
Collision Detection in Legged Locomotion using Supervised Learning

Finale Doshi, Emma Brunskill, Alexander Shkolnik, Thomas Kollar, Khashayar Rohanimanesh,

Russ Tedrake, Nicholas Roy

Abstract— We propose a fast approach for detecting collision-
free swing-foot trajectories for legged locomotion over extreme
terrains. Instead of simulating the swing trajectories and
checking for collisions along them, our approach uses machine
learning techniques to predict whether a swing trajectory is
collision-free. Using a set of local terrain features, we apply
supervised learning to train a classifier to predict collisions.
Both in simulation and on a real quadruped platform, our
results show that our classifiers can improve the accuracy of
collision detection compared to a real-time geometric approach
without significantly increasing the computation time.

I. INTRODUCTION

Legged locomotion over rough terrain introduces a host

of challenges beyond those typically addressed in the loco-

motion community. Unlike flat terrain—the focus of much

of the existing literature—achieving kinematically-feasible,

collision-free foot trajectories is non-trivial when walking on

rough terrain. Some promising work on uneven terrain has

been developed based on intelligent hardware design using

compliant legs [1]. These approaches work well with elegant

controllers over a variety of rough terrains, however they may

not perform as well on terrain where accurate foot placement

is crucial for successful and stable walking (e.g., walking

along the edge of a cliff).

Our interests lie in quadruped locomotion over rough

terrain. In such situations collisions with the terrain or

self-collisions while executing leg motion are of significant

concern: these collisions can cause the robot to lose stability

and fall, potentially damaging itself, or severely hinder the

robot’s speed in reaching a goal location.

The major issue with computing collision-free trajectories

is tractability. Testing for collisions between all moving

components (such as the stepping leg) and the terrain requires

a large number of demanding geometric tests. Leg trajec-

tories must also be tested for self-collisions and kinematic

feasibility. It is tempting to reduce the complexity of these

tests with approximations such as testing only for collisions

with the moving foot (instead of the full moving leg).

However, Figure 1 shows a common failure case of such

assumptions; here, the robot’s calf collides with an obstacle

and prevents the foot from landing on the opposite side. We

note that even if the full geometric was tractable, such tests

would require accurate kinematic and dynamic models of the

robot that are hard to obtain as calibrations often shift with

time.

F. Doshi, E. Brunskill, A. Shkolnik, T. Kollar, K. Rohanimanesh,
N. Roy and R. Tedrake are members of MIT’s Computer Science and
Artificial Intelligence Laboratory. (finale,emmab,shkolnik,
tkollar,khash,russt,nickroy)@mit.edu

Fig. 1. An example where the swing foot trajectory is collision-free,
however other parts of the swing leg (in this case the elbow) will be in
collision with the terrain during the swing.

In this paper we present a fast approach to trajectory

collision detection using learning. Instead of simulating and

updating a geometric model of the robot during trajectory

generation, we build classifiers to predict whether a trajec-

tory is collision-free. The classifier takes in a set of input

data about the current terrain and robot configuration and

produces a label of whether a collision is predicted. We focus

specifically on the problem of predicting collisions during the

motion of a robot leg and foot during a stepping motion, and

we refer to this motion as the “swing leg trajectory.” We show

that our learning approach produces a significant improve-

ment over a simple heuristic without substantially increasing

the computation time used for predicting collisions.

The rest of the paper is organized as follows. Sections

II and III discuss related work and present the overall

system. Sections IV-B and IV-C describe two different super-

vised learning techniques—AdaBoost and Support-Vector-

Machines (SVMs)—for solving the problem. In Section V

we present our empirical results in both simulation and a

real quadruped platform. Finally, we summarize the paper in

Section VI and describe some future directions.

II. RELATED WORK

The graphics community has extensively studied the prob-

lem of collision detection (e.g., [2], [3]). Drawing from

this work, we implemented a baseline predictor that checks

the entire step leg for collisions with every other part of

the terrain at some resolution δt for the entire trajectory.

A number of methods improve upon the basic algorithm,

looking for roots of functions over time of convex polyhedra

[4] or using space-time bounds to compute the time of

possible intersections [5]. Hubbard [5] also approximates the

surface with a tree of successively finer resolution balls.

In the area of legged locomotion, swing-trajectory colli-

sion detection typically uses spatial partitioning or bound-

ing volumes hierarchies. For example, Kuffner [6] applies

computational geometry to detecting collisions in humanoid

robots. After surrounding objects with a ‘protective’ convex

hull they bound the minimum separation distance between

objects using object velocities and apply a Voronoi algorithm

to find collisions. With clever pruning, a trajectory can be

checked in 10-30 ms; however, this approach does not scale

to checking many candidate swing trajectories in real time.

Rapidly-exploring Random Trees (RRTs) [7] has also been

a popular method for generating collision-free trajectories,

however this approach requires a collision-detection at each

intermediate point during the trajectory. Thus, RRTs for

generating swing foot trajectory may fail to find a smooth

trajectory in real time [8] given the tight time constraints for

achieving a desired locomotion speed, as it is required in

the LittleDog locomotion problem. Our approach checks the

entire trajectory at once.

Little work exists on using machine learning for collision

detection. Quinlan et al. ([9], [10]) examined collisions in the

AIBO RoboCup domain, where collisions primarily occur

between legs and between other robots. They first flagged

outliers using statistics on successful and colliding joint

angles for a variety of scenarios [10]. They next reduced

memory requirements by training an SVM on the data [9].

Using features such as leg joint angles and various gait

parameters, and parameter tuning, they produced a classifier

with similar accuracy to the first approach. In contrast, we

investigate this problem in extreme terrains where collisions

primarily occur between the robot’s legs and terrain rubble.

III. QUADRUPED LOCOMOTION

The DARPA Learning Locomotion project is focused

on research on learning locomotion controllers to allow a

quadruped robot (LittleDog) to traverse rough terrain (see

Figure 1). LittleDog weighs 3.0 kg with dimensions: 0.338×
0.178×0.142 meters, and total leg length of 0.180 meters. A

high resolution motion capture system (MoCap), the Vicon

MX system, reports the accurate positions of the robot and

the terrain. The average rock size on the terrain is 0.10×0.15
meters, and the largest obstacle is 0.25× 0.18 meters.

A. Control Architecture

LittleDog contains 18 DOF, with six unactuated degrees

specifying body position and orientation, a two DOF uni-

versal joint at each hip, and a hinge joint at each knee.

Each joint contains a position sensing encoder. To achieve

a basic gait, we independently control the robot whole-body

center of mass and the position of a foot, reducing the control

problem to six degrees of freedom for the center of mass.

We rely on a hierarchical decomposition of the control

problem consisting of two main components:

1) Foot placement planner: Computes a center of body

(COB) trajectory to the goal; searches for the best

possible foot placement for the next step.

2) Joint trajectory controller: Combines plan with a

learned stability function to achieve the desired foot

placements.

To choose the best foot and leg pose for the next step,

the foot placement planner randomly samples hundreds of

candidate COB and foot placement pairs around the current

position of the swing foot and scores them based on costs

such as predicted foot slippage, violation of static stability,

and whether the swing trajectory generated based on a

sample foot placement leads to a collision. The best scoring

candidate from the set is executed as the next foot step.

For real-time performance, we have a fast deterministic

algorithm for generating a swing-foot trajectory given the

current and next foot-placement. Our algorithm first com-

putes the convex hull of the terrain strip connecting the

current and the next foot placement. The points in the convex

hull set are translated based on a deflective forcefield on

the terrain surface to compute a clearance distance. Finally,

we take the new set of points and fit a cubic spline which

guarantees a collision-free trajectory for the foot of the robot.

Although the foot trajectory is collision-free, other parts of

the leg such as the knee or hip may collide with the terrain

while following this trajectory.

For comparison, we have also implemented a simple

collision detection system using line and cylinder models.

The first method (the line model) models each link of the

swing leg as a line tangent to the frontal surface of the swing

leg. The second method (the cylinder model) fits an axis

aligned bounding cylinder along each link of the swing leg.

The swing leg is in collision with terrain if any points of the

object modeling the swing leg penetrates the terrain. The line

model is much faster to compute than the cylinder model,

however, it fails to detect collisions that may happen to the

sides and back of the swing leg.

Even the line model can be slow if we need to check many

points along the trajectory, and prior to this work, we used

a simple heuristic we title “Pre/Post.” Pre/Post is a simple

classifier that checks whether the initial and final step leg

configuration intersect with any part of the terrain using the

line model. This heuristic is very fast to compute, but it

completely misses mid-trajectory failures.

IV. LEARNING TO PREDICT COLLISIONS

Since hundreds of potential foot placement and COB pairs

are sampled for each foot step that is executed, any collision

checking algorithm must be fast and scale well with the

number of potential foot step trajectories. The geometric

approaches discussed earlier are very accurate, but they

require a large computational cost and are not suitable for

real time planning. Our approach to alleviate this problem is

to use machine learning techniques. We employ supervised

learning to train classifiers that can predict in real time

whether due to geometric constraints trajectories are likely

to cause a collision.

Supervised learning methods use a training set of (data,

label) pairs to discover patterns that will allow the classifier

to predict the labels of new data. Here, the data is a vector

Initial
Slope

Final
Slope

Maximum
Offset from
Start or
Finish

Start Finish

Sampled Terrain Heights

Fig. 2. Cartoon of basic features: we sample terrain heights between the
start and end foot positions using the motion capture system; these values
are used to compute more complex features.

of information about a trajectory, such as the terrain heights

and the relative position of the robot’s legs, and the label is

whether that trajectory resulted in a collision with the terrain.

To run in real-time, all the elements of input data (features)

given to the classifier must be efficient to compute.

In simulation, the “ground truth” label of whether a

collision occurred was determined by computing the full

cylinder model of the robot’s leg; in live experiments with a

real robot the labels were determined by a human watching

the robot’s leg for collisions. Once the classifier was trained

using the label data, we tested the quality of the classifier

on a test set of data that the classifier had not encountered.

The classifier prediction based on the test data is compared

with a ground truth label to measure the classifier accuracy.

A. Feature Selection

A key question is what aspects of a step leg trajectory are

both fast to compute and provide information about whether

the trajectory will collide—this is the question of feature

selection. Given an initial and final foot placement, we

uniformly sample the terrain points on the line connecting the

foot placements and record the terrain heights in the robot’s

local coordinate frame (see Figure 2). Transforming the

terrain features into the robot’s local coordinate frame makes

the classifier invariant to the global position and orientation

of the robot on the terrain. Thus, we can generalize across

a large set of situations which share similar local terrain

features and similar robot poses relative to the local terrain.

We also include information about the robot’s current and

desired pose, the robot’s current position, and the identity of

the swing leg as basic features.

The features discussed above can be quickly extracted

from a planned trajectory. We can ease the burden on the

classifier by also providing features likely to be relevant

to the problem. For example, the slope of the terrain or

the height of an obstacle (both which can be computed

efficiently from the vector of terrain heights), might be

strong indicators of whether the trajectory will collide. These

additional quantities, computed from the basic trajectory

information, are used as additional features in our classifier.

Sections IV-B and IV-C will describe the derived features

used to train the respective classifiers.

B. AdaBoost

In our initial exploration of what derived features would

be strong indicators of a collision, we discovered that no

TABLE I

THE BASIC ADABOOST ALGORITHM [11].

ADABOOST

• Initialize all sample weights to be uniform
• For m = 1..M:

– Choose weak classifier with the minimum weighted error e;
abort if the error is greater than 0.5.

– βm = e
1−e

.

– Update the weight distribution. For sample xi:

∗ wi = wi if the weak classifier picked the wrong label.
∗ wi = βwi if the weak classifier picked the correct label.

• Output the label c that maximizes the
∑

m∈c
log 1

βm

single feature (or even feature set) was strongly correlated

with the collisions. However, several features were weak

indicators: for example, although the robot suffered from

collisions on all kinds of terrain, more collisions occurred

when the robot tried to go down a steep slope with its front

leg. Used individually, each of these features had an errors

of 30 to 40 percent, too high for any real application.

AdaBoost [11] is an algorithm that combines a collection

of weak classifiers—trained on different sets of features—

to get better prediction (see Table IV-B for an overview of

the algorithm). The AdaBoost training process consists of

several rounds. At the beginning of the training process, each

training sample is assigned a uniform weight. During each

round, AdaBoost first trains a weak classifier that minimizes

the weighted error using the current weights. The weights

of correctly classified samples are then reduced; in each

future round, AdaBoost generates a new weak classifier that

performs well on the misclassified samples. We also maintain

a weight on each selected weak classifier that describes how

successful it was on the training data. Once AdaBoost is

trained, each classifier votes for the label on new instances

to be labeled proportionally to the weight of the classifier.

The quality of the final prediction ultimately depends on

the quality of the weak classifiers. We tested linear, logistic,

and quadratic multivariate regression models before choosing

decision trees. Among the weak classifiers, decision trees

had the best performance because they were able to handle

highly nonlinear and disconnected decision boundaries. For

example, the relevance of many features depended on which

of the robot’s legs was moving; decision trees handled these

situations by branching on the front and back legs. Decision

trees could also robustly combine discrete and continuous

data of different scales. We used a standard decision tree

implementation [12] to create the decision trees.

Section IV-A described how we might create a large vector

of basic and derived features as input data for the classifier.

We chose additional features by evaluating potential fea-

tures that we believed might provide predictive power. The

learning algorithm will identify the relevant features from

the large and potentially redundant initial feature set, and

therefore initially providing potentially superfluous features

will not harm performance. The features we used included

the overall slope of the terrain, the height of any obstacle the

robot was trying to step over (0 if there was no obstacle),

and the initial and final slope of the terrain.

TABLE II

FEATURE SETS USED; STARRED SETS WERE MOST DISCRIMINATIVE.

Set Features (all sets included the step leg, Pre/Post value)

1 overall slope

2 height of obstacle to be stepped over

3 initial slope

4 final slope

5 initial joint angles

6 final joint angles

7* step length scale, vertical terrain heights

8 (planar) step length

9 maximum terrain slope

10* center of body, initial joint angles, initial slope

11* center of body, final joint angles, final slope

12 max height - min height

13 max(depth of dip, height of obstacle) to be stepped over

14 step leg, Pre/Post only

Each of the derived quantities weakly helped predict a

collision and was the basis for a weak classifier—a decision

tree—that AdaBoost would later combine into a strong

classifier. All together, we used fourteen combinations of

basic and derived features to train fourteen decision trees as

weak classifiers (training on the entire feature vector, instead

of parts of it, was too complicated for one decision tree to

handle). Each feature set consisted of a vector containing the

step leg (which was so important we included it in all of our

tests), whether our Pre/Post heuristic predicted a collision,

and some other derived data (for example, the initial slope

of the terrain or a vector of terrain heights). Thus, a decision

tree might first split on the step leg (front or back) and then

split on particular values of the remaining elements of the

vectors. Table II lists all of the feature sets we used. The

starred features turned out to be the most relevant decision

trees (those picked first by AdaBoost).

The collision detection problem is asymmetric; it is much

worse to classify a collision as safe than to classify a safe

trajectory as a collision (we can always sample more step

trajectories). Thus, we wish to bias the classifier to penalize

missed collisions more severely than missed safe trajectories.

In order to do this, within the training loop, we both

reduced the weight of samples that were correctly classified

and samples that were misclassified as false alarms. The

missed collision samples (false negatives) remained with the

highest weight, to force the learning to expend more effort

in classifying those training instances correctly in future

iterations. Section V-A, we show that this bias significantly

reduced the rate of missed collisions.

C. Support Vector Machines

In addition to AdaBoost there exist a wealth of other

supervised classification techniques in the machine learn-

ing literature. One particularly popular approach is Support

Vector Machines (SVMs). Both SVMs and AdaBoost are

well designed to handle binary classification tasks where

the input space cannot be linearly separable into the two

desired classes. While AdaBoost collects weak classifiers

tailored to particular examples, SVMs instead project the

input space to a higher dimensional space where the data is

more likely to be linearly separable. The simplest example of

the benefit of this approach is the XOR function which is not

linearly separable in the input space x1, x2, but if the data is

projected into a polynomial of the input space (x1x2, x
2

1
...)

then it becomes linearly separable. More formally, the data

is mapped into a new space using a kernel function and the

classifier is chosen which maximizes the margin: the distance

between positive and negative examples in the feature space.

A small modification to the optimization performed by SVMs

allows different weight to be placed on correctly classifying

positive and negative examples, providing a tool to more

heavily penalize misclassifying colliding trajectories as safe

than classifying safe trajectories as collisions.

We applied SVM classification to attempt to predict leg

collisions. After exploring the feature space, we elected to

use a feature space consisting of the following features:

(x, y, z) coordinates of the 10 points marking the leg tra-

jectory, whether the spline was considered kinematically

feasible to execute, which leg was stepping, the 6 coordinates

describing the final center of the body, and the start and end

values for roll, pitch and yaw of the robot’s leg.

V. EMPIRICAL RESULTS

We tested the classifiers both in simulation and on an

actual quadruped robot. The real world terrain was machined

from the same specifications used in the simulation, so the

terrains in both experiments were nearly identical.

The best SVM classifier rarely predicted collisions as non-

collisions (error rate 1.3%), but at the expense of high overall

error rate of 48%. Since the classifier was discarding a very

large percentage of good samples (i.e., it had a very high

false positive rate), we elected to focus our attention on the

AdaBoost classifier which showed superior performance on

our dataset. The results presented below are based on the

AdaBoost classifier unless otherwise noted.

A. Simulation Results

As an initial validation of our model, we first tested the

collision learning in simulation. This also allowed us to

establish a reliable “ground truth” for our collision detection

by using a cylinder model of the moving leg and foot to

determine if a collision would occur. Experience on the robot

had shown that this geometric model was reliable but slow.

Figure 3 shows how AdaBoost’s performance (based on

5-fold cross validation) varies with the number of training

samples. Approximately 10,000 sample trajectories were

collected. The error rate drops quickly even with a relatively

small number of training samples.

Figure 4 shows the response of the AdaBoost classifier

described in Section IV-B as we tuned it. The classifier does

well—false alarm rates of less than 10% and, importantly,

missed collision rates of less than 5%—for many choices

of the parameters. Within the weak classifiers, we found

that penalizing false-alarms at one-third of the penalty for

missed collisions produced the best performance. Within the

AdaBoost classifier, we reduced the weights of correctly

classified samples and false-alarm samples equally.

Table III shows how long each classifier required on

the machine that was used to run the robot. The times

0 1000 2000 3000 4000 5000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
error as a function of training samples

number of training samples

e
rr

o
r

ra
te

missed collision

false detection

Fig. 3. AdaBoost error rate as the number of training samples was varied.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
ROC curve over parameter search

rate of non−collisions classified as collisions

ra
te

 c
o
lli

s
io

n
s
 c

la
s
s
if
ie

d
 a

s
 c

o
lli

o
n
s

Fig. 4. Operating characteristic as AdaBoost parameters were varied.

are the average time required for computing collisions on

each step, averaged over 42 simulated steps. On each step,

approximately 800 trajectories were sampled and evaluated

for collisions. The Pre/Post heuristic described in Section III

was the baseline for our tests. Recall this heuristic only tested

for collisions at the beginning and end of step and therefore

often missed collisions that occurred in mid-trajectory. As a

result, although it was not a very accurate collision detector,

it was the fastest. Using the full geometric cylinder model

was not an option for real-time performance.

Using AdaBoost with the Pre/Post heuristic as an input

feature took three times as long as the Pre/Post heuristic

alone—this roughly corresponded to computing the Pre/Post

heuristic and then spending twice that time to do the Ad-

aBoost computation. This was fast enough to use in real

time. The AdaBoost classifier itself required only minutes to

train and cross-validate, even with close to 10,000 samples.

Thus, we were able to optimize a model through a fairly

large parameter search over the course of a few hours.

Interestingly enough, the SVM ran slower than the full

geometric model on our machine. Since it also took a long

time to train, we did not test the SVM further outside of

simulation. However, all of these timing numbers are based

on un-optimized Matlab implementations of the collision

detectors, and they could be reduced significantly by im-

plementing them in a faster language.

TABLE III

CLASSIFICATION TIME FOR COLLISION DETECTION TECHNIQUES.

Time for 800 samples (s)

Pre/Post with Cylinder Model 3.82

Pre/Post with Line Model 0.15

AdaBoost 0.33

SVM 6.89

B. Results on the Real Robot

As a training data set for the physical robot, we hand-

labeled a data set of 341 steps.1 No attempt was made to

avoid collisions as the robot crossed the rugged terrain. The

same people labeled the collisions for consistency.

Table IV shows errors from a 5-fold cross validation

from the different classifiers. Since the robot was started in

slightly different positions during each run, and the planner

uses randomized heuristics, both the training and test sets

contained some variability that suggests that the AdaBoost

classifier may generalize to other similar terrains.

As described above, we used the prediction from the

Pre/Post heuristic as an additional input into the classifier.

The resulting classifier was slower than using the Pre/Post

heuristic by itself, but as table IV shows, we were able to

achieve more accurate collision predictions with the Pre/Post

heuristic as input features. The most important predictors

were the initial and final slopes of the terrain (coupled with

the step leg), and the overall terrain trajectory.

TABLE IV

PREDICTIVE PERFORMANCE OF VARIOUS CLASSIFIERS ON ROBOT DATA.

Missed Collision
Detection

False Collision
Detection

Pre/Post Only .1994 .0674

AdaBoost Only .1614 .1260

AdaBoost with Pre/Post .1526 .1434

To test the performance of the planner, we collected

additional data in which the foot planner actually used

input from a classifier when choosing what steps to take.

We interleaved the trials using only the Pre/Post heuristic

with trials using the AdaBoost classifier to avoid bias from

changing properties of the robot (e.g., encoder slippage,

changing calibration parameters, etc.). In total, we collected

23 trials (626 steps) of performance data using the AdaBoost

classifier and 26 trials (679 steps) using only the Pre/Post

heuristic. Table V shows statistics from these trials. Statistics

from trials where there was no collision prediction were used

to train AdaBoost and are included for reference. We found

that with the AdaBoost classifier, we had about 3 fewer

collisions per run (unpooled t-test, p = 0.0004) and more

successful trials (2-proportion z-test, p = 0.03).

1Simulator results were not used to train the robot since simulator
collisions were qualitatively different from real world collisions.

TABLE V

PERFORMANCE OF TRAINED CLASSIFIERS ON ACTUAL ROBOT.

Success
Rate

Mean
Collisions/
Run

Missed
Detection
Rate

Mean
Steps/
Run

No Avoidance 0.31 6.50 NA 34.3

Pre/Post Only 0.65 5.88 0.18 31.9

AdaBoost & Pre/Post 0.87 3.15 0.11 30.9

We collected the data described above in two stages.

Human-labeling of collisions is inherently subjective, so

in the next set of trials we differentiated between serious

collisions (made a noise or did not allow the robot to

complete its desired step) from minor grazing of the terrain.

Table VI shows the same statistics for only major collisions.

This subset of the complete data set included 16 trials, 413

steps for Pre/Post and 14 trials, 384 steps for AdaBoost. In

this subset the classifier missed even fewer collisions.

TABLE VI

PERFORMANCE ON ROBOT, PENALIZING MAJOR COLLISIONS ONLY.

Success
Rate

Mean
Collisions/
Run

Missed
Detection
Rate

Mean
Steps/
Run

No Avoidance 0.31 6.50 NA 34.3

Pre/Post Only 0.69 3.63 0.11 30.6

AdaBoost & Pre/Post 0.93 0.54 0.02 29.0

Anecdotally, the learned collision prediction appeared

to lead to qualitatively different trajectories. The planner

appeared to pick trajectories that not only provided better

footholds, but also reduced the likelihood of a collision.

Many times the robot appeared to take footsteps that were

further away from all obstacles than it would otherwise do

compared to using the Pre/Post heuristic alone to predict

collisions. The results in both the success rate and the

collision rate of the robot support this qualitative difference.

VI. DISCUSSION AND CONCLUSION

We have demonstrated the application of a machine

learning classification technique, AdaBoost, to increase the

accuracy of predicting collision-free foot step trajectories for

robotic quadruped locomotion. By combining an AdaBoost

classifier with a simple collision check at the initial and

desired foot locations, we significantly reduced the number

of collisions that occurred during experiments run on a real

quadruped robot platform compared to only using the simple

start and end classifier. The resulting classifier only added an

additional 0.0004s of overhead to evaluate each potential foot

trajectory for a step, and is fast enough to be used as part of

a real time locomotion planner which samples thousands of

potential steps before selecting one to execute.

In contrast to previous machine learning work [9], our

work focuses on detecting collisions over rough, varying

terrain. Detecting collisions in this domain is critical to

ensuring that the robot can successfully reach its goal. We

also demonstrated that in addition to reducing the number

of collisions that occurred during a single terrain traversal to

a goal location, the robot also reached the goal statistically

significantly more often when using the new collision clas-

sifier. While our experimental results are fairly small due to

the temporal expense of running trials on the real robot, the

results demonstrate the promise and utility of this approach.

Future work should expand upon features and labels are most

useful to the classifier, and compare this machine learning

approach to other geometry-based approaches.

For increased computational efficiency and robustness,

future work could also consider a sequential version of

AdaBoost, where a more complex classification scheme is

used only if a simpler classifier is unsure about the safety of

a foot trajectory. Alternatively, a simple classifier could be

used to separate trajectories into sub-categories such as safe,

with potentially beneficial collisions (that might stabilize the

robot) and with potentially harmful collisions. We exhibit

some generalization because the robot walks over a different

part of the terrain in each trial, but we wish to explore how

the collision checking transfers to new terrain boards.

Finally, our approach is tailored to locomotion over rough

terrain, but it may apply to other robotic applications where

a large number of checks must be computed quickly, such

as with multi-agent systems.

VII. ACKNOWLEDGMENTS

The DARPA Learning Locomotion project (AFRL con-

tract #FA8650-05-C-7262) and the National Science Foun-

dation Graduate Fellowship provided financial support.

REFERENCES

[1] R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H. B. Jr.,
D. McMordie, U. Saranli, R. Full, and D. Koditschek, “RHex: A
biologically inspired hexapod runner,” 2001.

[2] M. Lin and D. Manocha, “Collision and proximity queries. in hand-
book of discrete and computational geometry,” 2004.

[3] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-
pathi, A. Fuhrmann, M. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, and P. Volino, “Collision detection for deformable ob-
jects,” 2004.

[4] J. Canny, “Collision detection for moving polyhedra,” MIT Artificial

Intelligence Laboratory Memo, no. 806, 1984.
[5] P. M. Hubbard, “Collision detection for interactive graphics

applications,” IEEE Transactions on Visualization and Computer

Graphics, vol. 1, no. 3, pp. 218–230, 1995. [Online]. Available:
citeseer.ist.psu.edu/hubbard95collision.html

[6] J. Kuffner, “Self-collision detection and prevention
for humanoid robots,” 2002. [Online]. Available: cite-
seer.ist.psu.edu/kuffner02selfcollision.html

[7] S. M. LaValle, Planning Algorithms. Cambridge University Press,
U.K., Chapter 5, 2006.

[8] H. Lee, Y. Shen, C. Yu, G. Singh, and A. Ng, “Quadruped robot
obstacle negotiation via reinforcement learning,” in In Proceedings

of the IEEE International Conference on Robotics and Automation

(ICRA), 2006.
[9] M. Quinlan, S. Chalup, and R. Middleton, “Application of SVMs for

colour classification and collision detection with AIBO robots,” 2003.
[Online]. Available: citeseer.ist.psu.edu/quinlan03application.html

[10] M. J. Quinlan, C. L. Murch, R. H. Middleton, and S. K. Chalup,
“Traction monitoring for collision detection with legged robots.”
in RoboCup, ser. Lecture Notes in Computer Science, D. Polani,
B. Browning, A. Bonarini, and K. Yoshida, Eds., vol. 3020. Springer,
2003, pp. 374–384.

[11] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” in European Confer-

ence on Computational Learning Theory, 1995, pp. 23–37. [Online].
Available: citeseer.ist.psu.edu/freund95decisiontheoretic.html

[12] “Matlab r2006a,” 2006.

