)

max(log(1/˜�(¯t+h+1,2i�1

)), log(1/˜�(¯t+h+1,2i�1

)))

(2)

≥ c2⇢�2H

⌫2
1

H(n)�1X

h=H

X

i2I+

h (n)

log(1/˜�(¯t+h+1,2i�1

)) + log(1/˜�(¯t+h+1,2i))

2

(3)

=

c2⇢�2H

2⌫2
1

H(n)X

h0
=H+1

X

i2I+

h0�1

(n)

log(1/˜�(¯t+h0,2i�1

)) + log(1/˜�(¯t+h0,2i))

(4)

=

c2⇢�2H

2⌫2
1

H(n)X

h0
=H+1

X

i02Ih0 (n)

log(1/˜�(¯t+h0,i0)),

(24)

where in (1) we rely on the fact that, for any t > 0, log(1/˜�(t)) is an increasing function of t. Therefore we have that
log(1/˜�(max(t

1

, t
2

))) = max(log(1/˜�(t
1

)), log(1/˜�(t
2

))) for any t
1

, t
2

> 0 . In (2) we rely on the fact that the maximum
of some random variables is always larger than their average. We introduce a new variable h0

= h + 1 to derive (3). For
proving (4) we rely on the argument that, for any h > 0, I +

h (n) covers all the internal nodes at layer h. This implies that
the set of the children of I +

h (n) covers I h+1

(n). This combined with fact that the inner sum in (3) is essentially taken on
the set of the children of I +

h0�1

(n) proves (4).

Inverting Eq. 24 we have
H(n)X

h=H+1

X

i2Ih(n)

log(1/˜�(¯t+h,i)) ≤
2⌫2

1

⇢2Hn

c2
. (25)

By plugging Eq. 25 into Eq. 22 we deduce

(b) ≤

vuuut
H(n)X

h=H+1

X

i2Ih

log(2/˜�(¯t+h,i))
√
n ≤

vuuut
H(n)X

h=H+1

X

i2Ih

2 log(1/˜�(¯t+h,i))
√
n

≤

s
4⌫2

1

⇢2Hn

c2
√
n =

2

c
⌫
1

⇢Hn.
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This combined with Eq. 21 provides the following bound on eRn:

eRE
n ≤ 12⌫

1

"
Cc2⌫�d

2

⇢d log(2/˜�(n))

⌫2
1

(1 − ⇢)
⇢�H(d+1)

+ ⇢Hn

#
.

We then choose H to minimize the previous bound. Notably we equalize the two terms in the bound by choosing

⇢H =

✓
c2C⌫�d

2

⇢d

(1 − ⇢)⌫2
1

log(2/˜�(n))

n

◆ 1

d+2

,

which, once plugged into the previous regret bound, leads to

eRE
n ≤

24⌫
1

c

✓
c2C⌫�d

2

⇢d

(1 − ⇢)⌫2
1

◆ 1

d+2 �
log(2/˜�(n))

� 1

d+2n
d+1

d+2 .

Using the values of ˜�(t) and c defined in Lemma 3, the previous expression becomes

eRE
n ≤ 3

✓
2

2(d+3)⌫2(d+1)

1

C⌫�d
2

⇢d

(1 − ⇢)d/2+3

◆ 1

d+2

✓
log

⇣
2n

�
8

r
3⌫

1

⇢

⌘◆ 1

d+2

n
d+1

d+2 .

This combined with the regret bound of Eq. 9 and the result of Lem. 4 and a union bound on all n � { 1, 2, 3, . . . } proves
the final result with a probability at least 1 − �.

B. Correlated Bandit feedback
We begin the analysis of HCT-� by proving some useful concentration inequalities for non-iid random variables under the
mixing assumptions of Sect. 2.

B.1. Concentration Inequality for non-iid Episodic Random Variables

In this section we extend the result in (Azar et al., 2013) and we derive a concentration inequality for averages of non-iid
random variables grouped in episodes. In fact, given the structure of the HCT-� algorithm, the rewards observed from an
arm x are not necessarily consecutive but they are obtained over multiple episodes. This result is of independent interest,
thus we first report it in its general form and we later apply it to HCT-�.

In HCT-�, once an arm is selected, it is pulled for a number of consecutive steps and many steps may pass before it
is selected again. As a result, the rewards observed from one arm are obtained through a series of episodes. Given a
fixed horizon n, let Kn(x) be the total number of episodes when arm x has been selected, we denote by tk(x), with
k = 1, . . . ,Kn(x), the step when k-th episode of arm x has started and by vk(x) the length of episode k. Finally,
Tn(x) =

PKn(x)
k vk(x) is the total number of samples from arm x. The objective is to study the concentration of the

empirical mean built using all the samples

bµn(x) =
1

Tn(x)

Kn(x)X

k=1

tk(x)+vk(x)X

t=tk(x)

rt(x),

towards the mean-reward f(x) of the arm. In order to simplify the notation, in the following we drop the dependency from
n and x and we use K, tk, and vk. We first introduce two quantities. For any t = 1, . . . , n and for any k = 1, . . . ,K, we
define

Mk
t (x) = E

h tk+vkX

t0=tk

rt0
��F t

i
,
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as the expectation of the sum of rewards within episode k, conditioned on the filtration F t up to time t (see definition in
Section 2),9 and the residual

"kt (x) = Mk
t (x) − Mk

t�1

(x).

We prove the following.

Lemma 5. For any x � X , k = 1, . . . ,K, and t = 1, . . . , n, "kt (x) is a bounded martingale sequence difference, i.e.,
"kt (x) ≤ 2�+ 1 and E["kt (x)|F t�1

] = 0.

Proof. Given the definition of Mk
t (x) we have that

"kt (x) = Mk
t (x) − Mk

t�1

(x) = E
h tk+vkX

t0=tk

rt0
��F t

i
− E

h tk+vkX

t0=tk

rt0
��F t�1

i

=

tX

t0=tk

rt0 + E
h tk+vkX

t0=t+1

rt0
��F t

i
−

t�1X

t0=tk

rt0 − E
h tk+vkX

t0=t

rt0
��F t�1

i

= rt + E
h tk+vkX

t0=t+1

rt0
��F t

i
− E

h tk+vkX

t0=t

rt0
��F t�1

i

= rt − f(x) + E
h tk+vkX

t0=t+1

rt0
��F t

i
− (tk + vk − t)f(x) + (tk + vk − t+ 1)f(x) − E

h tk+vkX

t0=t

rt0
��F t�1

i

≤ 1 + �+ �.

Since the previous inequality holds both ways, we obtain that |"kt (x)| ≤ 2�+ 1. Furthermore, we have that

E
⇥
"kt (x)|F t�1

] = E
⇥
Mk

t (x) − Mk
t�1

(x)|F t�1

⇤

= E

rt + E

h tk+vkX

t0=t+1

rt0
��F t

i����F t�1

�
− E

h tk+vkX

t0=t

rt0
��F t�1

i
= 0.

We can now proceed to derive a high-probability concentration inequality for the average reward of each arm x.

Lemma 6. For any x � X pulled K(x) episodes, each of length vk(x), for a total number of T (x) samples, we have that

����
1

T (x)

K(x)X

k=1

tk+vkX

t=tk

rt − f(x)

���� ≤ (2�+ 1)

s
2 log(2/�)

T (x)
+

K(x)�

T (x)
, (26)

with probability 1 − �.

Proof. We first notice that for any episode k10

tk+vkX

t=tk

rt = Mk
tk+vk

,

since Mk
tk+vk

= E
hPtk+vk

t0=tk
rt0
��F tk+vk

i
and the filtration completely determines all the rewards. We can further develop

the previous expression using a telescopic expansion which allows us to rewrite the sum of the rewards as a sum of residuals
9Notice that the index t of the filtration can be before, within, or after the k-th episode.

10We drop the dependency of M on x.
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"kt as

tk+vkX

t=tk

rt = Mk
tk+vk

= Mk
tk+vk

− Mk
tk+vk�1

+Mk
tk+vk�1

− Mk
tk+vk�2

+Mk
tk+vk�2

+ · · · − Mk
tk

+Mk
tk

= "ktk+vk
+ "ktk+vk�1

+ · · ·+ "ktk+1

+Mk
tk

=

tk+vkX

t=tk+1

"kt +Mk
tk
.

Thus we can proceed by bounding

����
K(x)X

k=1

⇣ tk+vkX

t=tk

rt − vkf(x)
⌘���� ≤

����
K(x)X

k=1

tk+vkX

t=tk+1

"kt

����+
����
K(x)X

k=1

⇣
Mk

tk
− vkf(x)

⌘����

≤
����
K(x)X

k=1

tk+vkX

t=tk+1

"kt

����+K(x)�.

By Lem. 5 "kt is a bounded martingale sequence difference, thus we can directly apply the Azuma’s inequality and obtain
that

����
K(x)X

k=1

tk+vkX

t=tk+1

"kt

���� ≤ (2�+ 1)

p
2T (x) log(2/�).

Grouping all the terms together and dividing by T (x) leads to the statement.

B.2. Proof of Thm. 2

The notation needed in this section is the same as in Section A. We only need to restate the notation about the episodes
from previous section to HCT-�. We denote by Kh,i(n) the number of episodes for node (h, i) up to time n, by th,i(k) the
step when episode k is started, and by vh,i(k) the number of steps of episode k.

We first notice that Lemma 1 holds unchanged also for HCT-�, thus bounding the maximum depth of an HCT tree to
H(n) ≤ H

max

(n) =

1

1�⇢ log

⇣
n⌫2

1

2(c⇢)2

⌘
. We begin the main analysis by applying the result of Lem. 6 to bound the

estimation error of bµh,i(t) at each time step t.

Lemma 2. Under assumptions 1 and 2, for any fixed node (h, i) and step t, we have that

|bµh,i(t) − f(xh,i)| ≤ (3�+ 1)

s

2

log(5/�)

Th,i(t)
+

� log(t)

Th,i(t)
.

with probability 1 − �. Furthermore, the previous expression can be conveniently restated for any 0 < " ≤ 1 as

P(|bµh,i(t) − f(xh,i)| > ✏) ≤ 5t1/3 exp

✓
− Th,i(t)"2

2(3�+ 1)

2

◆
.

Proof. As a direct consequence of Lem. 6 we have w.p. 1 − �,

|bµh,i(t) − f(xh,i)| ≤ (2�+ 1)

s
2 log(2/�)

Th,i(t)
+

Kh,i(t)�

Th,i(t)
,

where Kh,i(t) is the number of episodes in which we pull arm xh,i. At each episode in which xh,i is selected, its number
of pulls Th,i is doubled w.r.t. the previous episode, except for those episodes where the current time s becomes larger than
s+, which triggers the termination of the episode. However since s+ doubles whenever s becomes larger than s+, the total
number of times when episodes are interrupted because of s ≥ s+ can be at maximum log

2

(t) withing a time horizon of
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t. This means that the total number of times an episode finishes without doubling Th,i(t) is bounded by log

2

(t). Thus we
have

Th,i(t) ≥
Kh,i(t)�log

2

(t)�1X

k=1

2

k�1 ≥ 2

Kh,i(t)�log

2

(t)�2,

where in the second inequality we simply keep the last term of the summation. Inverting the previous inequality we obtain
that

Kh,i(t) ≤ log

2

(4Th,i(t)) + log

2

(t),

which bounds the number of episodes w.r.t. the number of pulls and the time horizon t. Combining this result with the
high probability bound of Lem. 6, we obtain

|bµh,i(t) − f(xh,i)| ≤ (2�+ 1)

s
2 log(2/�)

Th,i(t)
+ �

log

2

(4Th,i(t))

Th,i(t)
+ �

log(t)

Th,i(t)
,

with probability 1 − �. The statement of the Lemma is obtained by further simplifying the second term in the right hand
side with the objective of achieving a more homogeneous expression. In particular, we have that

log

2

(4Th,i(t)) = 2 log

2

(2

q
Th,i(t)) = 2(log

2

(

q
Th,i(t)) + 1) ≤ 2

q
Th,i(t),

and

|bµh,i(t) − f(xh,i)| ≤ (2�+ 1)

s
2 log(2/�)

Th,i(t)
+

2�

p
Th,i(t)

Th,i(t)
+

� log(t)

Th,i(t)

≤ (3�+ 1)

s
2 log(5/�)

Th,i(t)
+

� log(t)

Th,i(t)
.

To prove the second statement we choose " := (3�+ 1)

q
2 log(5/�)
Th,i(t)

+

� log(t)
Th,i(t)

and we solve the previous expression w.r.t.
�:

� = 5 exp


− Th,i(t)(" − � log(t)/Th,i(t))2

2(3�+ 1)

2

�
.

The following sequence of inequalities then follows

P(|bµh,i(t) − f(xh,i)| > ") ≤ � = 5 exp


− Th,i(t)(" − � log(t)/Th,i(t))2

2(3�+ 1)

2

�
≤ 5 exp


− Th,i(t)("2 − 2"� log(t)/Th,i(t))

2(3�+ 1)

2

�

≤ 5 exp


− Th,i(t)("2 − 2� log(t)/Th,i(t))

2(3�+ 1)

2

�
= 5 exp


− Th,i(t)"2

(3�+ 1)

2

+

2� log(t)

2(3�+ 1)

2

�

≤ 5 exp


− Th,i(t)"2

(3�+ 1)

2

+

2� log(t)

12�

�
= 5 exp


− Th,i(t)"2

2(3�+ 1)

2

+ log(t1/6)

�
,

which concludes the proof.

The result of Lem. ?? facilitates the adaption of the previous results of iid case to the case of correlated rewards, since this
bound is similar to those of standard tail’s inequality such as Hoeffding and Azuma’s inequality. Based on this result we
can extend the results of previous section to the case of dependent arms.

We now introduce the high probability event Et,n under which the mean reward for all the selected nodes in the interval
[t, n] is within a confidence interval of the empirical estimates at every time step in the interval. The event Et,n is needed to
concentrate the sum of obtained rewards around the sum of their corresponding arm means. Note that unlike the previous
theorem where we could make use of a simple martingale argument to concentrate the rewards around their means, here
the rewards are not unbiased samples of the arm means. Therefore, we need a more advanced technique than the Azuma’s
inequality for concentration of measure.
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Lemma 7 (High-probability event). We define the set of all the possible nodes in trees of maximum depth H
max

(t) as

L t =

[

T :Depth(T )H
max

(t)

Nodes(T ).

We introduce the event

⌦t =

⇢
�(h, i) � L t,�Th,i(t) = 1, . . . , t :

��bµh,i(t) − f(xh,i)
�� ≤ c

s
log(1/˜�(t))

Th,i(t)

�
,

where xh,i � Ph,i is the arm corresponding to node (h, i), and the event Et,n =

Tn
s=t ⌦s. If

c = 6(3�+ 1)

r
1

1 − ⇢
and ˜�(t) =

�

t
9

r
⇢

4⌫
1

,

then for any fixed t, the event ⌦t holds with probability 1 − �/t7 and the joint event Et,n holds with probability at least
1 − �/(6t6).

Proof. We upper bound the probability of complementary event of ⌦t after t steps

P[⌦c
t] =

X

(h,i)2Lt

tX

Th,i(t)=1

P
��bµh,i(t) − f(xh,i)

�� ≥ c

s
log(1/˜�(t))

Th,i(t)

�

≤
X

(h,i)2Lt

tX

Th,i(t)=1

5t1/3 exp

✓
− Th,i(t)c

2

log(1/˜�(t))

(3�+ 1)

2Th,i(t)

◆

≤ 5 exp(− c2/(3�+ 1)

2

log(1/˜�(t)))t4/3|L t|,

Similar to the proof of Lem. 4, we have that |L t| ≤ 2

H
max

(t)+1. Thus

P[⌦c
t] ≤ 5(

˜�(t))(c/(3�+1))

2

t4/32Hmax

(t)+1.

We first derive a bound on the the term 2

H
max

(t) as

2

H
max

(t) ≤ pow

 
2, log

2

✓
t⌫2

1

2(c⇢)2

◆ 1

2 log

2

(e)(1�⇢)

!
≤
✓

t⌫2
1

2(c⇢)2

◆ 1

2(1�⇢)

,

where we used the definition of the upper bound H
max

(t). which leads to

P[⌦c
t] ≤ 10t4/3

�
˜�(t)
�
(c/(3�+1))

2

✓
t⌫2

1

2(c⇢)2

◆ 1

2(1�⇢)

.

The choice of c and ˜�(t) as in the statement leads to P[⌦c
t] ≤ �

t7 (steps are similar to Lemma 3) .

The bound on the joint event Et,n follows from a union bound as

P
⇥
Ec
t,n

⇤
= P

h n[

s=t

⌦

c
s

i
≤

nX

s=t

P(⌦c
s) ≤

Z 1

t

�

s7
ds =

�

6t6
.

Recalling the definition of regret from Sect. 2, we decompose the regret of HCT-iid in two terms depending on whether
event Et holds or not (i.e., failing confidence intervals). Let the instantaneous regret be �t = f⇤ − rt, then we rewrite the
regret as

Rn =

nX

t=1

�t =

nX

t=1

�tIEt +

nX

t=1

�tIEc
t
= RE

n +REc

n . (27)

We first study the regret in the case of failing confidence intervals.
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Lemma 8 (Failing confidence intervals). Given the parameters c and ˜�(t) as in Lemma 7, the regret of HCT-iid when
confidence intervals fail to hold is bounded as

REc

n ≤
√
n,

with probability 1 − �
30n2

.

Proof. The proof is the same as in Lemma 4 expect for the union bound which is applied to Et,n for t =
√
n, . . . , n.

We are now ready to prove the main theorem, which only requires to study the regret term under events { Et,n} .

Theorem 2 (Regret bound of HCT-�). Let � � (0, 1), ˜�(t) = 9

p
⇢/(3⌫

1

)�/t, and c = 6(3�+1)

p
1/(1 − ⇢). We assume

that assumptions 1–5 hold and that rewards are generated according to the general model defined in Section 2. Then the
regret of HCT-iid after n steps is

Rn ≤ 3

✓
2

2d+7⌫2(d+1)

1

C⌫�d
2

⇢d

(1 − ⇢)d+7

◆ 1

d+2

✓
log

⇣
2n

�
8

r
3⌫

1

⇢

⌘◆ 1

d+2

n
d+1

d+2

+ 2

p
n log(4n/�),

with probability 1 − �.

Proof. The structure of the proof is exactly the same as in Theorem 1. Thus, here we report only the main differences in
each step.

Step 1: Decomposition of the regret. We first decompose the regret in two terms. We rewrite the instantaneous regret �t

as

�t = f⇤ − rt = f⇤ − f(xht,it) + f(xht,it) − rt = �ht,it +
b
�t,

which leads to a regret

RE
n =

nX

t=1

�ht,itIEt,n +

nX

t=1

b
�tIEt,n =

eRE
n +

bRE
n. (28)

Unlike in Theorem 1, the definition of bRE
n still requires the event IEt,n and the sequence { b�t} nt=1

is no longer a bounded
martingale difference sequence. In fact, E(b�t|F t�1

) �= 0 since the expected value of rt does not coincide with the mean-
reward value of the corresponding node f(xht,it). This prevents from directly using the Azuma inequality and extra care
is needed to derive a bound. We have that

bRE
n =

nX

t=1

b
�tIEt,n ≤

H(n)X

h=0

X

i2Ih(n)

nX

t=1

b
�tIEt,nI(ht,it)=(h,i)

=

H(n)X

h=0

X

i2Ih(n)

nX

t=1

(f(xh,i) − rt)IEt,nI(ht,it)=(h,i)

(1)

≤
H(n)X

h=0

X

i2Ih(n)

nX

t=1

(f(xh,i) − rt)I⌦th,i,n
I
(ht,it)=(h,i)

(2)

=

H(n)X

h=0

X

i2Ih(n)

Th,i(¯th,i)(f(xh,i) − bµh,i(¯th,i))I⌦
¯th,i

(3)

≤
H(n)X

h=0

X

i2Ih(n)

cTh,i(¯th,i)

s
log(2/˜�(¯th,i))

Th,i(¯th,i)
≤

H(n)X

h=0

X

i2Ih(n)

c
q
Th,i(¯th,i) log(2/˜�(¯th,i))

≤ c
HX

h=0

X

i2Ih(n)

q
Th,i(n) log(2/˜�(¯th,i))

| {z }
(a)

+c

H(n)X

h=H+1

X

i2Ih(n)

q
Th,i(n) log(2/˜�(¯th,i))

| {z }
(b)

,

(29)
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where (1) follows from the definition of Et,n =

Tn
s=t ⌦s, thus if Et,n holds at time t then ⌦s also holds at s =

¯th,i ≥ t.
Step (2) follows from the definition of bµh,i: First we notice that for the node (hn, in) we have that Thn,in(n)bµhn,in(n) =Pn

t=1

rtI
(ht,it)=(hn,in) since we update the statistics at the end. for every other node we have that the last selection time

¯th,i and the end of last episode coincides together . Now since we update the statistics of the selected node at the end of
every episode, thus, we have that Th,i(¯th,i)bµh,i(¯th,i) =

Pn
t=1

rtI
(ht,it)=(h,i) also for (h, i) �= (hn, in). Step (3) follows

from the definition of ⌦s. The resulting bound matches the one in Eq. 18 up to constants and it can be bound similarly.

bRE
n ≤ 2⌫

1

"
Cc2⌫�d

2

⇢d log(2/˜�(n))

⌫2
1

(1 − ⇢)
⇢�H(d+1)

+ ⇢Hn

#
.

Step 2: Preliminary bound on the regret of selected nodes. The second step follows exactly the same steps as in the
proof of Theorem 1 with the only difference that here we use the high-probability event Et,n. As a result the following
inequalities hold for the node (ht, it) selected at time t and its parent (hp

t , i
p
t )

�ht,it ≤ 3c

s
log(2/˜�(t))

Tht,it(t)
.

�hp
t ,i

p
t
≤ 3⌫

1

⇢ht�1.

(30)

Step 3: Bound on the cumulative regret. Unlike in the proof of Theorem 1, the total regret eRE
n should be analyzed with

extra care since here we do not update the selected arm as well as the statistics Th,i(t) and bµh,i(t) for the the entire length
of episode, whereas in Theorem 1 we update at every step. Thus the development of eRE

n slightly differs from Eq. 18. Let
1 ≤ H ≤ H(n) a constant to be chosen later, then we have

eRE
n

(1)

=

nX

t=1

�ht,itIEt,n =

H(n)X

h=0

X

i2Ih(n)

nX

t=1

�h,iI
(ht,it)=(h,i)IEt,n =

H(n)X

h=0

X

i2Ih(n)

Kh,i(n)X

k=1

th,i(k)+vh,i(k)X

t=th,i(k)

�h,iIEt,n

(2)

≤
H(n)X

h=0

X

i2Ih(n)

Kh,i(n)X

k=1

th,i(k)+vh,i(k)X

t=th,i(k)

2

4
3c

s
log(2/˜�(t))

Th,i(t)

3

5 (3)

=

H(n)X

h=0

X

i2Ih(n)

Kh,i(n)X

k=1

vh,i(k)

2

4
3c

s
log(2/˜�(th,i(k)))

Th,i(th,i(k))

3

5

≤
H(n)X

h=0

X

i2Ih(n)

3c
q
log(2/˜�(¯th,i))

Kh,i(n)X

k=1

vh,i(k)p
Th,i(th,i(k))

(4)

≤ 3(

√
2 + 1)c

H(n)X

h=0

X

i2Ih(n)

q
log(2/˜�(¯th,i))Th,i(th,i(Kh,i(n))) ≤ 3(

√
2 + 1)c

H(n)X

h=0

X

i2Ih(n)

q
log(2/˜�(¯th,i))Th,i(n)

= 3(

√
2 + 1)c

HX

h=0

X

i2Ih(n)

q
Th,i(n) log(2/˜�(¯th,i))

| {z }
(a)

+3(

√
2 + 1)c

H(n)X

h=H+1

X

i2Ih(n)

q
Th,i(n) log(2/˜�(¯th,i))

| {z }
(b)

, (31)

where the first sequence of equalities in (1) simply follows from the definition of episodes. In (2) we bound the instan-
taneous regret by Eq. 30. Step (3) follows from the fact that when (h, i) is selected, its statistics, including Th,i, are not
changed until the end of the episode. Step (4) is an immediate application of Lemma 19 in (Jaksch et al., 2010).

Constants apart the terms (a) and (b) coincides with the terms defined in Eq. 18 and similar bounds can be derived.

Putting the bounds on bRE
n and eRE

n together leads to

RE
n ≤ 2(3

p
(2) + 4)⌫

1

"
Cc2⌫�d

2

⇢d log(2/˜�(n))

⌫2
1

(1 − ⇢)
⇢�H(d+1)

+ ⇢Hn

#
.

It is not difficult to prove that for a suitable choice H , we obtain the final bound of O(log(n)1/(d+2)n(d+1)/(d+2)

) on Rn.
This combined with the result of Lem. 7 and a union bound on all n � { 1, 2, 3, . . . } proves the final result.
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B.3. Proof of Thm. 3

Theorem 3 Let � � (0, 1), ˜�(n) = 9

p
⇢/(4⌫

1

)�/n, and c = 3(3�+ 1)

p
1/(1 − ⇢). We assume that assumptions 1–5 hold

and that rewards are generated according to the general model defined in Section 2. Then if � = 1/n the space complexity
of HCT-� is

E(Nn) = O(log(n)2/(d+2)nd/(d+2)

).

Proof. We assume that the space requirement for each node (i.e., storing variables such as bµh,i, Th.i) is a unit. Let Bt

denote the event corresponding to the branching/expansion of the node (ht, it) selected at time t, then the space complexity
is Nn =

Pn
t=1

IBt . Similar to the regret analysis, we decompose Nn depending on events Et,n, that is

Nn =

nX

t=1

IBtIEt,n +

nX

t=1

IBtIEc
t,n

= N E
n + N Ec

n . (32)

Since we are targeting the expected space complexity, we take the expectation of the previous expression and the second
term can be easily bounded as

E
⇥
N Ec

n

⇤
=

nX

t=1

IBtP[Ec
t,n] ≤

nX

t=1

P[Ec
t ] ≤

nX

t=1

�

6t6
≤ C, (33)

where the last inequality follows from Lemma 7 and C is a constant independent from n. We now focus on the first term
N E

n . We first rewrite it as the total number of nodes |Tn| generated by HCT over n steps. For any depth H > 0 we have

N E
n =

H(n)X

h=0

|I h(n)| = 1 +

HX

h=1

|I h(n)| +
H(n)X

h=H+1

|I h(n)| ≤ 1 +H |I H(n)|
| {z }

(c)

+

H(n)X

h=H+1

|I h(n)|

| {z }
(d)

. (34)

A bound on term (d) can be recovered through the following sequence of inequalities

n =

H(n)X

h=0

X

i2Ih(n)

Th,i(n) ≥
H(n)X

h=0

X

i2I+

h (n)

Th,i(n)
(1)

≥
H(n)X

h=0

X

i2I+

h (n)

⌧h,i(th,i)

(2)

≥
H(n)X

h=0

X

i2I+

h (n)

c2

⌫2
1

⇢�2h
(3)

≥ 1

⌫2
1

H(n)�1X

h=H

|I +

h (n)|⇢�2h
=

1

⌫2
1

⇢�2H

H(n)�1X

h=H

|I +

h (n)|⇢2(H�h)

≥ 1

⌫2
1

⇢�2H

H(n)�1X

h=H

|I +

h (n)|
(4)

≥ 1

2⌫2
1

⇢�2H

H(n)X

h=H+1

|I h(n)|,

(35)

where (1) follows from the fact that nodes in I +

h (n) have been expanded at time th,i when their number of pulls Th,i(th,i) ≤
Th,i(n) exceeded the threshold ⌧h,i(th,i). Step (2) follows from Eq. 6, while (3) from the definition of c > 1. Finally, step
(4) follows from the fact that the number of nodes at depth h cannot be larger than twice the parent nodes at depth h − 1.
By inverting the previous inequality, we obtain

(d) ≤ 2⌫2
1

n⇢2H .

On other hand, in order to bound (c), we need to use the same the high-probability events Et,n and similar passages as in
Eq. 20, which leads to |I h(n)| ≤ 2|I +

h�1

(n)| ≤ 2C(⌫
2

⇢(h�1)

)

�d. Plugging these results back in Eq. 34 leads to

N E
n ≤ 1 + 2HC(⌫

2

⇢(H�1)

)

�d
+ 2⌫2

1

n⇢2H ,

with high probability. Together with N Ec

n we obtain

E
⇥
Nn

⇤
≤ 1 + 2HC(⌫

2

⇢(H�1)

)

�d
+ 2⌫2

1

n⇢2H + C ≤ 1 + 2H
max

(n)C(⌫
2

⇢(H�1)

)

�d
+ 2⌫2

1

n⇢2H + C,

where H
max

(n) is the upper bound on the depth of the tree in Lemma 1. Optimizing H in the remaining terms leads to the
statement.
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C. Numerical Results
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Figure 3. The garland function.

While our primary contribution is the technical analysis just presented, we also give some preliminary simulation results
to demonstrate some of HCT’s properties.

For our first experiment, we focus on minimizing the regret across repeated function evaluations of the garland function
f(x) = x(1 − x)(4 −

p
| sin(60x)|) (see Figure 3 in the supplementary material) relative to repeatedly selecting its global

optima x⇤. Pulling an arm x produces a reward of f(x) + ", where " is drawn randomly from the interval [0, 1]. These
rewards are independent and identically distributed given the selected arm x. We select this function due to its several
interesting properties. First, it contains many local optima. Second, around its global optima x⇤, it is locally smooth:
in particular it behaves as f⇤ − c|x − x⇤|↵, for c = 2 and ↵ = 1/2. And third, it is also possible to show that the
near-optimality dimension d of f equals 0.

In this first example we compare HCT-iid to the truncated hierarchical optimistic optimization (T-HOO) algorithm (Bubeck
et al., 2011a). T-HOO is a state-of-the-art approach for stochastic online optimization, and was developed as a
computationally-efficient approach for optimizing a nonlinear function with iid-noisy observations. We evaluate the per-
formances of each algorithm in terms of the per-step regret, eRn = Rn/n. Each run is n = 10

5 steps and we average the
performance on 10 runs. For both HCT and T-HOO we introduce a tuning parameter used to multiply the upper bounds,
and vary this constant per algorithm to maximize the empirical reward.

In Figure 6 we show the per-step regret, the runtime, and the space requirements of each approach. As predicted by the
theoretical bounds, the per-step regret eRn of both HCT-iid and truncated HOO decrease rapidly with number of steps.
Though the big O theoretical bounds are identical for both approaches, empirically we observe in this example that HCT-
iid outperforms T-HOO by a large margin. Similarly, though the computational complexity of both approaches matches in
the dependence on the number of time steps, empirically we observe that our approach outperforms T-HOO (Figure ??).
Perhaps the most significant expected advantage of HCT-iid over T-HOO for iid settings is in the space requirements. HCT-
iid has a space requirement for this domain that scales logarithmically with the time step n, as predicted by Theorem 3
(since the near-optimality dimension d = 0). In contrast, a brief analysis of T-HOO suggests that its space requirements
can grow polynomially, and indeed in this domain we observe such a polynomial grow in memory usage. These patterns
mean that HCT-iid can achieve a very small regret using a decision tree which contains only few hundred nodes, whereas
truncated HOO requires to build a much larger tree with orders of magnitude more nodes than HCT-iid.

We next consider a simulation for the correlated setting. To do so we create a continuous-state-action Markov decision
problem out of the previously described Garland function. There is now a current state of the environment s. Upon taking
continuous-valued action x, the state of the environment changes deterministically to st+1

= (1 − �)st + �x, where we
set � = 0.2. The agent receives a stochastic reward for being in state s, which is (the Garland function) f(s) + ", where as
before " is drawn randomly fro [0, 1]. The initial state s

0

is also drawn randomly from [0, 1]. A priori, the agent does not
know the transition or reward function, making this a reinforcement learning problem. Though not a standard benchmark
RL instance, this problem has multiple local optima and therefore is a interesting case for policy search. In this setting
we again our HCT-� algorithm to a PoWER, a standard powerful RL policy search algorithm (Kober & Peters, 2011).
PoWER uses an Expectation Maximization approach to optimize the policy parameters and is therefore not guaranteed to
find the global optima. We also compare our algorithm with T-HOO, though this algorithm is specifically designed for iid
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setting and one may expect that it may fail to converge to global optima under correlated bandit feedback. As in the iid
domain, we include tuning parameters for the upper bounds of the stochastic optimization approaches, and for the window
for computing the weighted average in the PoWER method, and optimize over these parameters to maximize performance.

Figure 6 shows per-step regret of the 3 approaches in the MDP. Only HCT-� succeeds in finding the globally optimal policy,
as is evident because only in the case of HCT-� does the average regret tends to converge to zero (which is as predicted
from Theorem 2). The PoWER method finds worse solutions than both stochastic optimization approaches for the same
amount of computational time, likely due to using EM which is known to be susceptible to local optima. It’s primary
advantage is that it has a very small memory requirement. Overall this suggests the benefit of our proposed approach to be
used for online MDP policy search, since it quickly (as a function of samples and runtime) can find a global optima, and
is, to our knowledge, one of the only policy search methods guaranteed to do so.

D. Application of HCT to Policy Search in Markov Decision Problems
As we discussed in Sect. 1, HCT may be used for optimization in problems where there exists a strong correlation among
the rewards, arm pulls and contexts, at different time steps. An important problem for which HCT may be used, is the
problem of policy search in infinite-horizon Markov decision processes.A Markov decision process (MDP) M is defined
as a tuple �S,A , P�where S is the set of states, A is the set of actions, P : S× A � M (S× [0, 1]) is the transition kernel
mapping each state-action pair to a distribution over states and rewards. A policy ⇡ : S � A is a mapping from states
to actions. Policy search algorithms (Scherrer & Geist, 2013; Azar et al., 2013; Kober & Peters, 2011) aim at finding the
best policy in a policy set with the goal of optimizing some long-term performance measure such as the time average of
rewards. Formally, a policy search algorithm operates on the kernel classGcorresponding to the class of probability kernels
mapping the state space S to the space of probability measures on A .These methods often assume that every g � Gcan be
represented by a set of parameters ✓ � ⇥, where ⇥ is a measurable set. Formally, this assumption corresponds to the fact
that there exists a policy kernel ⇡✓ � Gmapping the space of states S to the set of actions A for any given ✓ � ⇥ and vice
versa. The learner selects the action u � A according to the probability distribution ⇡✓(·|s) given its current state s � S and
the policy parameter ✓ � ⇥. Any policy ⇡✓ � G induces a state-reward transition kernel T : M (X )× ⇥ � M (X × [0, 1]).
T relates to the state-reward-action transition kernel P and the policy kernel ⇡✓ as follows

T (s0, r|s, ✓) :=
Z

u2A
P (s0, r|s, u)⇡✓(u|s)du,

for all s, s0 � S, r � [0, 1] and ✓ � ⇥. For any ⇡✓ � G and the initial state s
0

� S, the time-average reward µ⇡
✓ (s0, n)

obtained over n steps for a given parameter ✓ is defined as

µ⇡✓
(s

0

, n) := E
h
1

n

nX

t=1

rt
i
,

where r
1

, r
2

, . . . , rn is the sequence of rewards observed by running the policy ⇡(·|·; ✓) from time t = 0 to t = n − 1

staring at s
0

. The random process (µ⇡✓
(s

0

, n))n converges to a fixed point, which is independent of initial state s
0

, under
the assumption that the Markov reward process induced by the policy ⇡ � G is ergodic:

µ(✓) := lim

n!1
µ⇡✓

(s
0

, n),

where ✓ � ⇥ is the set of parameters which represents the policy ⇡✓ � G. The goal is to find the best ✓⇤ � ⇥ which
maximizes µ(✓), that is, ✓⇤ � { argmax✓2⇥

µ(✓)} . The corresponding best policy is denoted by ⇡⇤
⇥

. 11

This setting is a special case of the general scenario considered in Sect. 2. The adaptation of notation and assumptions
from Sect. 2 to cover the MDP notation is rather straightforward: the parameter space ✓ � ⇥ corresponds to the space of
arms X , since in the policy search we want to explore the parameter space ⇥ to learn the best parameter ✓⇤. Also the state
space S in MDP setting is the special from of context space of Sect. 2 where here the contexts evolve according to some
controlled Markov process. Further the transition kernel T , which at each time step t determines the distribution on the
current state and reward given the last state and ✓ is again a special case of of the more general (Qt)t which may depend
on the entire history of prior observations. Likewise µ(✓), µ⇤

⇥

and ✓⇤ translate into f(✓), f⇤ and x⇤, respectively, using

11We note that ⇡⇤
⇥

may be considered optimal only w.r.t. the policies in the policy class G. In general the optimal policy of the MDP,
⇡⇤, can be different from ⇡⇤

⇥

, since G may not include ⇡⇤.
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the notation of Sect. 2. The Asm. 1 and 2 in Sect. 2 are also the general version of the standard ergodicity and mixing
assumption in MDPs, in which the notion of filtration in assumptions of Sect. 2 is simply replaced by the the initial state
s
0

� S.

Based on this adaptation one can simply use HCT-� algorithm to find the best policy ⇡⇤
⇥

� G. The advantage of HCT-�
algorithm to prior works in policy search literature is that, to the best of our knowledge, it is the first policy search algorithm
which provides finite sample guarantees in the form of regret bounds on the performance loss of policy search in MDPs, as
has been proved in Thm.2. This result guarantees that HCT-� poses a small sub-linear regret w.r.t. ⇡⇤

⇥

along the way. Also
it is not difficult to prove that the policy induced by HCT-� has a small simple regret, that is, its average reward converges
to µ(✓⇤) with a polynomial rate.12

In the context of MDPs, another work somehow related to HCT-� is the UCCRL algorithm by Ortner & Ryabko (2012),
which extends the original UCRL algorithm (Jaksch et al., 2010) to continuous state spaces. Although a direct comparison
between the two methods is not possible, it is interesting to notice that the assumptions used in UCCRL are stronger than
for HCT-�, since they require both the dynamics and the reward function to be globally Lipschitz. Furthermore, UCCRL
requires the action space to be finite, while HCT-� can deal with any continuous policy space. Finally, while HCT-� is
guaranteed to minimize the regret against the best policy in the policy class G, UCCRL targets the performance of the
actual optimal policy of the MDP at hand.

12The reader is referred to Bubeck et al. (2011a); Munos (2013) for details of transforming bounds on accumulated regret to simple
regret bounds.


