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Abstract

As a step towards scaling personalized instruction, we seek
to automatically identify the key features of the
interactive learning process teachers use to select the next
activity when teaching a single student. Such features
could both inform computational student models designed
to facilitate instructional decisions, and help enable
automated self-improving teaching systems that leverage
this identified feature set. We present preliminary results
that a very small set of features is almost as good as a
much larger set of features at predicting human tutor
decisions when teaching students about histograms.

Introduction

Massive open online classes (MOOCs) are transforming
access to education, enabling 1 or a few teaching staff to
teach hundreds of thousands. However, as small
teacher-to-students ratios can lead to substantial learning
benefits (see e.g. Bloom [1]), scalable methods for
providing students with more personalized instruction are
of significant interest. Though peers and alumni are
important resources (and provide an often important
social component), both groups may have fewer insights
into how to effectively teach the material. Therefore it
would also be welcome to provide automated assistance of
quality similar or exceeding an expert teacher. As a step
towards this, we consider how to identify which dynamic



student features can be used to automatically predict the
pedagogical activities selected by teachers.

Understanding the features used by experts to make
instructional decisions is important for multiple reasons.
First, the vast majority of computational student models
focus on predicting the performance of a student. With
few exceptions (e.g. [5]) little attention has been paid to
creating student models explicitly designed to consider
their impact on instruction. Indeed, that is the second key
potential benefit: that armed with the knowledge of what
features are used by expert teachers to select among
pedagogical activities for a student, we could create
automated methods to find highly effective instructional
policies. Here we use the word policy to indicate a
mapping from features about the student learning process
to which next activity to give to the student.
Reinforcement learning algorithms could help learn such
policies from data, but to learn good policies typically
requires an amount of data that scales prohibitively (from
polynomially to exponentially) with the number of features
used to describe the current state of the process. If expert
teachers use only a small set of features, considering
policies that only depend on such features could
substantially reduce the amount of data required to find
policies that meet or exceed human teacher performance.

One natural approach would be to directly ask teachers
both what features they use when teaching. Unfortunately
research from cognitive task analysis [2] suggests that
experts may frequently fail to verbally specify all of the
information they are using to make task decisions. To get
at such information often requires additional effort beyond
the interactions a teacher would normally have with
students. Therefore it remains of use to directly infer
features from existing data. A second issue is that the

available data may be from good but imperfect teachers.
Therefore we may not wish to be restricted to the specific
policy provided by the teachers, and may wish to consider
other policies that condition on the same feature set used
by teachers.

Approach and Preliminary Results

Our approach follows recent exciting work on abstraction
from demonstration [3]. The key idea of is to take
demonstrations of a human user doing a task, infer the
features of the task used by the human to make his or her
decisions, and then perform reinforcement learning given
those features in the task. Cobo et al. [3] demonstrated a
small number of trajectories of humans playing simple
video games was sufficient to identify a small set of
features used by the players to make their decisions. The
authors then used reinforcement learning with those
features to efficiently learn a policy that well surpassed
human performance.

We tried this approach in an education context, for a
module about histograms. Our materials were developed
as extensions of the Statway curriculum that was itself
designed to help community college remedial math
students.We selected this area given the enormous
audience for remedial math, the rising workplace demand
for statistics, and the documented challenge many
students find when learning about histograms [4]. Our
activities and assessments were designed to address some
of the core learning objectives about histograms that are
also often commonly misunderstood [4].

In our initial experiment we got data from 6 students.
The student interacted directly with the computer for the
test and activities. Each student took a pretest, then a
human tutor hand selected an activity for the student, the



student completed that activity, and then the human tutor
selected a next activity based on what he or she observed
about the student’s performance on the tutor. This
interaction was repeated until the human tutor thought
the student had mastered the material (or no more
practice activities were available) and then the student
completed a post test. There was no additional assistance
given by the human tutor to the student beyond
specifying the next activity (or post test) to do, in order
to best mimic the type of interaction a student would
have with an automated (computerized) tutor.

Following the abstraction from demonstration approach,
we then built a decision tree classifier to predict which
activity type the human tutor would select for the
student. The activities were classified into different
learning objectives about histograms, as well as taking the
post test. The classifier was provided with a large set of
possibly relevant features about the teaching interaction,
including the number of items completed about each
learning objective, the type of the last done item, the
amount of time spent so far, the amount of time spent on
the last item, the student’s pretest score, if the last item
was completed correctly on the first try, and a number of
other features. We then tried removing each feature and
re-estimated the cross-validated accuracy at predicting the
activity type selected by the teacher. We removed the
feature that had the smallest negative cost on the overall
accuracy, and then again tried removing each of the
remaining features. We repeated this procedure until
removing any further features resulted in a cross-validated
performance accuracy of less than 95% of the maximal
accuracy obtained during this removal process: we
observed overfitting occurred when using the full feature
set, and so the highest performance occurred with a
subset of the features.

Though we started with over 50 features, we found that
just four features were sufficient to achieve 64.5%
accuracy student cross-validated accuracy (e.g. hold data
from one student out as a test set and use the other
students data to train, and repeat), which was within 95%
of the best observed accuracy of 67%. The 4 features
selected were: total time spent so far, the learning
objective type of the activity the student just finished, how
long of a time gap the student had between practicing the
previous previous learning objective, and how many total
times the student has practiced an activity about defining
the center, spread and shape of a histogram.

Though this analysis is preliminary, it still reveals some
interesting potential findings. One, the selected features
do not depend on the student’s performance (in terms of
correctness or number of attempts). Indeed, prior work
suggests that some teachers may mostly follow a fixed
curriculum rather than adapting to a particular student
(see summary in [6]). Second, a very small number of
features could predict almost as well as the full set which
is encouraging, since finding a good policy over this
smaller set will generally require many less additional
samples. This is important because each “sample” is a
real student and may impact their learning.

Discussion

Our work on this is still in early stages and many open
issues remain. One is that our classifier accuracy rates
suggest that our human tutors may also be leveraging
other features to make their instructional decisions (which
would imply we should create a larger set of features to
try to better capture human decisions) and/or that the
different human tutors are either using different strategies
or changing their strategies as they interact with more
students. To better understand this, we may try to



directly elicit feedback from teachers as to the features
they consider when making pedagogical choices, as a way
to augment features automatically identified.

Looking further, it could be interesting to see if other
features beyond those used by human tutors are important
to consider when selecting activities: indeed Van Lehn
also suggests in his survey [6] that there is evidence that
human teachers may be much less effective at building
nuanced models of a student’s state of knowledge and
misconceptions, and such information may be relevant to
producing the best policy. However, figuring out which
features are important may again open up a much wider
feature space which has implications for the speed of
identifying a good policy. In our next steps we intend to
first explore what instructional policies we can
automatically learn using the limited features identified
and how their performance compares to our human tutors.

Our proposed approach may be relevant to other domains
and situations where a teacher is selecting among a
relatively small amount of choices to best aid a student.
However, if there are an enormous or unbounded space of
options (such as if a teacher might ask a student to write
a new essay on a completely new topic based on the
student’s previous essay) then it may be impossible or
require an enormous amount of data to accurately predict
a teacher's choices, and to infer the features relevant to
those predictions.

To conclude, this is a step towards enabling human
MOOC instructors demonstrate how to teach a few

students directly, and use this data to identify features
and learn a good policy that could be used to
automatically provide personalized pathways to thousands
of future students.
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