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Abstract. Both human and automated tutors must infer what a student
knows and plan future actions to maximize learning. Though substantial
research has been done on tracking and modeling student learning, there
has been significantly less attention on planning teaching actions and how
the assumed student model impacts the resulting plans. We frame the
problem of optimally selecting teaching actions using a decision-theoretic
approach and show how to formulate teaching as a partially-observable
Markov decision process (POMDP) planning problem. We consider three
models of student learning and present approximate methods for finding
optimal teaching actions given the large state and action spaces that arise
in teaching. An experimental evaluation of the resulting policies on a
simple concept-learning task shows that framing teacher action planning
as a POMDP can accelerate learning relative to baseline performance.

1 Introduction

When assisting a student, a teacher must both diagnose a student’s understand-
ing and use a teaching policy for deciding on the best pedagogical action to take
next. There has been substantial interest in the cognitive science, education,
and intelligent tutoring systems communities in modeling and tracking student
learning. In particular, there have been a number of results demonstrating the
benefit of taking a Bayesian probabilistic approach (see, e.g., [4,6,7,17]). How-
ever, there has been much less work on how to compute an automated teaching
policy that leverages a probabilistic learner model in order to achieve a long-term
teaching objective, which is the focus of this paper.

We use a probabilistic, sequential, decision-theoretic approach to compute
individualized teaching policies. More specifically, we employ a Bayesian prob-
abilistic representation over the learner’s (hidden) knowledge, and embed this
within a powerful framework known as a partially-observable Markov decision
process (POMDP) [14]. Given a learning objective and a set of models describing
the learning process, POMDPs provide a framework for computing an optimal
teaching policy that maximizes the objective. Though POMDPs are related to
other decision-theoretic approaches used in previous education research, they are
more powerful in two key respects. First, POMDPs can use sophisticated mod-
els of learning, rather than assuming learners’ understanding can be directly
observed or approximated by a large number of features (as in [1,5]). Second,



in contrast to approaches that only maximize the immediate benefit of the next
action [6,10], POMDPs reason about both the immediate learning gain and the
long-term benefit to the learner after a particular activity.

Though POMDPs offer an appealing theoretical framework, there are often
significant obstacles to practical implementation. Specifically, planning teaching
requires modeling learning, and richer, more realistic models of learning lead to
computational challenges for planning. In this paper we develop an approach for
computing approximate POMDP policies, which makes it feasible to use these
policies with human learners. In addition, we examine three different models of
concept learning, and demonstrate how, given the same learning objective, these
lead to qualitatively different teaching policies. We explore the impact of these
varying policies in an example concept-learning task. While there exist a few
recent papers exploring the use of POMDPs to compute teaching policies [2,
3,9,16], to our knowledge ours is the first paper to demonstrate with human
learners that POMDP planning results in more efficient learning than baseline
performance and the first to explore the impact of different models of learning
on the computed policies.

2 Modeling Teaching as a POMDP

POMDP planning is used to compute an optimal conditional policy for selecting
actions to achieve a goal, in absence of perfect information about the state of the
world. Briefly, a POMDP consists of a tuple (S, A, Z, p(s'|s, a), p(z|s,a), r(s,a),7)
where S is a set of states s, A is a set of actions a, and Z is a set of observations
z [14]. The transition model p(s’|s, a) gives the probability of transitioning from
state s to state s after taking action a. The observation model p(z|s, a) indicates
the probability of an observation z given that action a is taken in state s. The
planner’s probability distribution over the current state is the belief state and can
be updated using Bayesian filtering. The cost model 7 (s, a) specifies the cost of
taking action a in state s, and the discount factor « represents the relative harm
of immediate costs versus delayed costs. POMDP planning computes a policy
that specifies which action to take, given a belief state, in order to minimize the
expected sum of (discounted) future costs.

Many teaching tasks can be easily formalized within this framework. We
model the learner’s knowledge as a state s. The transition model then describes
how teaching actions stochastically change the learner’s knowledge, and the ob-
servation model indicates the probability that a learner will give a particular
response to a tutorial action, such as a question, based on her current under-
standing. We will shortly describe several alternate learner models that employ
different state representations, transition models, and observation models.

In the remainder of the paper, we consider how this framework can be applied
in a concept learning task. In such a task, we set the cost for each action to
be the expected amount of time for the learner to complete the activity, and
when the learner knows the correct concept, the action cost drops to zero. As a
consequence, the computed policies select actions to minimize the expected time



for the learner to understand the concept. The space of tutorial actions may vary
widely based on the domain being taught. Within concept-learning, it is natural
to consider three types of actions: examples, quizzes, and questions with feedback.
FEzample and quiz actions are equivalent to the elicit and tell pedagogical actions
that have been used previously in intelligent tutoring systems [5]. The resulting
POMDP can be used to find the optimal policy for teaching the learner the
concept, taking into account the learner’s responses.

3 Learner Models

We consider three learner models, inspired by the cognitive science literature,
that correspond to restrictions of Bayesian learning. While the models we de-
scribe are only rough approximations of human concept learning, we will show
that they are still sufficient to enable us to compute better teaching policies.
Memoryless Model: We first consider a model in which the learner’s knowl-
edge state is the single concept she currently believes is correct, similar to a
classic model of concept learning proposed by Restle [11]. In this model, the
learner does not explicitly store any information previously seen. If an action is
a quiz action, or if the provided evidence in an ezample or question with feedback
action is consistent with the learner’s current concept, then her state stays the
same. If the action contradicts the current concept, the learner transitions to
a state consistent with that action, with probability proportional to the prior
probability of that concept. The observation model is deterministic: when asked
to provide an answer to an equation, the learner provides the answer consistent
with her current beliefs. This model underestimates human learning capabili-
ties, and thus provides a useful measure of whether POMDP planning can still
accelerate learning when a pessimistic learner model is used.

Discrete Model with Memory: The key limitation of our first model is its
lack of memory of past evidence. A more psychologically plausible model is one
in which learners maintain a finite memory of the past M actions. Like the
memoryless model, this model assumes that the learner stores her current guess
at the true concept, and this guess is updated only when information is shown
that contradicts the guess. In this case, the learner shifts to a concept that is
consistent with the current evidence and all evidence in the M-step history. The
transition probability is again proportional to the initial concept probability, and
the observation model is deterministic based on the learner’s current guess.
Continuous Model: A more complex, but natural, view of learning is that the
learner maintains a probability distribution over multiple concepts [15]. In this
case the state is a |C|-dimensional, continuous-valued vector that sums to 1,
where C' is the set of possible concepts. The state space S is an infinite set of all
such vectors, the simplex A|¢|. The transition function assumes that for quiz ac-
tions, each state transitions deterministically to itself. For ezample and question
with feedback actions, state dimensions for concepts that are inconsistent with
the provided information are set to zero. The full joint transition probability is
then re-normalized. The observation model assumes the learner gives answer a,,



to a question with probability equal to the amount of probability she places on
concepts that have a,, as the correct answer for this question.

To improve the robustness of our policies to the coarse learner models we
employ, all models include two extra parameters, €; and €,. € corresponds to
the probability that the learner ignores a given teaching action, resulting in the
learner not transitioning to a new concept, while ¢, corresponds to the proba-
bility that the learner produces an answer inconsistent with her current guess.

4 Finding Policies

Our goal is to compute a policy that selects the best action given a distribution
over the learner’s current knowledge state, the belief state. Offline POMDP
planners compute in advance a policy for each belief in the set of potential
beliefs.> However, since this set grows exponentially with the number of states,
offline approaches cannot scale to the large size of common teaching domains.
We instead turn to online POMDP forward search techniques, which have proven
promising in other large domains (see [13] for a survey). We compute the future
expected cost associated with taking different actions from the current belief
state by constructing a forward search tree of potential future outcomes. This
tree is constructed by interleaving branching on actions and observations. After
the tree is used to estimate the value of each action for the current belief, the
best pedagogical action is chosen. The learner then responds to the action, and
this response, plus the action chosen, is used to update the belief representing
the new distribution over the learner’s knowledge state. We then construct a
new forward search tree to select a new action for the updated belief.

While forward search solves some of the computational issues in finding a pol-
icy, the cost of searching the full tree is O((|A||Z|)H), where H is the task horizon
(i.e., the number of sequential actions considered), and requires an O(|S|?) oper-
ation at each node. This is particularly problematic as the size of the state space
may scale with complexity of the learner model: the memoryless model has a
state space of size |C|, while the discrete model with memory has state space
of size |C||A|M and the continuous model has an infinite state space. To reduce
the number of nodes we must search through, we take a similar approach to [12]
and restrict the tree by sampling only a few actions. Additionally, we limit H to
control the depth of the tree and use an evaluation function at the leaves.

Since the belief state in the continuous model is a distribution over an infinite
set of states, we approximate the belief state for this model to make inference
tractable. We represent the belief state as a weighted set of probabilistic particles
and update these particles based on the transition and observation models (see
[8] for more about this technique, known as particle filtering). If no particles are
consistent with the current observation, we reinitialize the belief state with two
particles: one with a distribution induced by rationally updating the prior using
all previous evidence and one with a uniform distribution.

3 Most state-of-the-art offline algorithms try to compute a policy over a subset of the
reachable subspace, but this is still typically a very large number of beliefs.



5 Empirically Testing Optimized Teaching Policies

POMDP planning provides a way to select actions optimally with respect to a
particular learning objective. However, given the simplifications made for compu-
tational tractability and that our learner models only approximate true learners,
it is necessary to empirically test whether this framework results in more effi-
cient learning. We demonstrate its effectiveness by teaching learners “alphabet
arithmetic,” a concept-learning task in which letters are mapped to numbers.
While this task is artificial, it provides a preliminary evaluation of POMDP
planning for problem selection and shares several important characteristics with
real teaching domains: it is rich enough that learners may have misconceptions
and that we expect some teaching policies to be more effective than others.

In alphabet arithmetic, learners infer a mapping from letters to numbers
from a set of equations using letters. For ezample actions, learners are shown an
equation where two distinct letters sum to a numerical answer. For instance, A
could be mapped to 0 and B to 1, and one might show the learner the equation
A+ B = 1. Quiz actions leave out the numerical answer and ask the learner
to give the correct sum. Questions with feedback combine these two actions. We
assume learners have a uniform prior over mappings.

5.1 Methods

Participants. A total of 40 participants were recruited online and received a
small amount of monetary compensation for their participation.

Stimuli. All participants were randomly assigned three mappings between the
letters A—F and the numbers 0-5. These mappings were learned in succession.
Procedure. Participants were assigned to either the control condition, in which
teaching actions for all mappings were chosen randomly, or to the experimental
condition. Each participant in the experimental condition experienced all three
of the teaching policies in random order, one for each mapping learned. The
experiment consisted of a sequence of teaching and assessment phases. In each
teaching phase, a series of three teaching actions was chosen based on condi-
tion. After each teaching phase, participants completed an assessment phase in
which they were asked to give the number to which each letter corresponded.
Teaching of a given mapping terminated when the participant completed two
consecutive assessment phases correctly or when 40 teaching phases had been
completed. Within all phases, the equations the participant had seen were dis-
played on-screen, and participants could optionally record their current guesses
about which letter corresponded to which number.

Computing policies. We estimated the median time to complete each action
type from the control participants: ezample actions took 7.0s, quiz actions took
6.6s, and question with feedback actions took 12s. These values were the cost for
each action in the experimental condition. When computing the action values
within the forward search tree, we set the cost for a leaf node to be the probability
of not passing the assessment phase multiplied by 10 - min, r(a), a scaling of the
minimum future cost.
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Fig. 1. Median time to learn each mapping, by policy type; error bars correspond to
bootstrapped 68% confidence intervals (equivalent to one standard error). Asterisks
indicate that the policies based on the continuous model and the discrete model with
memory result in significantly faster learning than the control.

We set ¢, the probability of ignoring a teaching action, and €,, the probability
of making a production error when answering a question, by finding the values
that maximized the log likelihood under a given model of the data from the
control condition.* For forward planning, we limited the lookahead horizon to
two and stopped planning after three seconds.® There was delay of three seconds
between actions in all conditions to allow time for planning.

5.2 Results

We compared the number of phases as well as the time participants took to learn
each mapping. Initial inspection showed that the distribution of learning times
exhibited a long right tail, so we analyzed results using medians, which are more
robust than means to outliers and non-symmetric distributions. There was no
significant within-subjects difference in the amount of time or number of phases
to learn the first, second, or third mapping (Kruskal-Wallis p > 0.8).

Overall, participants taught by POMDP planning took significantly fewer
phases to learn each mapping than participants in the control condition (3 phases
versus 4, Kruskal-Wallis p < 0.00005) and also took significantly less time per
mapping (232 seconds versus 321 seconds, Kruskal-Wallis p < 0.001); see Figure
1. Planned pairwise comparisons show that all of the POMDP policies resulted
in fewer phases to completion than the control, and all POMDP policies but the
policy from the memoryless model resulted in significantly faster learning.

Differences in policies occurred based on the learner model used; see Figure
2 for part of one policy. The policy from the memoryless learner model repeats
specific example actions more often than the other policies since previous actions

4 The calculation was performed using the EM algorithm for the two discrete models
and using a forward filtering approximation for the continuous model. We found the
following values: memoryless model: ¢, = 0.15 and €, = 0.019; discrete model with
memory: ¢; = 0.34 and ¢, = 0.046; and continuous model: ¢, = 0.14 and €, = 0.12.
Policies for the first 9 actions were precomputed with 10 actions sampled at each
level. Later actions were precomputed by sampling the following number of actions at
each level: 7 and 6 actions for the memoryless model; 8 and 8 actions for the discrete
model with memory; and 4 and 3 actions for the continuous model. 16 particles were
used for the continuous model, and M = 2 for the discrete model with memory.
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Fig. 2. Part of a policy from the discrete model with memory. Possible student answers
to the quiz are indicated on the arrows; some are omitted. Based on the student’s re-

sponse, the action after the quiz may correct a misconception, try to better misdiagnose
the cause of an incorrect answer, or continue quizzing to try to detect a misconception.

Quiz:
C+D=?
(true answer = 5)

Example:
B+A=1

are not stored in memory. The fact that this model did not significantly decrease
time to learn suggests that using too pessimistic of a model may be detrimental
for problem selection. Overall, policies for this model also asked more questions
(39% of actions) than policies for the other models (about 10% of actions). This
is because the state of a memoryless learner after an example is known with less
certainty since it is constrained only to be consistent with the last example.

Policies for both the discrete model with memory and the continuous model
began with six independent equations that fully specify the mapping. This is the
policy one might have hand-crafted to teach this task, demonstrating that de-
spite approximations in planning, the POMDP planner finds reasonable teaching
policies. Each of the policies for these two models gives examples until there is a
high probability the learner is in the correct state, and then asks quiz questions,
which are less costly than examples, to detect misconceptions.

6 Conclusion

In this work, we described how teaching can be modeled within the POMDP
framework and demonstrated the effectiveness of POMDP planning experimen-
tally. The experimental results showed that different learner models result in sys-
tematically different policies and that the policies for the more complex learner
models were more effective. This illustrates that optimal problem selection de-
pends not only on knowledge of the domain but also on one’s assumptions about
the learner. Computational challenges still exist for using POMDP planning: de-
spite sampling only a fraction of possible actions and using very short horizons,
planning took 2—3 seconds per action. However, we believe further speed ups are
possible through more sophisticated ways of constructing the forward search tree
(such as in [13]). Despite such challenges, our work demonstrates the potential
of POMDP planning to lead to empirical improvements in learning. POMDP
planning provides a natural framework for problem selection that can use the
many existing learner models developed in the ITS community. One question
not addressed by the current work is whether POMDP planning can identify
policies that improve upon those chosen by actual teachers. In future work, we
would like to investigate this question in more realistic learning situations, and
investigate integrating these ideas in existing tutoring systems.
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