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Sample Efficient RL

. Objectives
. Probably Approximately Correct
. Minimizing regret
. Bayes-optimal RL
. Focus today: Empirical performance

Carnegie Mellon University
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Last Time: Policy Search Using
Gradients

* Gradient approaches only guaranteed to find a local optima
* Finite-difference methods scale with # of parameters needed
to represent the policy, but don’t require differentiable
policy
* Likelihood ratio gradient approaches
* Require us to be able to compute gradient analytically
* Costindependent of # params
 Don’t need to know dynamics model
* Benefit from using value function/baseline to reduce
griance

Carnegie Mellon University
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Question from Last Class

If the following two conditions are satisfied:

Value function approximator is compatible to the policy
VwQw(s,a) = Vglog (s, a)
B Value function parameters w minimise the mean-squared error
e=Eg, [(Q™(s,a) — Qu(s,a))*]
Then the policy gradient is exact,

VoJ(0) = Er, [Vglog (s, a) Qu(s,a)]

Figure from David Silver Carnegie Mellon University
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How to Choose a Compatible Value
Function Approximator? Ex.

Policy parameterization:

e? $sa
n(s,a) = S o Vs € S,8 € A,
Compatibility requires that:
Ofw(s,a) Om(s,a) 1 ~
ow 90 w(s,a) Psa ;“(S: b)@sb,

Therefore a reasonable choice for value function is

fw(3! (1) - wT [¢sn = Zﬂ-(ss b)¢sb]
b

Example from Sutton, McAllester, Singh & Mansour Carnegie Mellon University
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Today: Sample Efficient Policy
Search

Powerful function
approximators to
represent policy value
Value Function Actor Policy
* May not be easy to | —Critic
take derivative |

_ModeI-Free

Value-Based Policy-Based

Like last time, may \ AP

benefit from exploiting | / |
structure (e.g. not e
completely blackbox -_ Model '

optimization

Figure from David Silver Carnegie Mellon University
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Recall: Gaussian Process to
Represent MDP Dynamics/Reward Models

s =A+S

J ' Figure adjusted from Wilson et al. Carnegie Mellon University
" JMLR 2014 ’




Today: Gaussian Process to Represent
Value of Parameterized Policy

3 : Figure adjusted from Wilson et al. Carnegie Mellon University
JMLR 2014 °



INUVY JCliCialiaillyg 1 JViiILy vadiuc

(Rather than Model
Dynamics/Rewards)

3 : Figure adjusted from Wilson et al. Carnegie Mellon University
*> JMLR 2014 °



Why Use GPs?

. Used frequently in Bayesian optimization

. Last ~5 years Bayesian optimization has
become very influential & useful

. Brief (relevant) digression

. Two big motivations for Bayesian
optimization

Carnegie Mellon University
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Motivation 1: ML Parameter
Tuning

. ML methods getting more powerful... and
complex

. Sophisticated fitting methods

. Often involve tuning many parameters

. Hard for non experts to use

. Performance often substantially impacted by
choice of parameters

Material from Ryan Adams Carnegie Mellon University
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Deep Learning

* Biginvestments by Google, Facebook, Microsoft, etc.

* Many choices: number of layers, weight regularization, layer size,
which nonlinearity, batch size, learning rate schedule, stopping
conditions

Material from Ryan Adams Carnegie Mellon University




Classification of DNA Sequences

* Predict which DNA sequences will bind with which proteins,
Miller et al. (2012)
* Choices: margin param, entropy param, converg. criterion

Material from Ryan Adams Carnegie Mellon University




Motivation 2: Increasing Instances Which Blur
Experimentation & Optimization

Carnegie Mellon University
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Website Design
Ex. What Photo to Put Here?

IS [T

Home AboutMe Write a Review Find Friends Messages Talk Ewenis

Just A Taste
DO s wvews BESERE © o s R soosmen

$$ - Tapas Bars o~ -

See all 51 photos

.
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6 Photos on Website: 51*50*49*48*47*46= 12,966,811,200 Options!

ol
2

From Mattan K From Fyan B From Ryan B
Sacy Housemade Focacca The half arder of White and ﬁﬂatre-:a
with tormalo, on -n"i (53.50) (Tapa) - Extra focaccia was planty mushnooems. saulted
lime, Vingin for two with gariic. .

From Alexsscdra 5

Merny oulsina | vanes

Oy SEgsOn

From Wisha! K
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From Vieshal =
Steak frexs with
chipsoitie dhp

From Melisg H
Sauté garkc shnimp

From Fingadd W o Msiss H Frgem Metisg H
‘Warm chocplate Flight of wine tasting! Brocooll chaddar

souffid. Hmmmm fritters
3

From i LU T i o Froem Nathan K From Malthan K

My trother s lamb Amarzing sangrian Grillesd Flark Stmak Spicy Shrmp Saute

and Aca disk Sy (58,00 - Buthon i 14} 20) {Topa)
Muahroorra and Tomato,

Material from Peter Frazier

Fhoim Tina G

bdedted Bria, crostini
and ripe makon
Sloppy

O JeEE B

et b
Chooas" cakn’ wilhy
Daals. Yum!

—

From Tima

While and portaballa
mushrooms sauidad
with garkic

From D
Eoggodart Frrerald
Lurryl

From Tina C

White and portabella
LD LS
wilh gartc

Froem FAplisg |
Tortilla sspanod

Carnegie Mellon University

16



Design Choices Matter
Before —> After

This website redesign: [P
® Increased total site [FE

traffic by 31%. )

® Increased return

yis“s by 22%. Source: www.blusfountoinmedia.com/cose-studies

Material from Peter Frazier Carnegie Mellon University
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Standard A/B Testing or
Experimentation Doesn’t Scale

click] ® 2500 designs
through e CTR=click-through rate
e the best has CTR=0.6

rate
0.6 e the rest have CTR=0.4

il ® 410 users per design

I ® 25,000 users overall
i e 2.9 days

0 (assuming 10,000 visits / day)
Website design

0.4

Material from Peter Frazier Carnegic Mellon University
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Standard A/B Testing or
Experimentation Doesn’t Scale

! ® 2500 designs

click-
through ® CTR=click-through rate
rate e the best has CTR=0.6
0.6! | ® the rest have CTR=0.4

® 100 users per design
¢ 250,000 users

4 weeks

0 (assuming 10,000 visits / day)
Website design

0.4 i

Material from Peter Frazier Carnegic Mellon University
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click-
through
rafte

0.6

Standard A/B Testing or
Experimentation Doesn’t Scale

0.4 WiV

Website design

Material from Peter Frazier

e 2500 designs
e CTR=click-through rate
e the best has CTR=0.6

| ® the rest have CTR=0.4
- 500 users per design

¢ 1,250,000 users

* 4 months
(assuming 10,000 visits / day)

Carnegie Mellon University
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click-
through
rafte

0.6

Don’t Want to Have Worse
Revenue on 1.25 million Users

0.4 WiV

Website design

Material from Peter Frazier

e 2500 designs
e CTR=click-through rate
e the best has CTR=0.6

| ® the rest have CTR=0.4
- 500 users per design

¢ 1,250,000 users

* 4 months
(assuming 10,000 visits / day)

Carnegie Mellon University
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Why Use GPs?

Used frequently in Bayesian optimization
Last ~5 years Bayesian optimization has
become very influential & useful
Brief (relevant) digression
. Two big motivations for Bayesian
optimization
. ML algorithm parameter tuning

Large online experimental settings where care
bout performance (e.g. revenue) while testing

Carnegie Mellon University
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Bayesian Optimization

* Build a probabilistic model for the objective. Include hierarchical
structure about units, etc.
 Compute the posterior predictive distribution. Integrate out all the
possible true functions.
e (Gaussian process regression popular
* Optimize a cheap proxy function instead. The model is much cheaper
than that true objective
« Two key ideas
* Use model to guide how to search space. Model is an approximation,
but when sampling a point in the real world is more costly than
computation, very useful
* Use proxy function to guide how to balance exploration and
exploitation

Carnegie Mellon University
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Historical Background of Bayesian
Optimization

* Closely related to statistical ideas of optimal design of
experiments, dating back to Kirstine Smith in 1918.

* Asresponse surface methods, date back to Box and Wilson in 1951

* As Bayesian optimization, studied first by Kushner in 1964 and
then Mockus in 1978.

 Methodologically, it touches on several important machine
learning areas: active learning, contextual bandits, Bayesian
nonparametrics

e Started receiving serious attention in ML in 2007,

* Interest exploded when it was realized that Bayesian optimization
provides an excellent tool for finding good ML hyperparameters.

Material from Ryan Adams Carnegie Mellon University
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Bayesian Optimization for Policy Search

Material from Ryan Adams Carnegie Mellon University
Sk}




Bayesian Optimization for Policy Search

Dark points are the policies we've already tried in the world

Blue line is estimated mean
of function (value of policy)
__2 | 1 | ]

Grey areas represent uncertainty
~over function value

S

Figure modified from Ryan Adams Carnegie Mellon University
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Exercise: Where Would You Sample Next (What Policy Would You
Evaluate) & Why? What Algorithm Would You Use for Sampling?

Dark points are the policies we've already tried in the world

Blue line is estimated mean
of function (value of policy)
_2 | 1 | ]

Grey areas represent uncertainty
~over function value

S

Figure modified from Ryan Adams Carnegie Mellon University
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Probability of Improvement

Figure modified from Ryan Adams



Expected Improvement

Figure modified from Ryan Adams



Upper/Lower Confidence Bound

Figure modified from Ryan Adams



Probability of Improvement

Utility function relative to f', best point
so far

= {ﬂ f(z) > f
1 flz)< f"

Acquisition function

au () = E[u[:ﬂ) | &, D]

/ N (f; (), K (2,2)) df
=®(f'; plx H[:}:,:ﬂ]}

Figure modified from Ryan Adams, Equations from http://www.cse.wustl.edu/~garnett/cse515t/files/lecture_notes/12.pdf



Expected Improvement

Utility function relative to f', best point
so far

u(z) = max(0, f' — f(z))
Acquisition function

G ) = E[u(m) | m,D} :

5
zf_ (f' = HN(f;u(x), K(z,z)) df
= (f" — g(m))tﬁ(f’;;;(m),ff(m,zr)) + K(ET,iF)N(fFSN(ﬂ:):K(;E!I))

Figure modified from Ryan Adams, Equations from http://www.cse.wustl.edu/~garnett/cse515t/files/lecture_notes/12.pdf



upper/Lower
Confidence Bound

Acquisition function

aues(T; B) = iu(m) — Bo(z)
glz) =y Klg,a)

Figure modified from Ryan Adams, Equations from http://www.cse.wustl.edu/~garnett/cse515t/files/lecture_notes/12.pdf



Acquisition Function

. Probability of improvement
. Expected Improvement
. Upper confidence bound

. Other ideas?
. What are the limitations of these?

Carnegie Mellon University
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Policy Search as
Black Box Bayesian Optimization

Bayesian Optimization
/ with a Gaussian Process \

Create new

— training point
=19 [£(6.).R]

\ Execute policy min
environment for T steps, get

total reward R

Carnegie Mellon University
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Policy Search as Bayesian Optimization

True objective I True objective | ! True objective |!
2 GP model ‘ T @ & GP model : (b) s GP model | (c)
- I - 1 = i
. : . - . :
=) i =) i =) i
g 5 - :
i
= 1 =] i =
[ i o | @
= i = i =
© i 15} 1 O
QL I 2 I .
I i o : o
O : O : @]
Parameters @ Parameters @ Parameters @

True objective
GP model

True objective
GP model

(d) (e)

Objective function £ (#)
Objective function f(0)

% L 3 ¢ & B B B J B §J }§

Parameters Parameters @

Figure modified from Calandra, Seyfarth, Peters &

Deissenroth 2015 ( lmglel\lellonllmergét}




Gait Optimization

. GP Policy search

. Reduced samples
needed to find a fast
walk by about 3x

. Lizotte et al. [JCAI
2007

Carnegie Mellon University




More Gait

LH=Ext
LK=Hold

Optimization

LH=Flex
LK=Ext

RH=Flex
RK=Flex

LH=Ext
LK=Hold

RH=Ext
RK=Hold

LH=Flex
LK=Flex

RH=Flex
RE=Ext

Contact with Left Foot

RH=Ext
RK=Hold

Contact with Right Foot

4

N

L

Gait parameters: 4 threshold values of the FSM (two for
each leg) & 4 control signals applied during extension
and flexion (separately for knees and hips).

Figures modified from Calandra, Seyfarth, Peters &

M8 .  Deissenroth 2015 Carnegie Mellon mer;;t}




videos

Carnegie Mellon University




Why is this Suboptimal?

Bayesian Optimization

with a Gaussian Process

~

Create new
training point

[(6),R]

Execute policy min
environment for T steps, get

total reward R

Carnegie Mellon University
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Throwing Away All Information But Policy Parameter & Total
Reward from Trajectory.
Also Ignores Structure of Relationship Between Policies

Model-Fré’e .
Value Function Actor | Policy
Critic
Value-Based " Policy-Based
Mbdel-Basgd \ _
Model

Figure from David Silver

Carnegie Mellon University
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Covariance
function:
Key choice
for GP

When
should 2
policies be
considered
“close”?

Squared-Exponential

“Neural Network”

B

T 4
Clz,z') = —sin™! =

| { V(1 +20T52)(1 + 207 50)

Matérn

gi=F 2vr Z l\/gfr'.
Cal= I‘{u)( ; ) i (T)J

}J

Figures from Ryan Adams

Periodic

O o) = {_QSin (Ef(;n —7)) }
o’

Carnegie Mellon University
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Behavior Based Kernel
(Wilson et al. IMLR 2014)

D(6:,6;) = \/ KL(P(€16:)| [P (€]6;)) + / K L(P(€]6,)|| P(£]6:)).
/

lﬁ_l
KL Prob.ability of
divergence trajectory

under policy ©.

Carnegie Mellon University
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Behavior Based Kernel
(Wilson et al. IMLR 2014)

D(6:,6;) = \/ KL(P(€16:)| [P (€]6;)) + / K L(P(€]6,)|| P(£]6:)).
/

-
KL Prob. trajectory
divergence under policy ©,
P(£16:) ) ( (€16, ))
319 lo lo
w00 =2 « (e 2. 1%  Bigioy

Carnegie Mellon University
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Behavior Based Kernel (BBK)
(Wilson et al. IMLR 2014)

lﬁ_l

D(6:,6;) = \/ KL(P(€16:)| [P (€]6;)) + / K L(P(€]6,)|| P(£]6:)).
/

KL Prob. trajectory
divergence under policy ©,
P(&0;) ) ( (€16, ))
319 ]U l[}
w00 =2 « (e 2. 1%  Bigioy

Do we need to know the dynamics model?

Carnegie Mellon University
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Throwing Away All Information But Policy Parameter & Total
Reward from Trajectory.
Also Ignores Structure of Relationship Between Policies

Model-Fré’e .
Value Function Actor | Policy
Critic
Value-Based " Policy-Based
Mbdel-Basgd \ _
Model

Figure from David Silver

Carnegie Mellon University
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Model-Based Bayesian Optimization Algorithm
(MBOA) (Wilson et al. IMLR 2014)

Bayesian Optimization
/ with a Gaussian Process \

T

Create new
Use data to build a model. training point
Use to accelerate learning
[/(6.),R]

T

Execute policy min
environment for T steps, get

total reward R

Carnegie Mellon University
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WMountain Car Task

Average Return
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Figure from WIlIson, Fern & Tadepalli
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3-Link Planar Arm Task

LA = = o
. . o i -
_— or WL -

Average Return

|
P
1

I

i
{1

= |
o] . - a0 ke S e ey
T \ - : PRI AW R e iy e

- = S =i .

—=—MBOA
—&=— BOA
—=—Q-Leaming
“— OLPOMDP
—— DYNA-Q
—— BOA {Behavior Based Kemel)
PILCO

Episode

Figure from WIllson, Fern & Tadepalli  PRSORIT U R, | G oo G i
IMIREC014 Carnegie Mellon Univ (.,rggt}




Bicycle Balancing Task

—=— MBOA (Linear KKernel)

Expected Return

8k -

| | | | |
U a0 100 160 200 280 300

Episodes

Figure from WIllson, Fern & Tadepalli s A T T e e
IMIREC014 Carnegie Mellon Univ crgit}




New Kernel vs Model Based
Information?

. Using model information often greatly
improves performance... if it’s a good model

. If it’'s not good, learns to ignore

. New kernel to relate policies (BBK) much less
of an impact

Carnegie Mellon University
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Other Ways to Go Beyond Black-Box Bayesian Optimization
Current work in my group (Rika, Christoph, Dexter Lee, Joe Runde)

~

Create new
training point

[(6),R]

Execute policy min
environment for T steps, get

total reward R

Bayesian Optimization

with a Gaussian Process

Carnegie Mellon University
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Subtleties of Bayesian Optimization

. Still have to choose policy class (this
determines the input space)

. Have to choose kernel function

. Have to choose hyperparameters of kernel
function (can optimize these)

. Have to choose acquisition function

Carnegie Mellon University
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Impact of Acquisition Function &
Hyperparameters

| I — = e
0.3 A ’ 3
¢ & ¢

W Robust walking.
e (L5 ——— e B
E -
5
- 0.2 3
j=1
73]
o015 -
E
o
B g1 == Grid search L
= o =il= Random search
e =4=B0: PI |
== B EI
== B0 GP-UCE
n R Li L T L} T T
] 10 20 30 40 50 60 70 80

Number of evaluations

(a) Different optimization methods

0.3 A

Walking speed [m/s]
o 2 o 2
[ o =] o

o
i

=]

Robust walkin s~

o o o e e e o -9—- - -..-.-::?'L—‘-.‘-.ﬁ&'—'.-.-'ilﬁ-i..'-.'.'-'".iﬁi'-a-- -

]

= i et

BO: Pl (fixed Hyp)
e B0 E (fixed Hyp)
= BO: GP-UCE (fixed Hyp)

0 10 20 30 40 50 60 70 80
Number of evaluations

(b) BO with fixed hyperparameters

Manually fixed hyperparameters led to sub-optimal solutions for all
the acquisition functions.

Figures modified from Calandra, Seyfarth, Peters &

Deissenroth 2015
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Summary: Bayesian Optimization
for Efficient Policy Search

* Benefits
* Direct policy search
* Finds global optima
* Uses sophisticated function class (GP) to model input policy param
& output policy value
* Use smart (but typically myopic) acquisition function to balance
exploration/exploitation in searching policy space
 Can be very sample efficient
* Not asilver bullet
 Still have to decide on policy space
* Choose kernel function (though squared expl often works well)
* Should optimize hyperparameters

Carnegie Mellon University
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Stuff to Know: Bayesian Optimization for
Efficient Policy Search

* Properties (global optima, no gradient information
used)

* Define and know benefits/drawbacks of different
acquisition functions

 Understand how to take a policy search problem and
formulate as a black box Bayesian optimization
problem

 Be able to list some things have to do in practice
(optimize hyperparameters, etc)

Carnegie Mellon University
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