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Sequential Decision Problems

State, s

(Discrete / Continuous)

(Fully observable / Partially observable)

Agent

Environment

Action, a

(Discrete / Continuous)



Example: Digital Marketing
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Example: Educational Games




Example: Decision Support Systems
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Example: Mountain Car

Inelastic wall Goal position ——
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If you apply an existing method, do
vou have confidence that it will work?



Notation

* 5: State

* a: Action

* S, A;: State, and action at time t
* 1(als) = Pr(4; = alS; = s)

T = (85y,40,51, -,51,A;)

* G(t) €]0,1]

* p(m) = E[G(7)|T ~ 7]



Two Goals:

* High confidence off-policy evaluation (HCOPE)

Historical Data, D

Proposed Policy, T, > ‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

 Safe Policy Improvement (SPI)

Historical Data, D

Performance baseline, p_ ‘ —p An improved* policy, ™

Confidence Level,

*The probability that ’s performance is below p_ is at most §



High Confidence Off-Policy Evaluation

Historical Data, D

Proposed Policy, T, ‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

* Historical data: D = {(t;,m;): T; ~ m;}i=
* Evaluation policy, T,

e Confidence level, ¢

* Compute HCOPE(m,|D, ) such that

Pr(p(m,) = HCOPE(m,.|D,6)) =1—-6



Importance Sampling

 We would like to estimate
0 = E[f (x)[x~p]

e Monte Carlo estimator:
* Sample X4, ... X,, from p and set:

n
~ 1
On = EZ f(X:)
i=1
* Nice properties

 The Monte Carlo estimator is strong&ysconsistent:
6, —0
 The Monte Carlo estimator is unbiased for alln = 1:

E|0,]| =0



Importance Sampling

* We would like to estimate

0 = E[f (x)|x~p]
* ... but we can only sample from a distribution, g, not p.
* Assume: if g(x) = 0 then f(x)p(x) = 0. Then:



Importance Sampling

 We would like to estimate
0 = E[f (x)[x~p]

* Importance sampling estimator:
* Sample X4, ..., X,, from g and set:

5~ 1 - p(X) |
Hn T n - CI(XL f(Xl)

* Nice properties (under mild assumptions)

* The importance sampling estimatorcilssstrongly consistent:

6, —0
 The importance sampling estimator is unbiased foralln > 1:

E|0,]| =0




Importance Sampling

PI‘(T|7Te)
tTD Pr(r|nb)

p(m,) = Er~n [G(r)] = E G(T)

@ Evaluation Policy, 7,
® Behavior Policy, m,

Probability of trajectory




mportance Sampling for Reinforcement

_ea rn | n g (D. Precup, R. S. Sutton, and S. Dasgupta, 2001)

Pr(z|me)
* P(e) = B [6(D)] = By, |1l ()]
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1 L%:O Pr(At paSt,T[b)

G(7)

::%:O me(At|St) G(T)

. A _ L Te(AelSy)
p(e, T, mp) = [le=o Ttp(At|St) G()




Per-Decision Importance Sampling

* Use importance sampling to estimate each R;.

* Still and unbiased and strongly consistent estimator of p(m,).
* Often has lower variance than ordinary importance sampling.



Historical Data, D

Proposed Policy, T,

‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

Historical Data, D 3
{ﬁ(ne» TiA’ T[i) }?=1

Proposed Policy, 1,

[+~

\ 4

Confidence Level, § » 1 — 6 confidence lower bound on p(1,)




Chernoft-Hoefftding Inequality

* Let X4, ..., X,, be n independent identically distributed random
variables such that:

¢ Xi (S [O, b]
* Then with probability at least 1 — 4:

In (/)

n
1
E[X:] E—ZXi ~b
n i \  2n




N1z

1
,0(7Te) — E[ﬁ(ﬂe:ri:ni)] = E

l

Il
p—

With probability at least 1 — 0.

n
1
ElX; Z—ZX-—b
=

p(me, Ty, ;) — b\



Historical Data, D

Proposed Policy, T,

‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

Historical Data, D 3
{ﬁ(ne» TiA’ T[i) }?=1

Proposed Policy, 1,

[+~

\ 4

Confidence Level, § » 1 — 6 confidence lower bound on p(1,)




Historical Data, D

Proposed Policy, T,

‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

Historical Data, D

Proposed Policy, 7, : 2n

_Concentration

Inequality .
Confidence Level, § —»—p 1 — § confidence lower bound on p(1m,)

N




Inelastic wall Goal position —

Example: Mountain Car
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Example: Mountain Car

* Using 100,000 trajectories
* Evaluation policy’s true performance is 0.19 € [0,1].
* We get a 95% confidence lower bound of:

—5,831,000



What went wrong?
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What went wrong?

n
1
ElX; Z—zX-—
=

b ~ 109.4-

Largest observed importance weighted return: 316.



Another problem:

* One behavior policy
* Independent and identically distributed

* More than one behavior policy
* Independent



Conservative Policy Iteration s ke and. Langtord, 2002

e ~ 1,000,000 trajectories for a
single policy improvement.
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PAC— R I_ (T. Lattimore and M. Hutter, 2012)

e ~ 107 time steps to guarantee
convergence to a near-optimal

policy.
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Thesis

High Confidence Off-Policy Evaluation (HCOPE)
and
Safe Policy Improvement (SPI)
are tractable using a practical amount of data.



Expected Normalized Return

700
Number of Trajectories



Historical Data, D
Proposed Policy, T,

Confidence Level,

-

‘ ’ — 1 — § confidence lower bound on p(m,)

T (AelSe)
1, (A¢|Se)

L
- prenm) = | |

t=0

G (1)

Historical Data, D

Proposed Policy, 1,
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Name Direct Identically Exact or Reference Notes
Dependence Distributed Only Approximate
on b
CH e (%) No Exact (Massart, 2007) None
MPeB e (%) No Exact (Maurer and Pon- Requires all random variables to
til, 2009, Theo- have the same range.
rem 11)
AM None Yes Exact (Anderson, 1969, Depends on the largest observed
Massart, 1990) sample. Loose for distributions
without heavy tails.
BM e Yes Exact (Bubeck et al., None.
| CUT | None | No | Exact | Theorem 23 | None.




Theorem 17 (Chernoff-Hoeffding (CH) Inequality). Let {X;}!'; be n independent
random variables such that Pr(X; € |a;,b;]) = 1, for all © € {1,...,n}, where all

a; € R and b; € R. Then

-1 n ] 1 n hl(l) Z?: (bi_ai)Q




Theorem 18 (Maurer and Pontil’s Empirical Bernstein (MPeB) Inequality). Let

{Xi}, be n independent random wvariables such that Pr(X; € [a,b]) = 1, for all
i €{1,...,n}, where a € R and b € R. Then

( \
D R = D e B

— n  n(n-—1) 2

=gl

Pr| E

1,7=1

A .y
v
safmplf mean sample variance /




Theorem 19 (Anderson and Massart’s (AM) Inequality). Let {X;}!, be n in-
dependent and identically distributed random wvariables such that X; > a, for all

i€ {l,...,n}, where a € R. Then

1=0

e~ ! i [In(2/5)
Pr (E Ei_lei > Zn—Z(ZHl—ZZ-)min{l,ﬁ—k\/ o }) >1—4,

where Zy = a and {Z;}_, are { X}, sorted such that Zy < Zy < ... < Z,.



Extending Maurer’s Inequality

* First Key ldea:
e Generalize: random variables with different ranges.
e Specialize: random variables with the same mean.



Extending Maurer’s Inequality

* Second Key Idea:
* Removing the upper tail only decreases the expected value.
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Theorem 1. Let X;...., X, be n independent real-valued random wvariables such that for each i € {1,...,n}, we have

) )

Pl0 < X;] =1, E[X;] < u, and some threshold value ¢; > 0. Let 6 > 0 and Y; := min{ X;, ¢;}. Then with probability at least

1 — 0, we have

1\ LY, " 1\ Tnin(2/s) "\ m@/e) Y v
n i1 11 i q

> = > — - Y — ] — (> = — =y (=) 3

e (il Ci) =1 1 (il Ci) 3(n—1) (él Ci) n—1 ij=1 (Cé Cj) )

.. _ N
empirical mean term that goes to zero as 1/n as n — oo .
P 9 / term that goes to zero as 1/y/n as n — oo




95% Confidence Lower Bound on Mean
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Threshold Optimization

* Use 209% of the data to optimize c.
e Use 80% to compute lower bound with optimized c.



Given n samples, X := {X;};., predict what the lower bound would
be if computed from m samples, rather than n.

_— 1 — In(2/6
CUT(X,0d,c,m) = - Z min{X;, c} — 73(25(_/1)) (4.15)

g

W

sample mean of X (after being collapsed)

T

B ln(;/& n(n2_ 5 " Z(mm{X“ c})? (Z min{ X, (‘}) ;

1=1

- -

\ sample variance of X (after being collapsed)



Algorithm 4.11: CUT(Xy,...,X,,0): Uses the CUT inequality to return a
1 — 0 confidence lower bound on E[- > | X;].

Constants: This algorithm has a real-valued hyperparameter, ¢, > 0, which
is the smallest allowed threshold. It should be chosen based on the application.
For HCOPE we use ¢, = 1.

Assumes: The X; are independent random variables such that Pr(X; > 0) =1
foralli e {1,...,n}.

1 Randomly select 1/5 of the X; and place them in a set &, and the remainder

n Xpost;

// Optimize threshold using A
2 ¢* € arg maXee(1,o0] CUT (Xpre, 9, ¢, | Xpost|); // CUT is defined in (4.15)
3 ¢ = max{cupn, ¢*}; // Do not let ¢* become too small

// Compute lower bound using optimized threshold, c¢* and Al
4 return CUT(X,os, 9, ¢, [ Xpost|);




95%
Confidence
lower bound
on the mean

CUT

0.145

Chernoff- Maurer
Hoeffding
—5,831,000 —129,703

0.9

Iog10 Importance Weighted Return

Anderson

0.055

Bubeck et al.

—.046



Digital Marketing Example

* 10 real-valued features

* Two groups of campaigns to choose between
e User interactions limited to L = 10

e Data collected from a Fortune 20 company

e Data was not used directly.



Example: Digital Marketing

Behavior
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing
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We can now evaluate policies proposed by RL algorithms



Two Goals:

* High confidence off-policy evaluation (HCOPE)

Historical Data, D

Proposed Policy, T, > ‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

 Safe Policy Improvement (SPI)

Historical Data, D

Performance baseline, p_ ‘ —p An improved* policy, ™

Confidence Level,

*The probability that ’s performance is below p_ is at most §



Safe Policy Improvement (SPI)

SPI(D, p_,6) € {No SOLUTION FOUND} UII

Pr (SPI(D, p_,6) €e{m:p(r) < p_}) <6

Exact Approximate
<0 ~ 0




SPI(D, p_, )
1. Return NO SOLUTION FOUND.




SPI(D, p_, )
1. Return NO SOLUTION FOUND.

Pr (SPI(D, p_,6) € {m:p(m) < p_}) <&




SPI(D, p_, )
1. Return NO SOLUTION FOUND.

Pr (SPI(D,p_,6) € {m:p(m) < p_}) <6

* Want a batch RL algorithm that
e Satisfies this inequality
* Often returns a policy



Thoughts?
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Historical (20%) Policy
Data Testing Set “Safety” N
(80%) Test




Algorithm 5.3: SPI:{’*(Dtm-m, Diest, 0, p—): Use the historical data, partitioned
into Dipain and Dy, to search for a safe policy (with 1—¢ confidence lower bound
at least p_). If none is found, then return NO SOLUTION FOUND. Although
other f and I could be used, we have only provided complete pseudocode for

(t,1) € {(NPDIS,CUT), (CWPDIS,BCa)}. We allow for x € {None, k-fold}.

Assumption 1 is not required.

1 e + GETCANDIDATEPOLICY ™ (Dirain, 6, -, | Diest);

2 if HCOPEL(nc, Dyest, ) > p— then
3 L return 7.;

4 return NO SOLUTION FOUND




y

H(7|D) if HCOPEL(w, D, 6,m) > p_,
f;(vaaé.)p—am) = X

HCOPE} (w,D,d,m) otherwise.
\

Algorithm 5.4: GETCANDIDATEPOLICY}’NOHQ(Dtmim5, p_,m): Use the his-
torical data, partitioned into Dy, to search for the candidate policy that is
predicted to be safe and perform the best (or to be closest to safe if none are
predicted to be safe). Although other § and I could be used, we have only

provided complete pseudocode for (t,1) € {(NPDIS,CUT), (CWPDIS,BCa)}.
Assumption 1 is not required.

1 return arg max, fg(W; Dirain, 0, p—, m);




Algorithm 5.5: GETCANDIDATEPOLICY;E’k_fOld(Dtmin,(5, p_,m): Use the his-
torical data, Dian, to search for the candidate policy that is predicted to be
safe and perform the best (or to be closest to safe if none are predicted to be
safe). Although other T and 1 could be used, we have only provided complete

pseudocode for (7,1) € {(NPDIS,CUT), (CWPDIS,BCa)}. Assumption 1 is not
required.

1 \* <= argmaxXyefo 1] CROSSVALIDATE;E()\, Dirain, 0, p—, m);
2 7F < arg max, fg(/.b)\*,wo,qrgptrainaéa p—,M);
3 return fiy« r, *;




Approximate Confidence Intervals

 What if we knew that the importance weighted returns were
normally distributed?

* One-sided Student’s t-test.



Algorithm 4.5: TT(X,..., X,,d): Uses the TT to return an approximate 1—9
confidence lower bound on E[X >  X].

Assumes: The X; are independent random variables with finite variance..

15 %)
1 return %E?zl XZ _ \/n—l ZZ?I_TSXE Xn) t1—5,n—1;




Approximate Confidence Intervals

* Bootstrap (BCa)
e Estimate CDF with sample CDF:

n
1
Fo(x) = EE 1Xin
=1

 What if we assume that the samples come from a distribution like
E.?
* Sort X4, ..., X;; and return Xs,,
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Example: Gridworld
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Example: Mountain Car
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Example: Digital Marketing
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DAEDALUS

* Apply SPI algorithm repeatedly.
* Per-iteration guarantee.

* DAEDALUS2: Exact HCPI until the first change to the policy, then
approximate.



Example: Gridworld
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Example:

Mountain Car
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Example: Digital Marketing
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\Safe policy improvement} is tractable
|

A policy improvement algorithm that has a low probability of returning a bad policy.




