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There has been a long-standing interest in how to estimate the prerequisite structure among a set of skills. This prerequisite
structure is important for intelligent tutoring systems and the educational data mining community, because it has important
implications for student modeling, and for automatically constructing teaching policies. Here we present preliminary work
towards inferring skill prerequisite structure given a set of noisy observations of student knowledge. We compare models using
likelihood calculations and provide experimental results on a set of Algebra skills.

1. INTRODUCTION

At least since the work of Robert Gagné and his colleagues [1974], there has been interest in estimating the
prerequisite structure among items to be learned. In this paper we will use prerequisite structure to refer to
relationships among skills that provide strict constraints on the order in which these skills can be acquired.

There are two primary reasons why inferring the prerequisite structure amongst skills is important for
the intelligent tutoring systems and educational data mining community. First, such structure is relevant for
student modeling. In this paper we follow the popular Bayesian approach (see e.g. Corbett and Anderson
[1995] and Conati et al. [2002]) to modeling student learning. Though there are a number of differences
between the specific models and approaches used, broadly Bayesian models of learning involve considering
the student’s knowledge as a hidden state that changes stochastically as pedagogical activities are provided.
Information about this hidden state may also be gleaned from the student responses to the provided activities,
such as correct or incorrect quiz answers. If there is prerequisite structure among the set of skills a student
is trying to learn, that provides direct constraints on the dynamics of learning, since a student will not be
able to learn a new skill if its prerequisite is not yet mastered. In addition, if the student correctly answers a
question involving a particular skill 7, that not only provides positive evidence that the student has mastered
skill 7, but also positive evidence that the student has mastered all of skill j’s prerequisite skills.

Second, the skill prerequisite structure affects what constitutes a good sequence of teaching activities.
Providing a student with exercises and activities on solving a linear equation will be superfluous if the
student has not yet understood fractions, or other key prerequisite skills needed in order to master solving
linear equations. In addition to affecting the quality of different conditional teaching strategies, recent work
by Brunskill and Russell [2010] has demonstrated that prerequisite structure can be leveraged to significantly
reduce the computational burden of calculating good teaching strategies in simulated teaching domains.

However, despite the importance of prerequisite structure, there are a number of challenges to estimating
this structure within the context of a particular curriculum. In particular, in this paper we focus on the
challenge of estimating this structure given access only to noisy observations of students’ hidden knowledge.
This is the most natural setting for a number of common scenarios, such as inferring the prerequisite structure
among a set of skills on an exam. Equally importantly, we suggest that such data is likely to be more easily
obtainable, and therefore a candidate for automatic mining and structure extraction, compared to more
intensive data collection methods such as talk aloud methods, which may be able to get a better estimate of
a student’s true knowledge state.




As a preliminary step towards determining prerequisite structure from noisy observations of student data,
in this paper we estimate the probability of the observations under alternate possible prerequisite structures.
In the rest of this short paper we will briefly discuss related work, our method, and some preliminary results,
before finishing with a discussion of future work.

2. RELATED WORK

Interest in inferring prerequisite structure amongst knowledge items has been present in the education
community for decades. Gagné coined the term “learning hierarchy” to describe the prerequisite relationship
among skills, and developed methods for extracting learning hierarchies from student data. Following this
work, there were a number of studies in the education literature on estimating prerequisite structure in
mathematics curriculums, including work by Miller and Phillips [1974], Uprichard and Phillips [1977], and
Close and Murtagh [1986].

More recently there has been interest from the user modeling and educational data mining community.
Desmarais, Maluf and Liu [1996] introduced a method for calculating partially ordered knowledge structures
(POKS), and Pavlik, Cen, Wu and Koedinger [2008] have recently provided a hierarchical agglomerative
clustering method for student tutoring data which computes and leverages POKS as an input to this clus-
tering.

However, to our knowledge, none of these studies explicitly modeled the observation generation process
that might distort measurements of student knowledge and affect the inferred prerequisite structure.

3. METHOD

We now discuss our preliminary data analysis towards inferring prerequisite structure (if any) among a set
of N skills. The data is assumed to be a set of binary observations that indicate if a particular student got
each skill correct or incorrect, collected over a set of students. For N skills there are an enormous number
of potential prerequisite structures. Therefore, to start we focus on considering each pair of skills separately,
and evaluate the evidence as to whether a prerequisite relation exists among the skill pair. In this initial
analysis we assume all data comes from a single evaluation setting, such as a test, and focus on comparing the
likelihood of the observed data under different precondition structures. We will consider alternative methods
in the discussion section.

More precisely, we are interested in whether there exists a precondition relationship among each pair of
skills s; and s;. We will consider two simple models: in the precondition model s; must be mastered before
s; can be mastered, and in the flat model the two skills are independent. We will compare the two models
by evaluating how well they model the observed student data, under the best fit of each model’s parameters.
The observed data will be denoted as z;; = (0,1) to represent whether student k got skill ¢ incorrect or
correct: z;j, denotes the observation for skill j.

We will shortly describe the different parameters employed in the two models, but first recall that we
presume that a student’s mastery of a skill is not directly observed. Rather, following the knowledge tracing
work of Corbett and Anderson [1995], we use a p; slip parameter to model the probability of a student
answering a question about a skill incorrectly given the student has mastered the skill, and a p, guess
parameter to model the probability of a student answering correctly even when the student has not mastered
the skill in question.

In the flat model, there are two independent parameters, p(s; = 1) and p(s; = 1) which represent the
probability of a student having mastered skill ¢ and skill j respectively. These are unknown parameters. We
also do not know whether or not each individual student & mastered or did not master skill 4 or skill j. Since
our interest is in coming the likelihood of the observations z;; and zj; forallk, our aim is to compute the
expected marginal likelihood of the observed data z;;z;; for all students k, under the best possible fit of the
hidden parameters p(s; = 1) and p(s; = 1), by summing over whether each student mastered or did not



master each skill. We estimate this using Expectation Maximization. This involves first estimating of the
probability of whether or not each student mastered or did not master skill 7, given whether or not they got
skill ¢ correct. For example,

p(zik = 1six = 1)p(s; = 1)
p(zik = 1sik = 1)p(si = 1) + p(zix = 1|six = 0)(1 — p(s; = 1)
(1 —ps)p(si = 1) +py(1 = p(s; = 1))’

and similar expressions exist for p(s;x = 1|zix = 0),p(six = 0|zi = 1) and p(s;x = 0]z = 0). Note that these
probabilities can be evaluated independently for skills ¢ and j. These probabilities allow us to compute the
expected value of the log likelihood. We then calculate the values of the two model parameters p(s; = 1) and
p(s; = 1) that maximize this expected log likelihood and repeat.

In the precondition model we assume skill ¢ must be mastered before skill j. Here only 3 possible student
states are allowed:

p(sik =1z =1) =

—s;5; = 00: both skills are not mastered
—s;5; = 10: skill ¢ is mastered but skill j is not mastered
—s;5; = 11: both skills are mastered.

As the probability of these states must sum to 1, this model also only has two free parameters. We again
wish to evaluate how well this model explains the observed data. Now the two skills are dependent so we
must consider both when estimating a student’s hidden skill mastery. For example, we can compute the
probability that a student mastered both skills, given he got both skills correct, as

p(zikzjk = 11|sisj = 11)p(3i5j =11)
P(zikzjr = W[sis; = 11) + p(zirzjk = 1lsis; = 10) + p(zinzjr = 11]sis; = 00)
(1= ps)?p(sis; = 11)

(1= ps)?p(sis; = 11) + (1 — ps)pgp(sis; = 10) + p2p(sis; = 00)" )
We again estimated the model parameters (here, p(s;s; = 00) and p(s;s; = 10)) using Expectation Maxi-
mization.

Our primary interest is to establish whether one model significantly better explains the observed data. We
computed the expected value of the log likelihood of each model with respect to the conditional distribution
of the hidden student mastery values given the estimated model parameters. As both models have the same
number of parameters, we identified skill pairs ¢, j where the precondition model had a higher log likelihood
than the flat model in one direction only (aka only for 4, j or j,¢ but not both).

p(siksjp = 11|zipzjp = 11) =

4. EXPERIMENT & RESULTS

As part of a larger study, we collected test data from 113 ninth grade students over a set of 23 linear inequality
skills. Test questions were designed to include particular skills so there existed a specific mapping between
each test item and skill. Each instance of each test skill was graded as correct or incorrect. As our primary
interest was in estimating prerequisite structure, and not on estimating the domain parameters, we fixed
ps = 0.3 and p,; = 0.2 for all skills, and both model structures, therefore removing the issue of observation
modeling. .

Figure 1 shows the resulting prerequisite structure induced for this particular domain. Several skills did
not appear in the precondition structure. This structure should be interpreted with caution, as this analysis

IThose particular parameter values were chosen based on expert consultation.
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Fig. 1. Precondition structure inferred for linear inequalities curriculum. An arrow from skill 7 to skill 7 implies that ¢ is a
precondition of j.

is only preliminary and we will discuss limitations and further extensions shortly. However, some of the
inferred preconditions were intuitively plausible, such as the skill of being able to write a simple inequality
in a verbal problem being a precondition to the skill of writing a compound inequality in a verbal problem.

5. DISCUSSION AND FUTURE WORK

We have just described preliminary work towards inferring the prerequisite structure from noisy observations
of student knowledge. In this paper we evaluated the likelihood of the observed student performance on a set
of test items given different model structures. While test data is abundant, and may be possible to obtain in
settings where temporal data on student learning is not available, test data has the significant limitation that
it may distort the inferred precondition structure. Ultimately we are primarily interested in the dynamics of



instruction. Precondition structure could help improve automated instruction by informing whether it will be
possible to successfully teach skill j if skill 4 has never been taught. To infer such instructional precondition
structure will require analyzing temporal data of student learning. Extracting precondition structure solely
from static test data can be misleading, since it both may mask a precondition between skill ¢ and skill j (if
both skills have been successfully taught, student performance on both will be very good) as well as create
false preconditions (if skill ¢ has been taught extensively, but skill j has only been recently taught, it may
appear that skill 7 is a prerequisite for skill j, even if the two skills are independent or could have been taught
in reverse order). Going forward we intend to develop approaches to computing precondition structure based
on temporal data.

There are a number of other interesting issues we would like to consider. In our described approach, we
assumed the observation parameters p, and p, were provided, and were tied to be the same across all skills.
These parameters could be learned and allowed to vary amongst skill, or even problem type: for example, the
probability of guessing on a multiple choice question is different than a write in answer. Another interesting
issue is whether prior information about each student could be used to influence the parameters specifying the
probability of a student having mastered or not mastered each skill. There exist intelligent tutoring systems
that maintain a Bayesian estimate over the student knowledge state that could be used to provide such a
prior. However, one limitation of leveraging such estimates would be that the Bayesian models employed by
such systems make their own assumptions about the prerequisite structure, and so it might not be possible to
estimate all the parameters desired. It would also be useful to compute full structures, rather than pairwise
models. We are also interested in comparing to other previous approaches to inferring structure. In doing so
we would need to identify an appropriate metric for comparison, which could include evaluating how well
the models explain the data, or perhaps how well the models predict student performance.

Ultimately it may be impossible to infer a single correct structure. In the longer term, it is interesting
to think about how one could compute teaching policies that could take as input a distribution of possible
precondition structures, and select policies that were robust to uncertainty over this set of structures.
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