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ABSTRACT

Estimating students’ knowledge based on their interactions
with computer-based tutors has the potential to improve
learning by decreasing time taking assessments and facili-
tating personalized interventions. Although there exist good
student models for relatively structured topics and tutors,
less progress has been made with more open-ended activities.
Further, students often complete activities in pairs rather
than individually, with no coding to indicate who performed
each action. We investigate whether pair interactions with
an open-ended chemistry tutor can be used to predict indi-
vidual student post test performance. Using Li-regularized
regression, we show that student interactions with the tu-
tor are predictive both of the average post-test score for the
pair and of individual scores. Towards better understand-
ing pair dynamics in this setting, we also find that for pairs
composed of students with similar pre-test scores, we can
predict the difference in students’ post-test scores.
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1. INTRODUCTION

Computer-based educational activities have many advan-
tages over traditional tests as a means to assess student
knowledge. The function of testing is to provide information
about student proficiency. If an analysis of how a student
completes an activity can provide similar information, time-
intensive post-tests can be eliminated, and students can have
access to the immediate feedback known to support learning.
Projects such as ASSISTments [13] and stealth assessment
[15] have demonstrated the potential for this approach.

Both interactive activities specifically designed for assess-
ment and traditional intelligent tutoring systems provide
valuable information about student knowledge. Simulation-
based activities that are designed to be assessments have
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proven effective for measuring science inquiry and reason-
ing skills (e.g., [5, 12]). Many tutoring systems use student
modeling to estimate proficiency as a student works through
problems in the tutor. However, estimating students’ knowl-
edge based on their work in games and more open-ended
environments introduces new challenges [3]. These environ-
ments are less structured, lack explicit tags about which
tasks correspond to which skills, and may offer few opportu-
nities to practice the same skill repeatedly in a similar con-
text. Despite these challenges, games or more open-ended
environments are important as they enable different forms of
learning and can be used where formal testing is impractical.

A further challenge in estimating student knowledge from
computer-based activities is that in classroom environments,
students often work with computers in groups. Though col-
laboration can improve students’ learning from computer-
based science activities, automatically logged data rarely
captures explicit collaboration, such as which student pro-
vided any given input, or what conversations occurred in
conjunction with the activity.

In this paper, we explore whether machine learning based
approaches can predict student knowledge based on inter-
actions with an open-ended chemistry tutor, ChemVLab+.
Due to limitations in the number of available computers in
many classrooms, students generally use ChemVLab+ in
pairs, and we analyze only data from paired interactions.
We investigate what predictions we can make about individ-
ual student knowledge, corroborated by a separate post-test,
based on the students’ interactions with ChemVLab+.

2. BACKGROUND

We briefly review the literature on open-ended environments
and collaboration in computer-based educational activities.

2.1 Open-ended tutoring environments

Many computer-based educational environments have open-
ended components in which students explore topics using
free-form actions. One approach to understanding student
learning is to identify behaviors that are correlated with high
or low learning gains. For instance, the WISE platform
has identified patterns of inquiry behavior that are com-
mon in more successful students [10]. Kinnebrew, Loretz,
and Biswas [8] identified patterns of student actions associ-
ated with periods of productivity and analyzed which pat-
terns were correlated with high learning gains. In contrast
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Figure 1: A screenshot of a virtual lab activity.

to identifying correlations between strategies and post-test
performance, we focus on predicting student post-test scores
given tutor interaction features.

Another area of work in open-ended learning environments
focuses on recognizing strategies and goals. For example,
Ha et al. [6] used Markov logic networks to identify stu-
dent goals based on game behaviors. In the chemistry do-
main, progress has also been made on identifying semantic
actions, such as a titration, based on individual behaviors
in a virtual lab, such as pouring a small amount from one
beaker to another [1, 4]. Strategy recognition provides de-
scriptive information about student behaviors, but doesn’t
relate strategies to learning gains. Incorporate rich strategy
features to predicting student understanding and post-test
performance is an interesting future direction.

2.2 Data mining of student collaborations
Collaborative work is common in educational activities, and
research provides evidence that collaborative work improves
student learning [14, 21, 22]. Much work on computer-
supported collaboration focuses on modeling the collabora-
tive process and on how collaborative activities are related
to learning and knowledge [18, 9]. Within this work, there
is often explicit record of collaborative activities in the form
of audio recordings, observation logs, or community inter-
actions such as comments on a discussion forum [7, 16, 17].
Explicit records enable a system to learn classifiers to charac-
terize individual student interactions and identify the roles
of individual students in a collaboration [11, 19]. In con-
trast, our data lacks such explicit records of collaboration,
a typical situation in the classroom due to practical difficul-
ties and teacher preferences. Thus, we believe that exploring
data from paired interactions in ChemVLab+ may be rele-
vant to other educational tools as well.

3. CHEMVLAB+

ChemVlab+ is a collection of online activities that allow stu-
dents to apply their chemistry knowledge in authentic, real-
world contexts [2]. Each activity involves a separate prob-
lem, such as whether factories are reporting accurate pollu-
tion levels, and consists of a series of pages. ChemVLab+
activities include both freeform actions, such as virtual labs
(see Figure 1), and more constrained actions, such as multi-
ple choice questions.! The virtual labs enable similar actions
as in a real chemistry lab: students manipulate beakers and
use chemical instruments. These virtual labs are a key part

! Activities can be found at http://www.chemvlab.org.

of ChemVLab+ as they allow students to plan and execute
experiments to investigate the real-world problem.

The data we analyze were collected from three schools during
the 2011-2012 school year. Students first completed a paper
and pencil pre-test. They then completed four ChemVLab+
stoichiometry activities using computers in the classroom;
activities were completed in the same order by all students
and over at least four class periods. Shortly after the final
use of the ChemVLab+ activities, the students completed
a post-test, which was identical to the pre-test. The test
contained multiple choice and numerical free response items;
the topics covered were similar to those in ChemVLab+, and
there were a total of 30 points on the test. In the data, all
266 students completed the activities in assigned groups of
two students, but completed pre- and post-test individually.

4. PREDICTING POST-TEST SCORES

We now explore what we can learn about students’ knowl-
edge based on their interactions with ChemVLab+-, begin-
ning with prediction of post-test scores. Paired performance
data cannot necessarily tell us about individuals: intraclass
correlation shows that for our data, the two post-test scores
in the pair are not significantly correlated (r = 0.12, p = .08,
n.s.). However, we will shortly see we still can predict some
interesting aspects of individual and pair performance.

4.1 Methods

For all analyses, we use methods based on lasso (Li-norm)
regularization [20]. Lasso regularization is a popular ma-
chine learning method that adds a penalty term A||5]|1 to the
objective in traditional linear regression approaches, where
(B is the vector of predictor coefficients and A is a scaling
factor. This term favors solutions where many features have
weight zero, even if this results in some increase in error;
larger values of A favor using fewer predictors. Thus, feature
selection is performed as part of the regression algorithm.

We computed features for each pair of students based on
their behavior in the four ChemVLab+ activities. Twelve
features were used for each activity, including four features
based on help seeking and submission behavior on each page,
four features for activity in the virtual labs, and four features
capturing holistic behavior in the activity (e.g., total time on
task). In some cases, a pair did not complete any pages in an
activity, generally due to being absent from school. In these
cases, we set the value of the feature for number of pages
completed in the activity to zero. For all other features in
that activity, we use feature imputation and set their values
to the average value of that feature for other students.?

As students use ChemVLab+ in pairs but take the post-
test separately, we predict three possible quantities using
the interaction data: the higher of the two post-test scores,
the lower of the scores, and the average of the scores. Note
that if we use only pair interaction data, we can predict
the higher of the two scores, but not which student will get
which score. For each analysis, we want to maximize the
proportion of the data that can be used for training while

2We also tried imputation using data only from pairs who were
similar to the current pair on the other activities; this did not
significantly affect predictive performance.



MAD by features for regression

Prediction task ChemVLab+ Pretest
Avg. post-test score 2.6 2.5
Higher post-test score 3.0 2.9
Lower post-test score 3.2 3.3

Table 1: Regression error for post-test predictions.

minimizing overfitting. Given the relatively small dataset of
133 pairs of students, we use linear regression, which does
not include interactions among features. By excluding in-
teractions, we limit some of the risk of overfitting due to
chance relationships among features. We fit the regression
using 10-fold cross validation and limit the maximum num-
ber of features that can have non-zero coefficients to 20.

Accuracy is measured as the mean absolute deviation (MAD)
for predictions for all pairs: MAD = % ?:1|Y — Y|, where
Y is the predicted post-test score, Y is the true post-test
score, and n = 133 is the number of pairs. Lower MAD val-
ues indicate more accurate performance. We compare the
performance of regression using the features based on tutor-
student interactions versus using only pre-test features. The
pre-test is highly correlated with the post-test score (r(265) =
0.67, p < .001), so we would expect pre-test scores to be rel-
atively accurate predictors of post-test scores. To predict
the average post-test score using pre-test features, we have
a feature for the higher pre-test score in the pair and the
lower score. For predicting individual post-test scores using
pre-test features, we use the student’s pre-test score.

4.2 Results

As shown in Table 1, the tutor-student interaction features
achieve comparable predictive performance to using the pre-
test features to predict student performance, and both pro-
vide quite accurate estimates. This suggests that even with-
out prior information about the students, interaction data
alone can provide useful indicators of student knowledge, de-
spite the additional challenge that all interaction data comes
from paired performance. Both sets of features are slightly
better at predicting the average post-test score for the pair,
which has somewhat less variance, and both are slightly
worse at predicting the lower score. The decrease in ac-
curacy for the pre-test features on the latter target is likely
because the lower score has a smaller correlation with the
pre-test score than the higher score (r(132) = 0.48 versus
r(132) = 0.71; for both, p < .001). For all analyses, we also
examined using both interaction and pretest features, but
this did not significantly improve performance, suggesting
that the two types of features capture similar information.

Lasso regression favors sparse solutions: the regression mod-
els used between 9 and 14 features, with the model for pre-
dicting the lower post-test score having the fewest features
and the model for predicting the higher score having the
most. All models included features from each activity as well
as virtual lab features. Overall, these results demonstrate
that the interaction data are relatively accurate predictors
of post-test scores, despite the variety of tasks and the lack
of a model of learning in the tutor. We also explored pre-
dicting learning gains based on the interaction data, but had
less success, probably due to the choice of features. Our fea-
tures captured behavior averaged across pages, but did not
take into account changes in behavior from page to page.

S. TOWARDS RECOGNIZING HOW PAIR-
INGS AFFECT LEARNING

The previous section demonstrates the potential for using
the ChemVLab+ activities as embedded assessments. We
now explore what we can learn about pairs as a unit by
predicting the difference between the two post-test scores
in the pair. When restricted to pairs with similar pretest
scores, large differences in post-test scores may signal a lack
of collaboration, which could be used to drive interventions.
Predicting differences in post-test scores may also reveal in-
teraction features related to collaboration.

5.1 Methods

Lasso regression is again used for prediction and feature se-
lection, with the same 48 features as in the previous analysis.
10-fold cross validation is used to fit the model, and the re-
gression is limited to 20 features with non-zero weights. In
analyses with pretest features, these features are the highest
pretest in the pair, the lowest pretest in the pair, and the
difference between the two pre-test scores.

5.2 Results

We first predicted differences in post-test scores for all pairs.
The average difference in post-test scores was 6.0 points,
with a standard deviation of 4.8 points. As shown in Ta-
ble 2, prediction is relatively poor, and including both tutor
interaction features and pre-test features did not increase
performance. Due to concerns about overfitting, we limited
the regression to linear features, which means the weight of
each tutor feature is the same regardless of pretest-score.
However, we might expect that these weights should be de-
pendent on the pre-test scores. For instance, in a pair with
dissimilar pre-test scores, high rates of hint reading might
be indicative of a lack of collaboration. In pairs with similar
pre-test scores, rates of hint reading might be less predictive
because both students are likely to benefit from the hints.

To address this issue, we restricted the regression to the 43
pairs who had pre-test scores that were within two points
of one another. The average difference in post-test score
for these pairs was 4.9 points (SD= 4.1), and only about
one-third of the pairs have post-test scores that are within
two points of one another. Regressing on pairs with similar
pre-test scores results in substantially lower prediction error
than when all pairs are included (Table 2). Prediction is
much more accurate than the standard deviation, and the
interaction features result in more accurate predictions than
the pre-test scores. For the analysis using the interaction
features, twelve of these features had non-zero coefficients,
including six features based on behavior in the virtual lab.

The previous analysis showed that we can predict differ-
ences in post-test score for pairs with similar initial knowl-
edge. However, it does not tell us how initial knowledge
and collaboration interact. Just as features and weights for
predicting differences in post-test scores may differ for pairs
based on the similarity of their pre-test scores, the regression
may differ for pairs with different levels of initial knowledge.
To explore this issue, we performed two additional analyses:
predicting post-test scores for only those pairs where both
students had below-average pre-test scores (low pairs) and
predicting post-test scores for only those pairs where both
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Pairs included | ChemVLab+ Pretest
All 3.9 3.7
Similar pre-test 2.0 3.4
High pre-test 3.0 3.2
Low pre-test 2.7 3.6

Table 2: Regression error for predicting differences
between the post-test scores for students in the pair.

students had above-average pre-test scores (high pairs). The
average pre-test score was 12.5 points out of 30.

The 35 high pairs had an average post-test score difference of
5.5 points (SD= 3.8). As shown in Table 2, this difference
can be predicted relatively accurately. The most notable
thing about this analysis, though, is that only two features
are given non-zero weights. The small number of features
suggests that when students have high initial knowledge, few
features are indicative of the quality of collaboration.

In contrast, eight features have non-zero weight when pre-
dicting differences in post-test for the 43 low pairs. These
pairs had an average post-test score difference 4.6 points
(SD= 4.3), and the interaction features are more accurate
predictors than the pretest features (Table 2). The features
with non-zero weight included three lab features and at least
one feature from each activity. One feature associated with
smaller differences in post-test scores, due to having a rel-
atively large negative weight, was the average number of
submissions per page in Activity 2. This activity was dif-
ficult for students, and a lower number of submissions may
have indicated that students were combining their knowl-
edge, which is likely to result in more similar post-test scores.

6. CONCLUSIONS

Given differences in classroom implementations and the ped-
agogical benefits of more open-ended tutors, there are many
advantages to predicting student performance based on real-
world use of these systems. In this paper, we examined data
from a series of chemistry activities that students completed
in pairs, and found that pairs’ interactions with the activ-
ities were predictive of individual post-test scores. Though
we could make some predictions about differences in post-
test scores for a pair, there is likely to be a limit on how
well we can perform this task given the lack of data about
individuals within the pair. We plan to explore how lim-
ited data about individual behavior, collected via classroom
observation, can be used to create more accurate models of
collaboration, and whether explicitly modeling control of the
computer as a latent variable can improve performance. We
would also like to explore a broader feature set, including
features that capture changes in performance over time and
more fine-grained virtual lab features (e.g., from pattern-
mining [8]). We see this work as a first step in showing the
potential of data mining techniques to transform collabora-
tive educational activities into embedded assessments, even
when activities are not designed for this purpose.
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