

Sample Efficient Policy Search

Emma Brunskill
15-889e
Fall 2015

Sample Efficient RL

- Objectives
 - Probably Approximately Correct
 - Minimizing regret
 - Bayes-optimal RL
 - **Focus today: Empirical performance**

Last Time: Policy Search Using Gradients

- Gradient approaches only guaranteed to find a local optima
- Finite-difference methods scale with # of parameters needed to represent the policy, but don't require differentiable policy
- Likelihood ratio gradient approaches
 - **Require us to be able to compute gradient analytically**
 - Cost independent of # params
 - Don't need to know dynamics model
 - Benefit from using value function/baseline to reduce variance

Question from Last Class

Theorem (Compatible Function Approximation Theorem)

If the following two conditions are satisfied:

- 1 *Value function approximator is **compatible** to the policy*

$$\nabla_w Q_w(s, a) = \nabla_\theta \log \pi_\theta(s, a)$$

- 2 *Value function parameters w minimise the mean-squared error*

$$\varepsilon = \mathbb{E}_{\pi_\theta} [(Q^{\pi_\theta}(s, a) - Q_w(s, a))^2]$$

Then the policy gradient is exact,

$$\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) \ Q_w(s, a)]$$

Figure from David Silver

2/18/15

Carnegie Mellon University

How to Choose a Compatible Value Function Approximator? Ex.

Policy parameterization:

$$\pi(s, a) = \frac{e^{\theta^T \phi_{sa}}}{\sum_b e^{\theta^T \phi_{sb}}}, \quad \forall s \in \mathcal{S}, s \in \mathcal{A},$$

Compatibility requires that:

$$\frac{\partial f_w(s, a)}{\partial w} = \frac{\partial \pi(s, a)}{\partial \theta} \frac{1}{\pi(s, a)} = \phi_{sa} - \sum_b \pi(s, b) \phi_{sb},$$

Therefore a reasonable choice for value function is

$$f_w(s, a) = w^T \left[\phi_{sa} - \sum_b \pi(s, b) \phi_{sb} \right]$$

Today: Sample Efficient Policy Search

- Powerful function approximators to represent policy value
 - May not be easy to take derivative
- Like last time, may benefit from exploiting structure (e.g. not completely blackbox optimization)

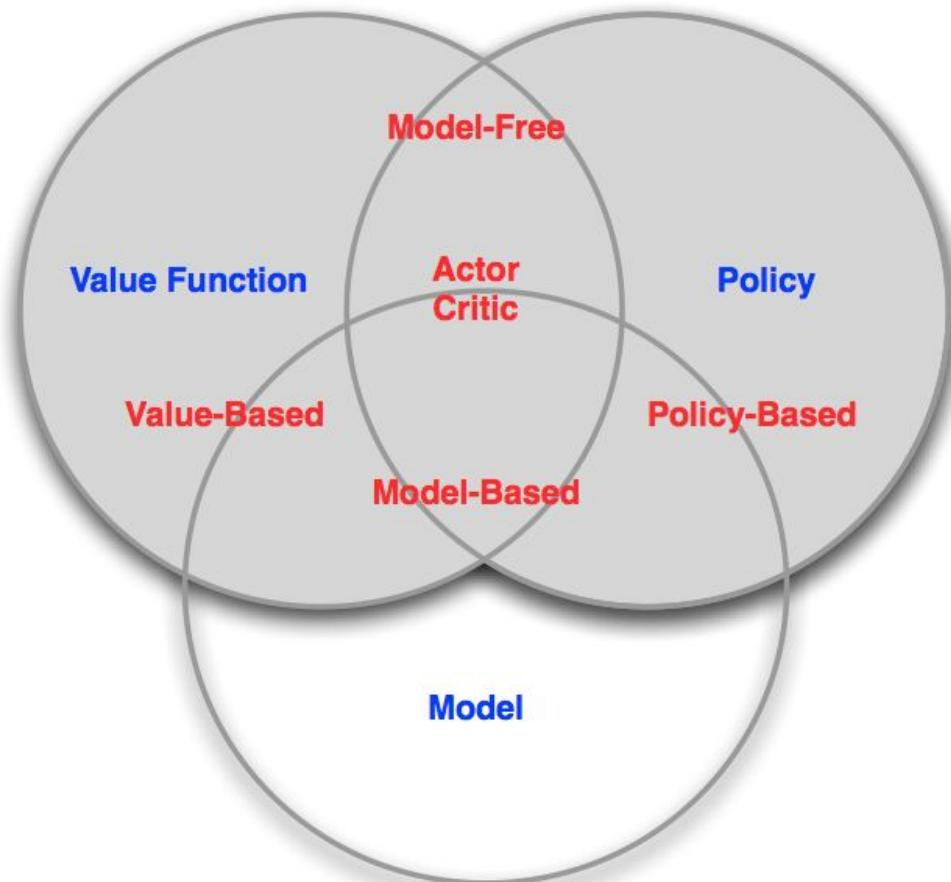


Figure from David Silver

Recall: Gaussian Process to Represent MDP Dynamics/Reward Models

$$s' = \Delta + s$$

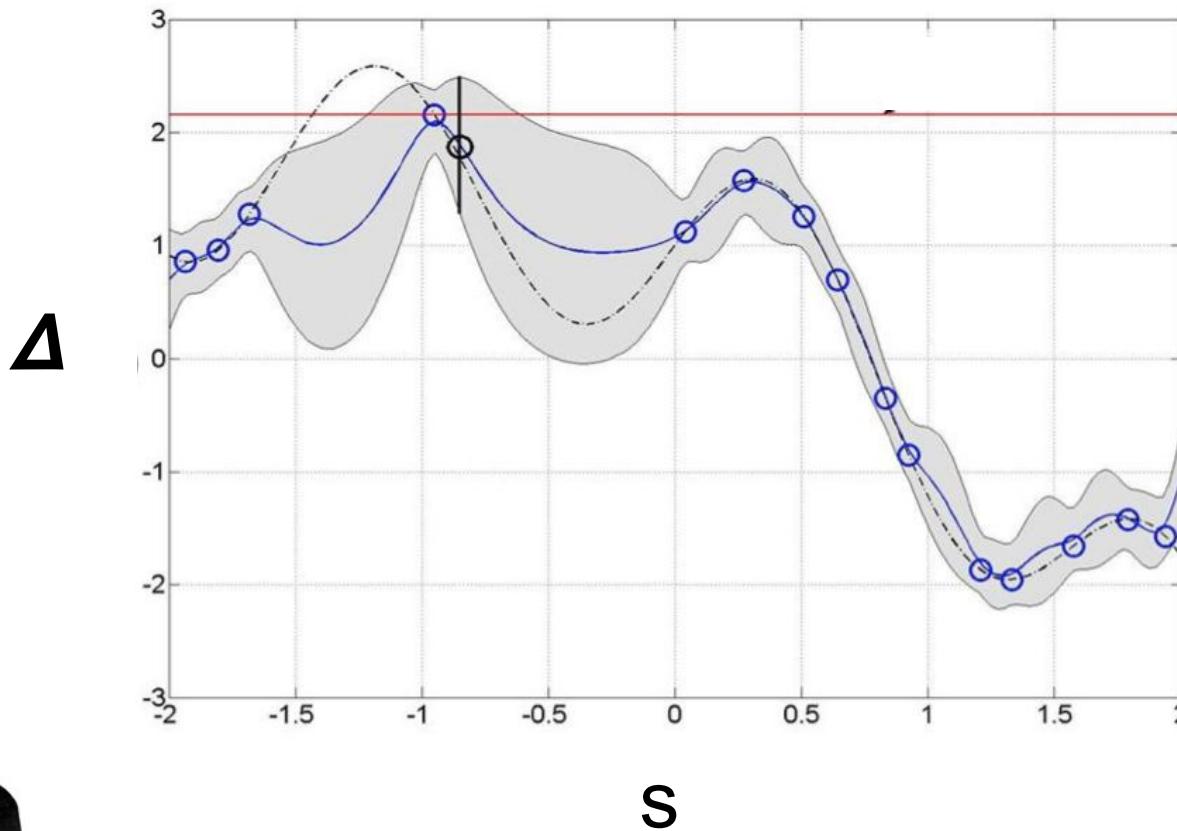


Figure adjusted from Wilson et al.
JMLR 2014

Today: Gaussian Process to Represent Value of Parameterized Policy

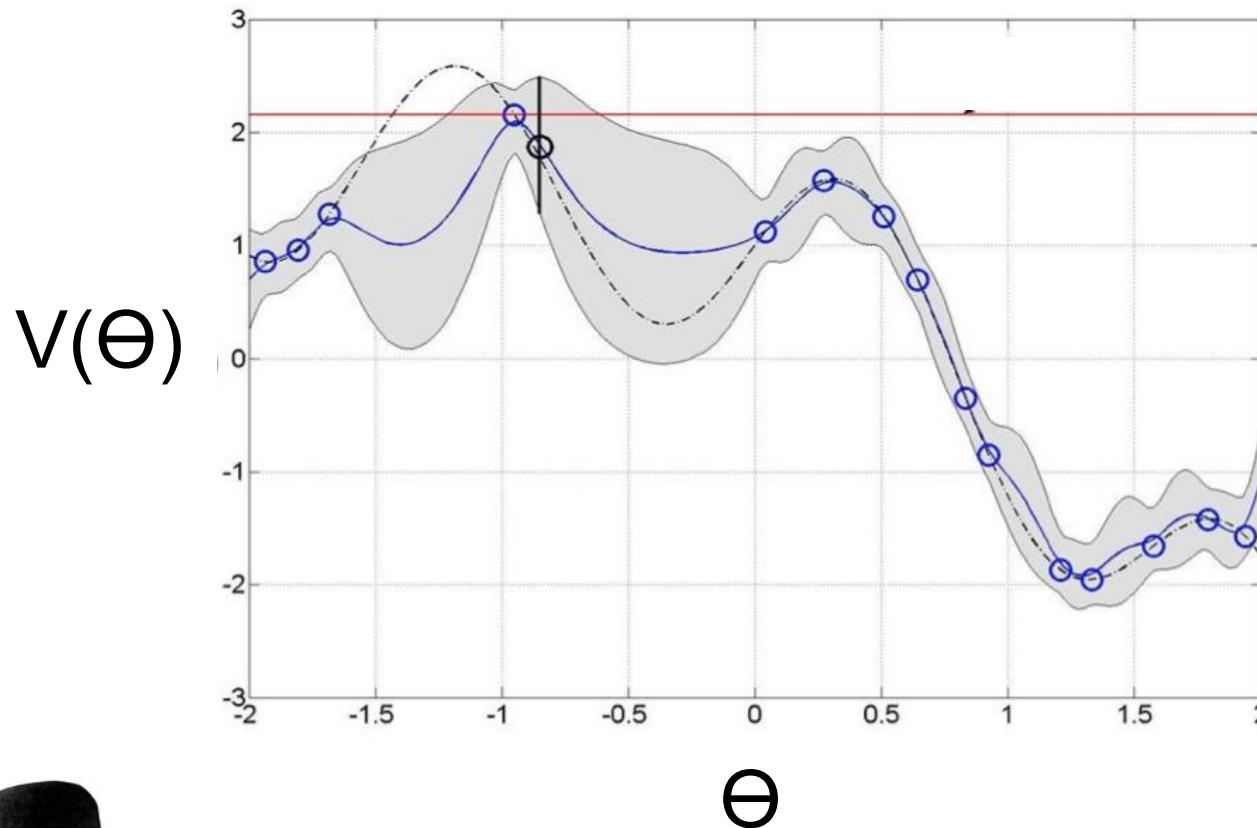


Figure adjusted from Wilson et al.
JMLR 2014

Now Generalizing Policy value (Rather than Model Dynamics/Rewards)

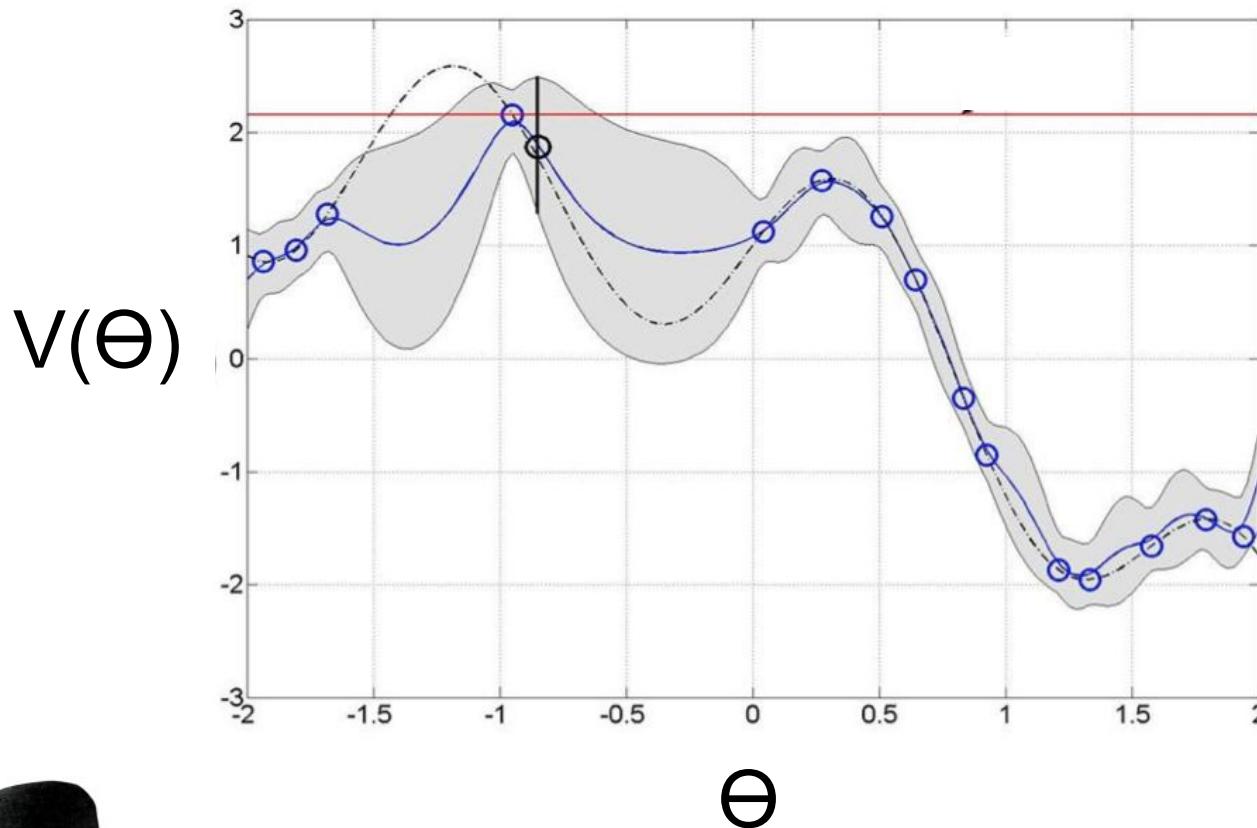


Figure adjusted from Wilson et al.
JMLR 2014

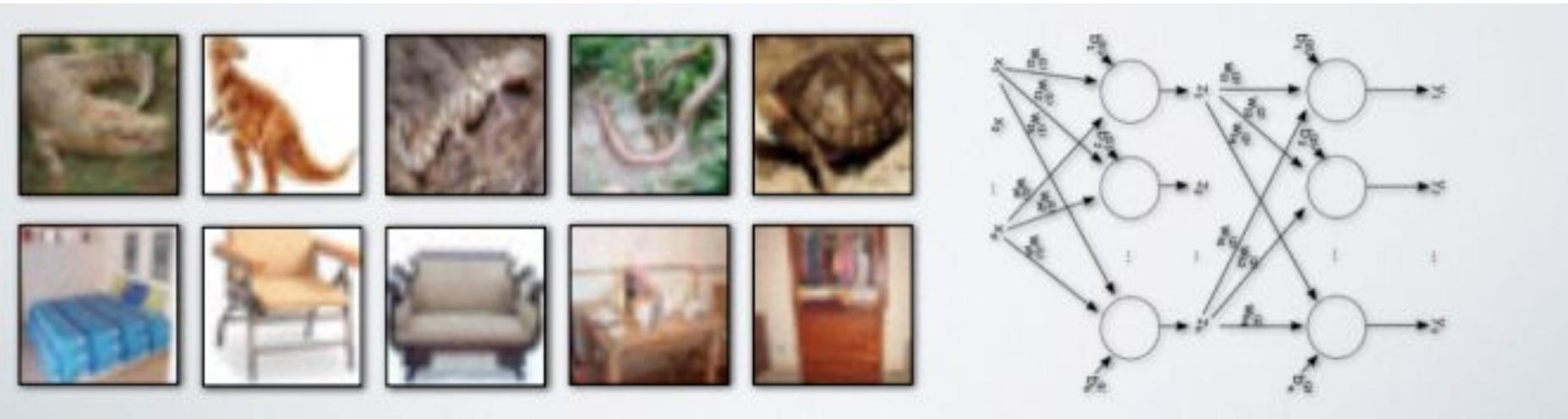
Why Use GPs?

- Used frequently in Bayesian optimization
- Last ~5 years Bayesian optimization has become very influential & useful
- Brief (relevant) digression
- Two big motivations for Bayesian optimization

Motivation 1: ML Parameter Tuning

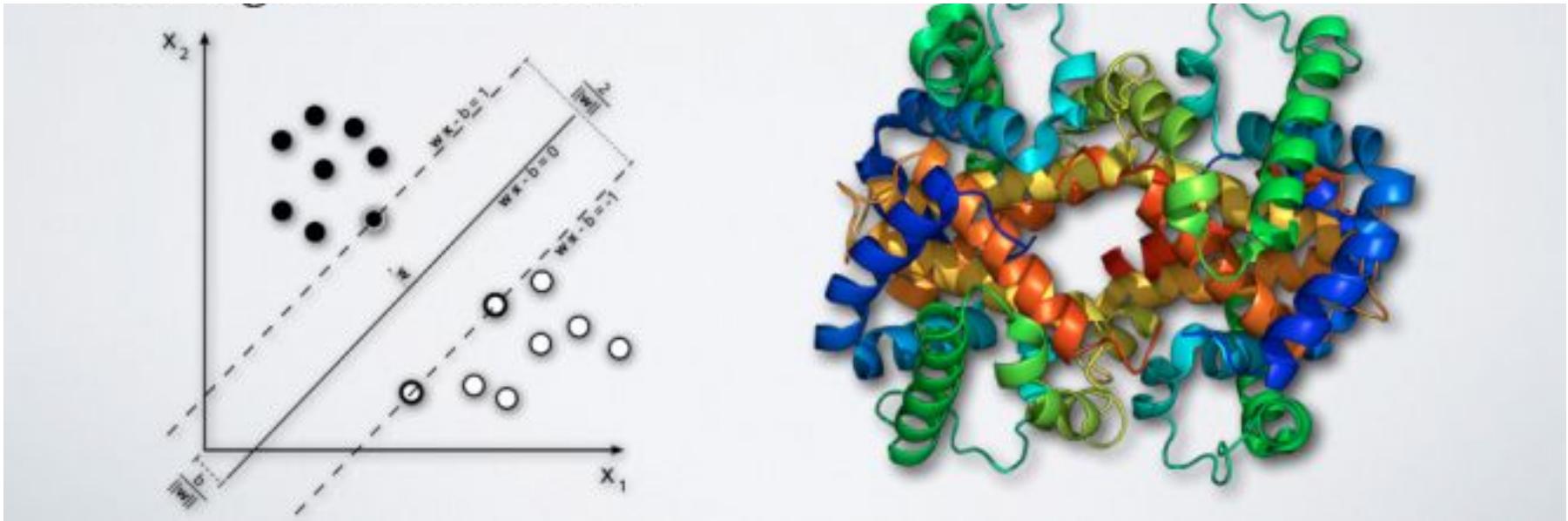
- ML methods getting more powerful... and complex
- Sophisticated fitting methods
- Often involve tuning many parameters
- Hard for non experts to use
- Performance often substantially impacted by choice of parameters

Deep Learning



- Big investments by Google, Facebook, Microsoft, etc.
- Many choices: number of layers, weight regularization, layer size, which nonlinearity, batch size, learning rate schedule, stopping conditions

Classification of DNA Sequences



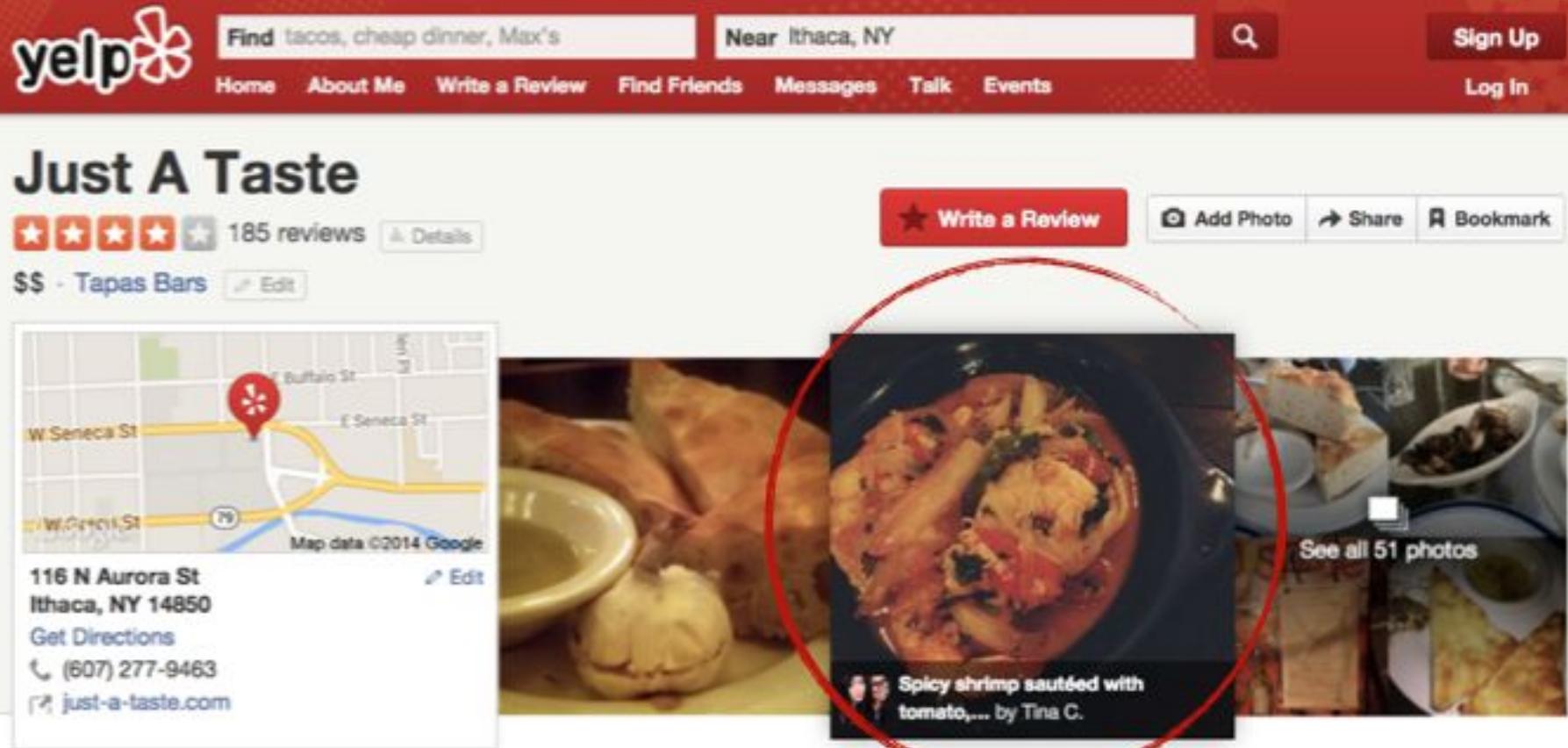
- Predict which DNA sequences will bind with which proteins, Miller et al. (2012)
- Choices: margin param, entropy param, converg. criterion

Motivation 2: Increasing Instances Which Blur Experimentation & Optimization

.

Website Design

Ex. What Photo to Put Here?



Just A Taste

Find tacos, cheap dinner, Max's Near Ithaca, NY

Sign Up Log In

185 reviews

SS - Tapas Bars

Write a Review Add Photo Share Bookmark

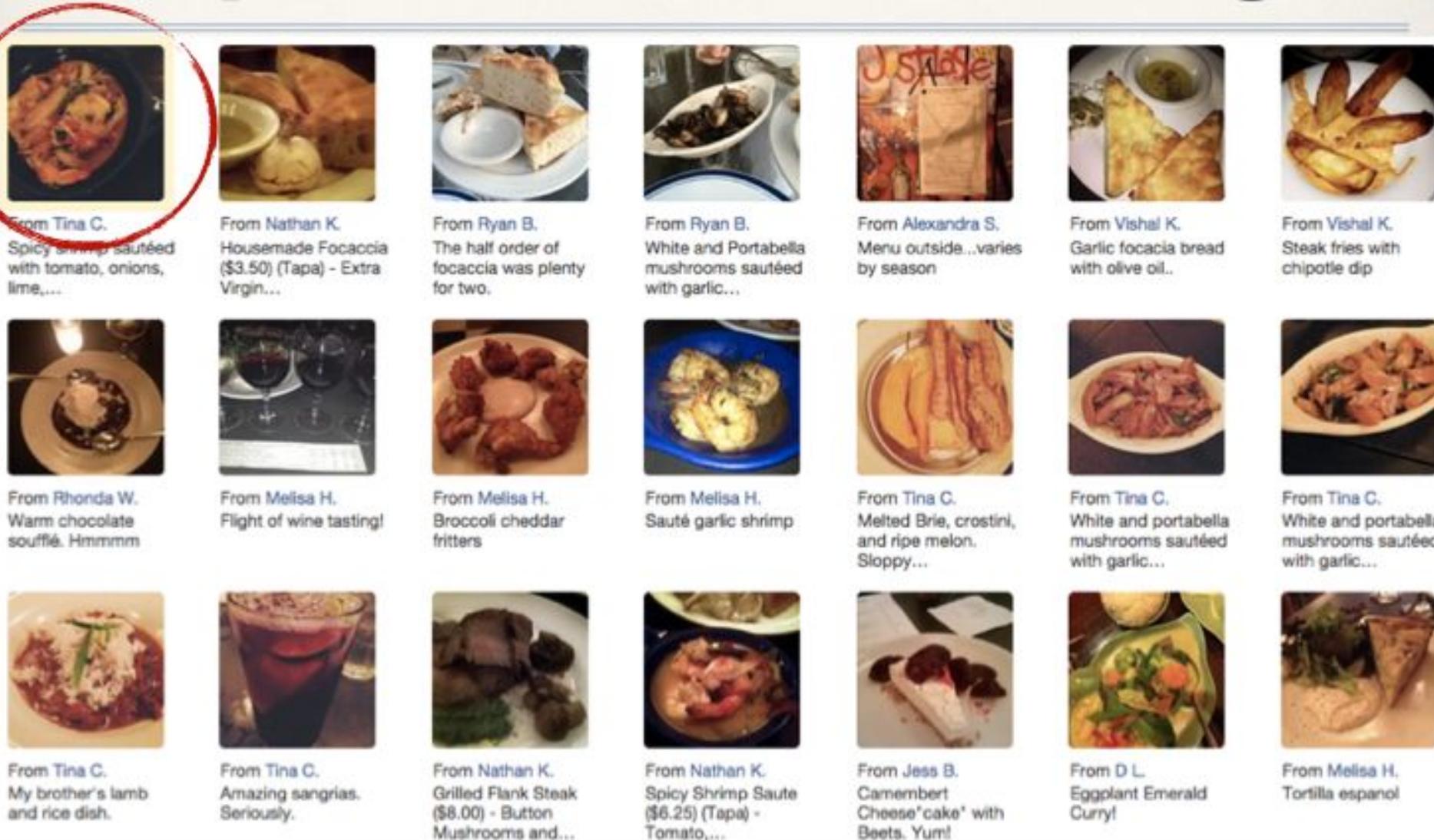
Spicy shrimp sautéed with tomato, by Tina C.

See all 51 photos

116 N Aurora St Ithaca, NY 14850

Get Directions (607) 277-9463 just-a-taste.com

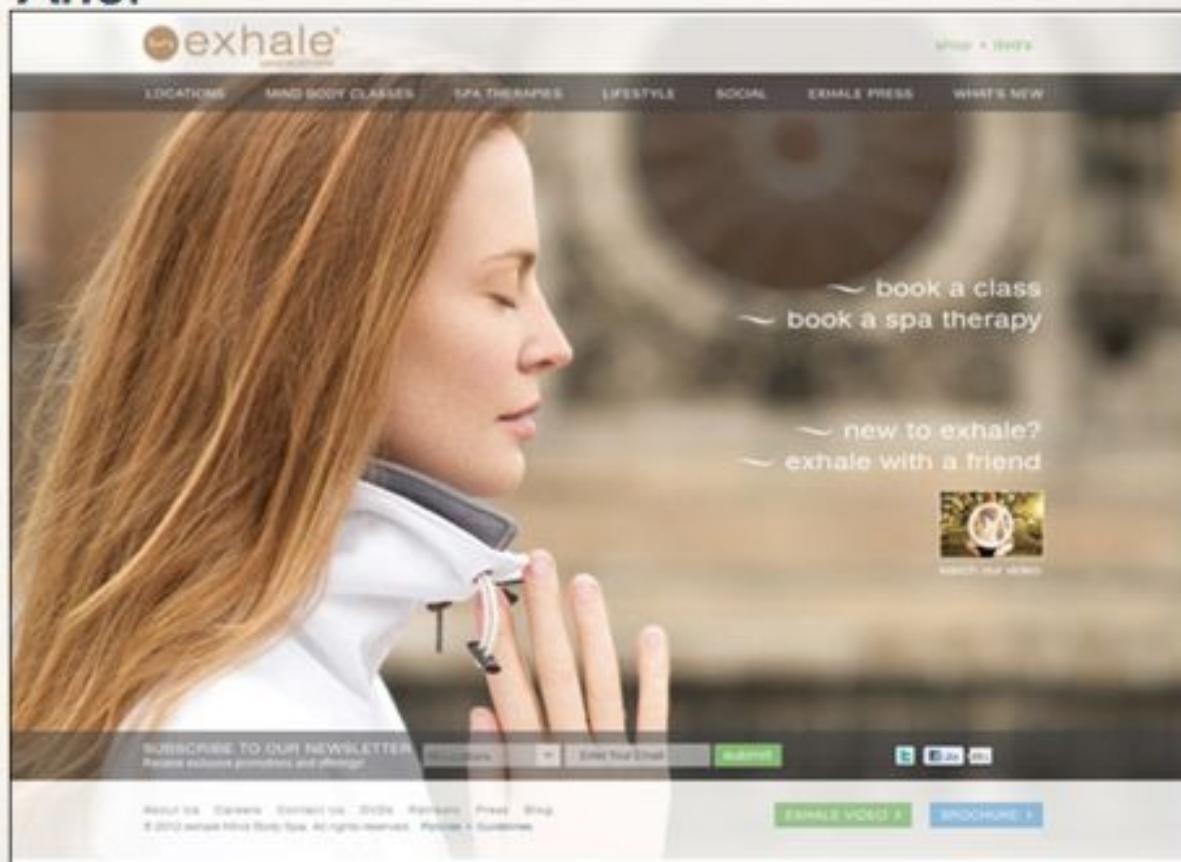
6 Photos on Website: $51*50*49*48*47*46 = 12,966,811,200$ Options!



Design Choices Matter

Before

→ After



This website redesign:

- Increased total site traffic by 31%.
- Increased return visits by 22%.

Source: www.bluefountainmedia.com/case-studies

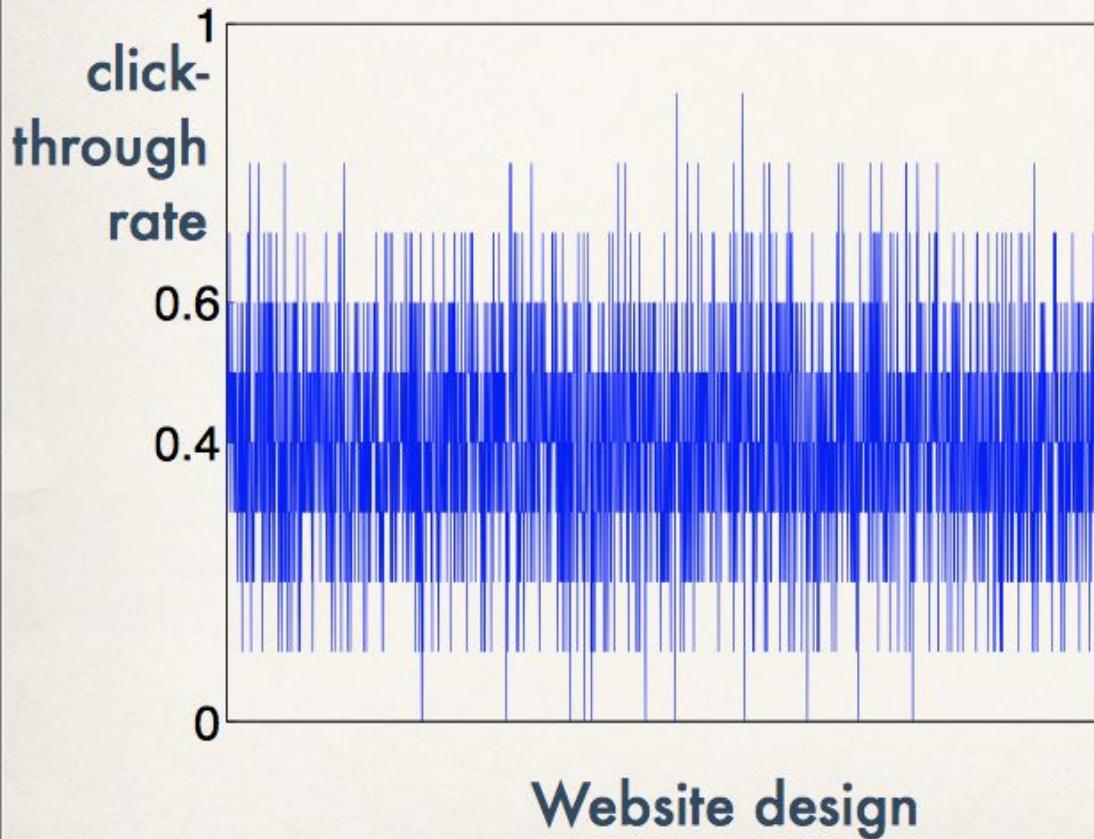
Material from Peter Frazier

2/18/15

Carnegie Mellon University

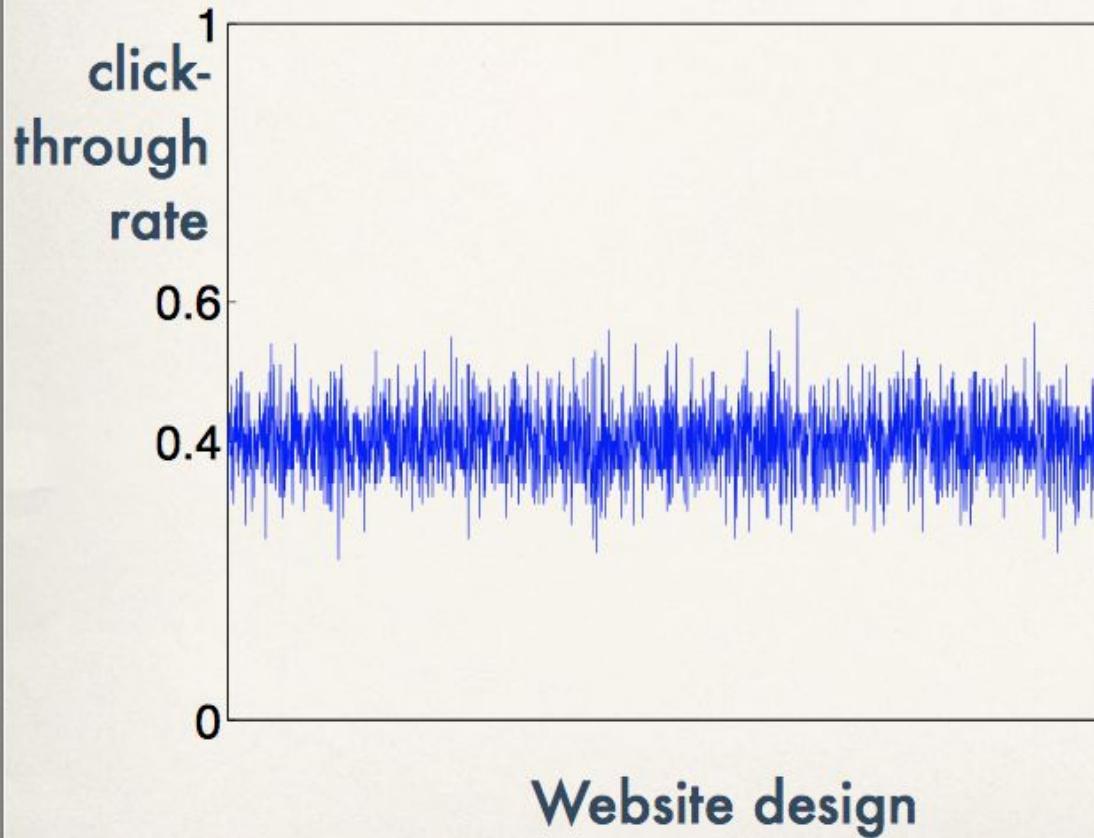
17

Standard A/B Testing or Experimentation Doesn't Scale



- 2500 designs
- CTR=click-through rate
- the best has CTR=0.6
- the rest have CTR=0.4
- **10 users per design**
- **25,000 users overall**
- **2.5 days**
(assuming 10,000 visits / day)

Standard A/B Testing or Experimentation Doesn't Scale



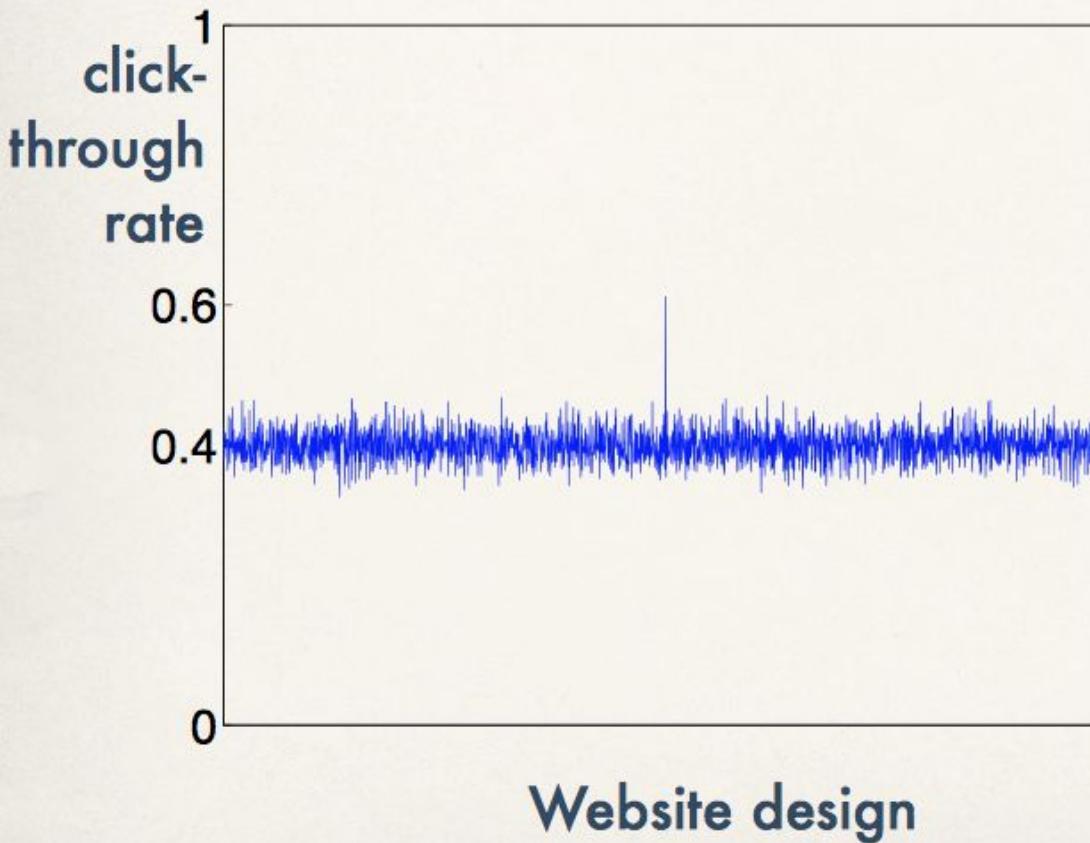
- 2500 designs
- CTR=click-through rate
- the best has CTR=0.6
- the rest have CTR=0.4

• **100** users per design

• **250,000** users

• **4 weeks**
(assuming 10,000 visits / day)

Standard A/B Testing or Experimentation Doesn't Scale



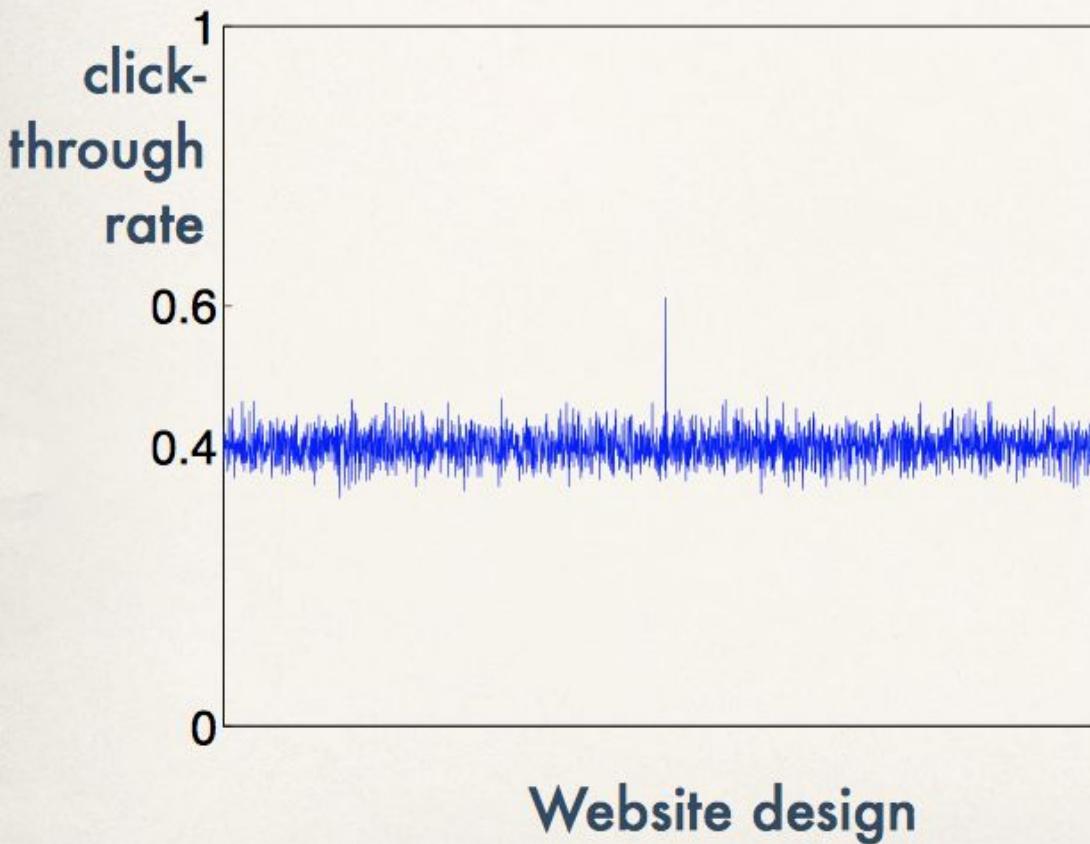
- 2500 designs
- CTR=click-through rate
- the best has $CTR=0.6$
- the rest have $CTR=0.4$

• **500** users per design

• **1,250,000** users

• **4 months**
(assuming 10,000 visits / day)

Don't Want to Have Worse Revenue on 1.25 million Users



- 2500 designs
- CTR=click-through rate
- the best has CTR=0.6
- the rest have CTR=0.4

• **500** users per design

• **1,250,000** users

• **4 months**
(assuming 10,000 visits / day)

Why Use GPs?

- Used frequently in Bayesian optimization
- Last ~5 years Bayesian optimization has become very influential & useful
- Brief (relevant) digression
- Two big motivations for Bayesian optimization
 - ML algorithm parameter tuning
 - Large online experimental settings where care about performance (e.g. revenue) while testing

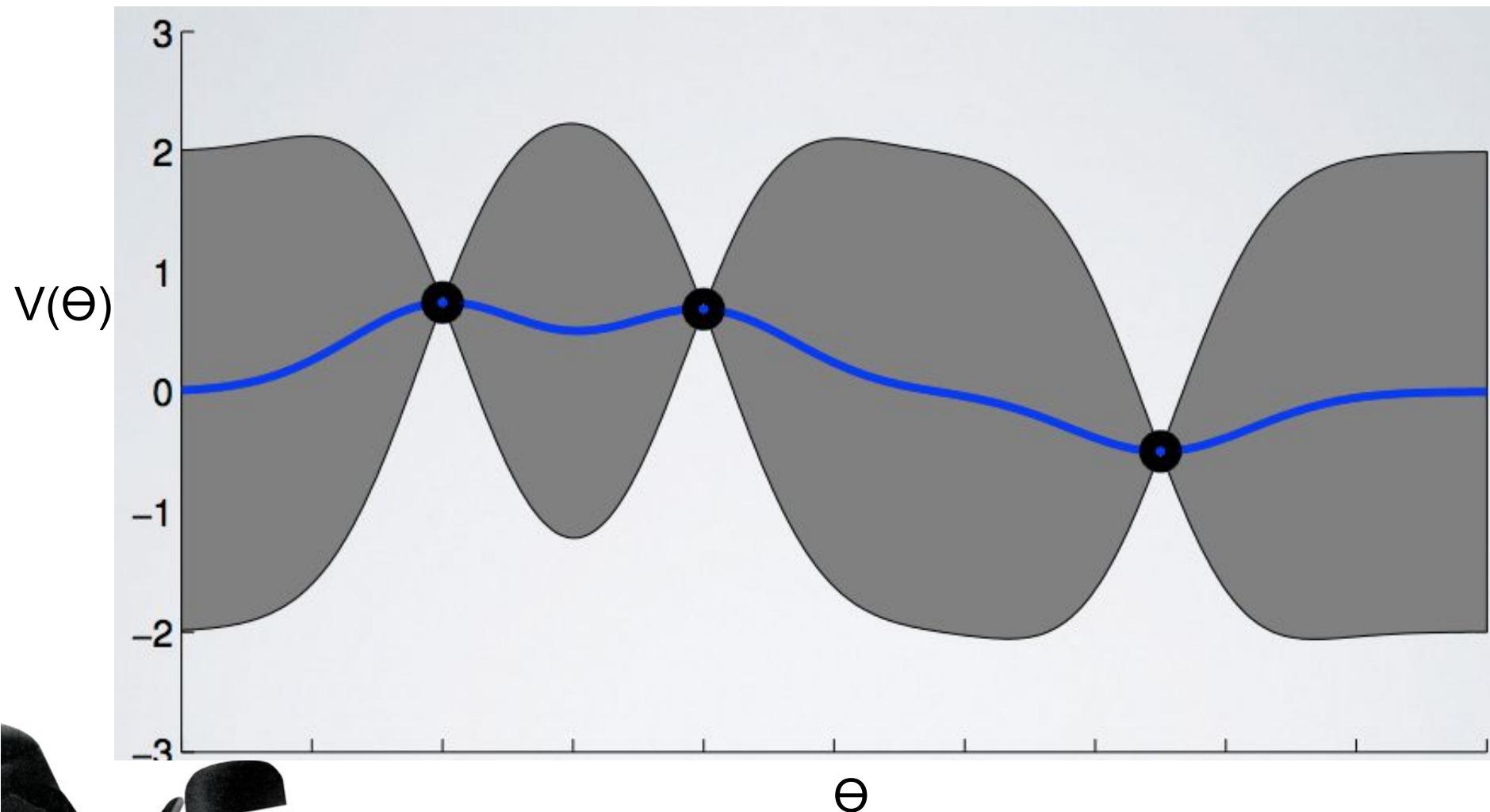
Bayesian Optimization

- Build a probabilistic model for the objective. Include hierarchical structure about units, etc.
- Compute the posterior predictive distribution. Integrate out all the possible true functions.
 - Gaussian process regression popular
- Optimize a cheap proxy function instead. The model is much cheaper than that true objective
- Two key ideas
 - Use model to guide how to search space. Model is an approximation, but when sampling a point in the real world is more costly than computation, very useful
 - Use proxy function to guide how to balance exploration and exploitation

Historical Background of Bayesian Optimization

- Closely related to statistical ideas of optimal design of experiments, dating back to Kirstine Smith in 1918.
- As response surface methods, date back to Box and Wilson in 1951
- As Bayesian optimization, studied first by Kushner in 1964 and then Mockus in 1978.
- Methodologically, it touches on several important machine learning areas: active learning, contextual bandits, Bayesian nonparametrics
- Started receiving serious attention in ML in 2007,
- Interest exploded when it was realized that Bayesian optimization provides an excellent tool for finding good ML hyperparameters.

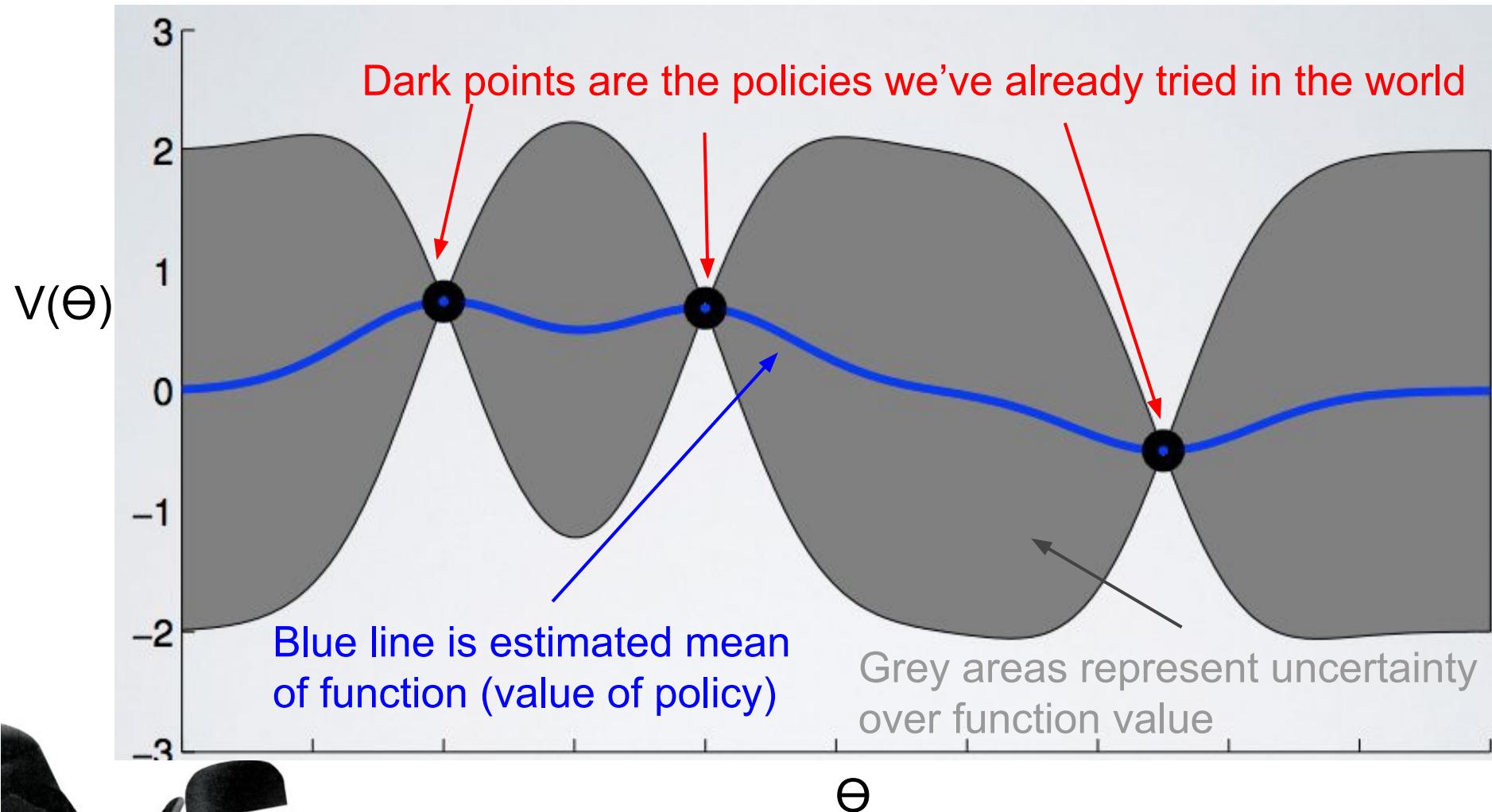
Bayesian Optimization for Policy Search



Bayesian Optimization for Policy Search



Exercise: Where Would You Sample Next (What Policy Would You Evaluate) & Why? What Algorithm Would You Use for Sampling?



Probability of Improvement

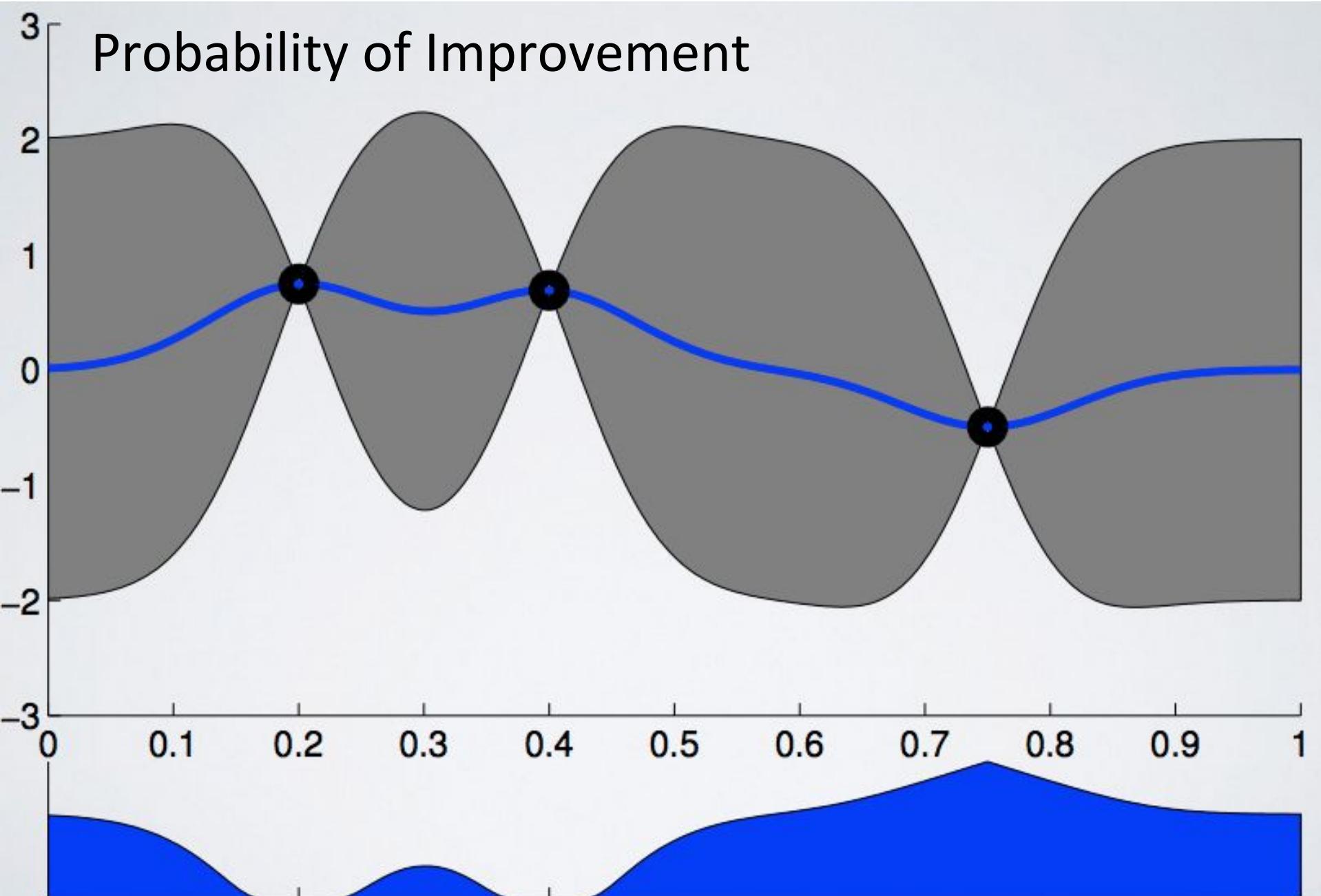


Figure modified from Ryan Adams

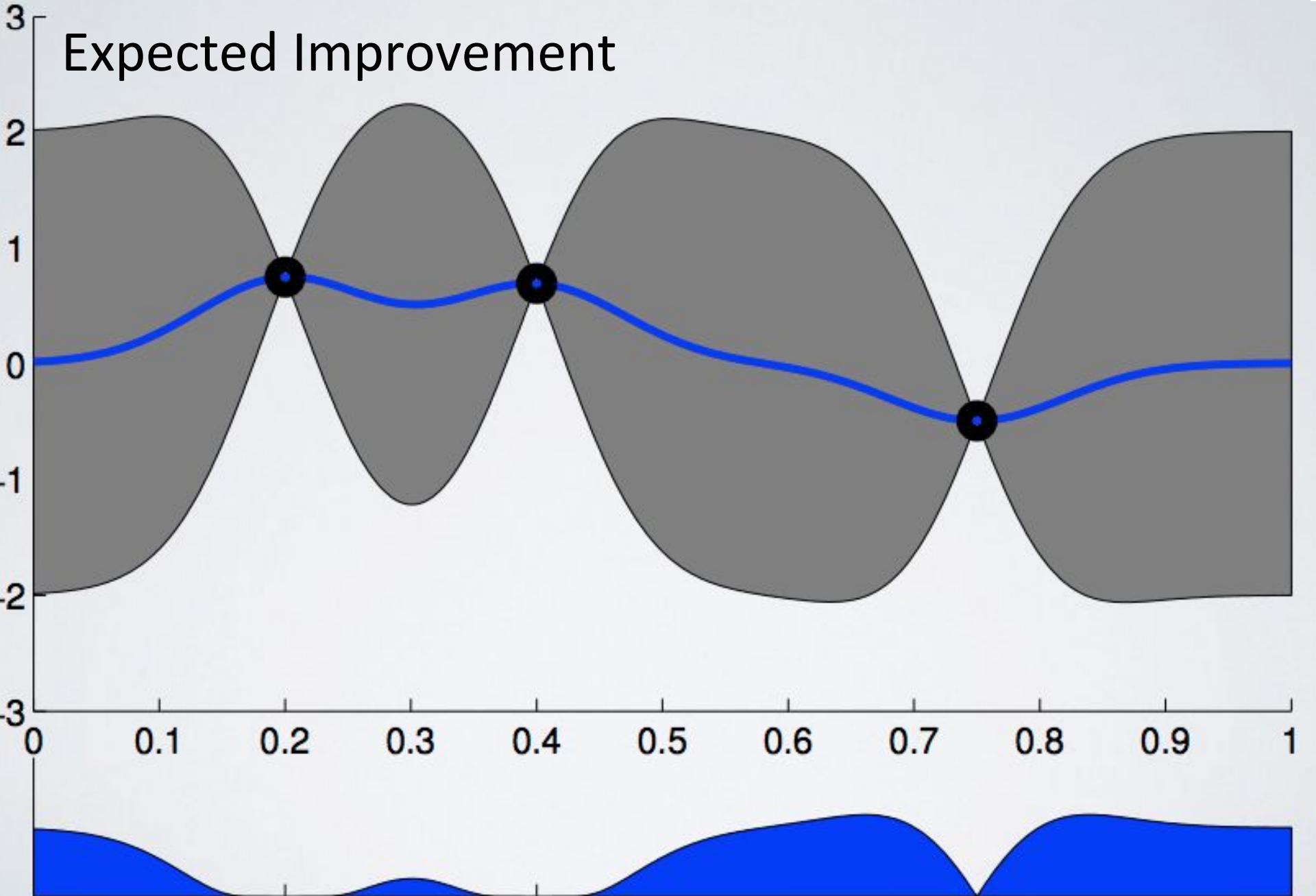


Figure modified from Ryan Adams

Upper/Lower Confidence Bound

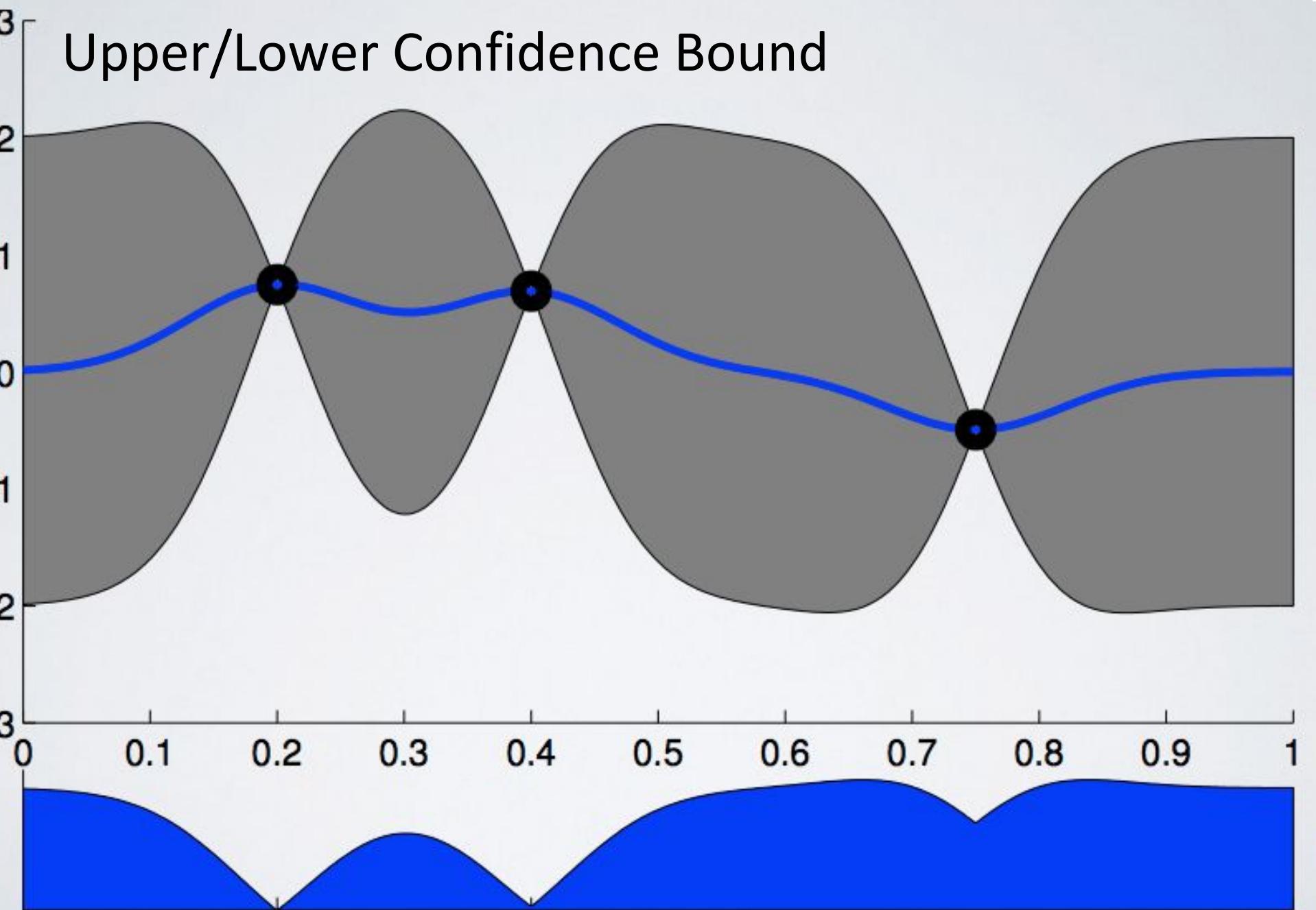
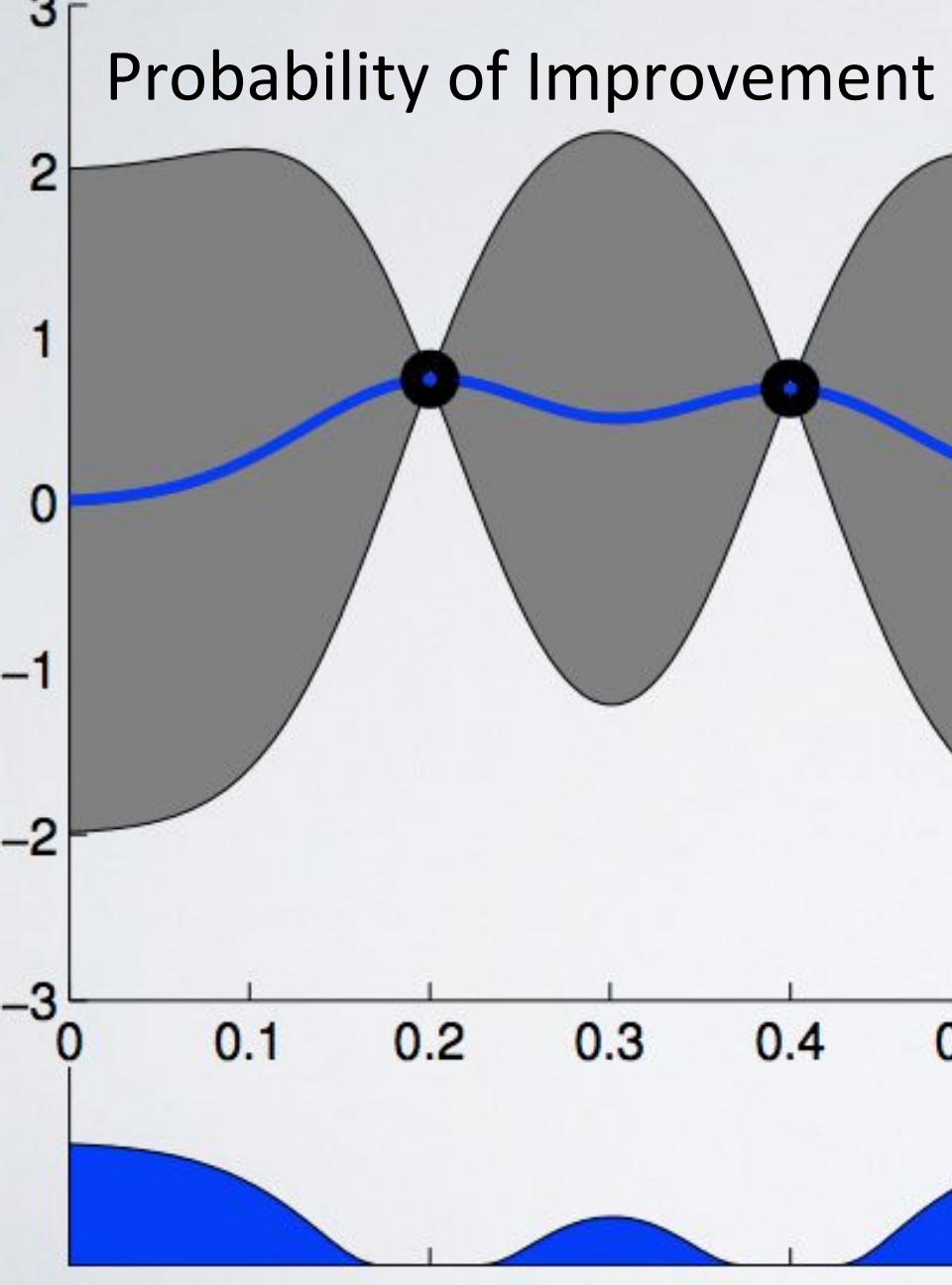


Figure modified from Ryan Adams

Probability of Improvement



Utility function relative to f' , best point so far

$$u(x) = \begin{cases} 0 & f(x) > f' \\ 1 & f(x) \leq f'. \end{cases}$$

Acquisition function

$$\begin{aligned} a_{PI}(x) &= \mathbb{E}[u(x) \mid x, \mathcal{D}] \\ &= \int_{-\infty}^{f'} \mathcal{N}(f; \mu(x), K(x, x)) \, df \\ &= \Phi(f'; \mu(x), K(x, x)). \end{aligned}$$

Expected Improvement

Utility function relative to f' , best point so far

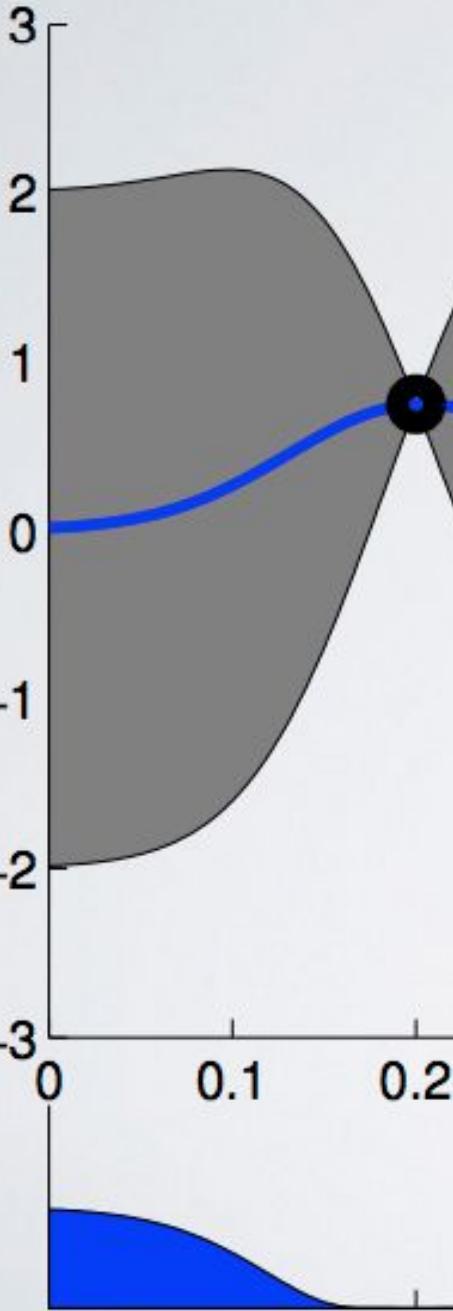
$$u(x) = \max(0, f' - f(x))$$

Acquisition function

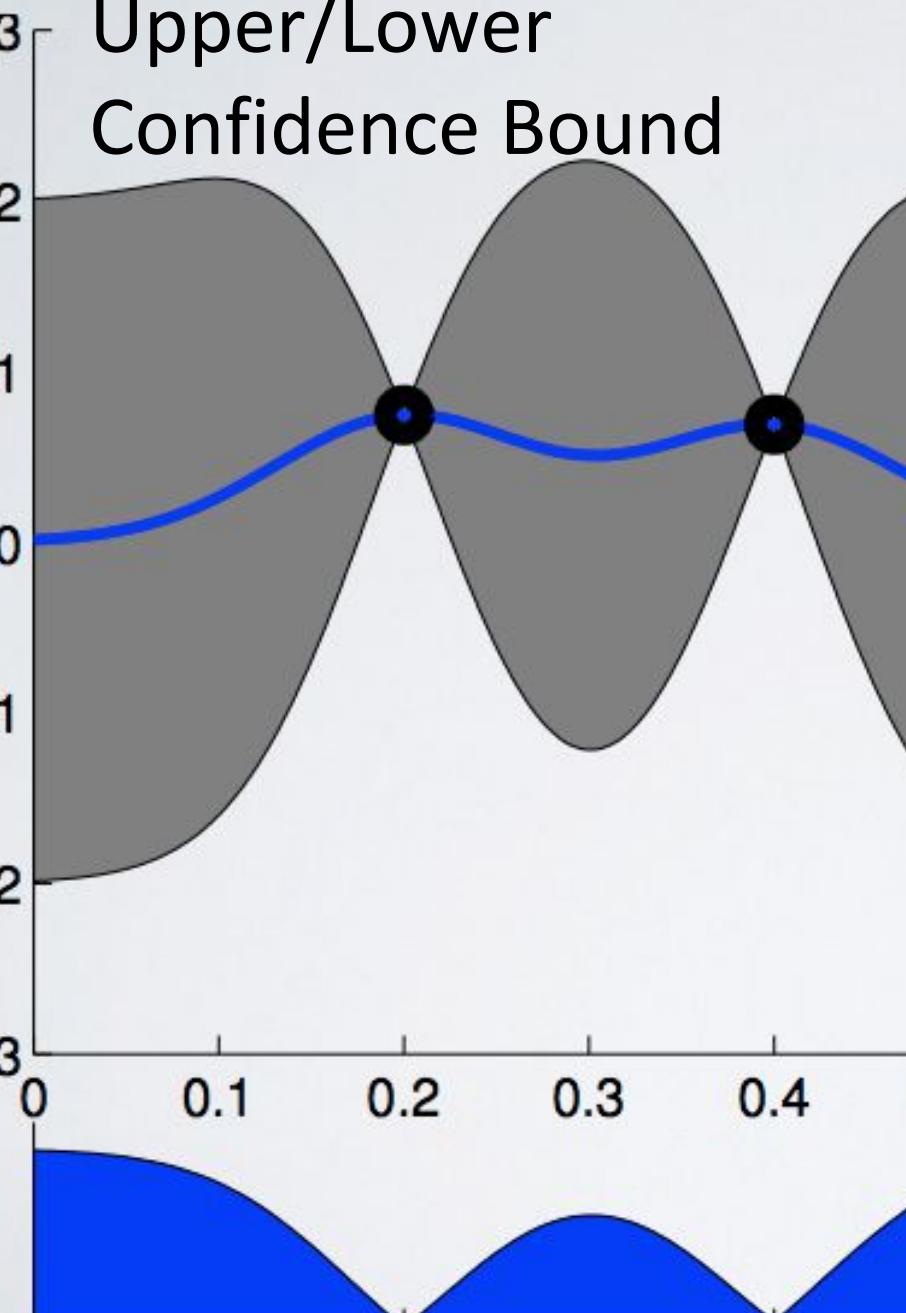
$$a_{\text{EI}}(x) = \mathbb{E}[u(x) \mid x, \mathcal{D}] :$$

$$= \int_{-\infty}^{f'} (f' - f) \mathcal{N}(f; \mu(x), K(x, x)) df$$

$$= (f' - \mu(x)) \Phi(f'; \mu(x), K(x, x)) + K(x, x) \mathcal{N}(f'; \mu(x), K(x, x))$$



Upper/Lower Confidence Bound



Acquisition function

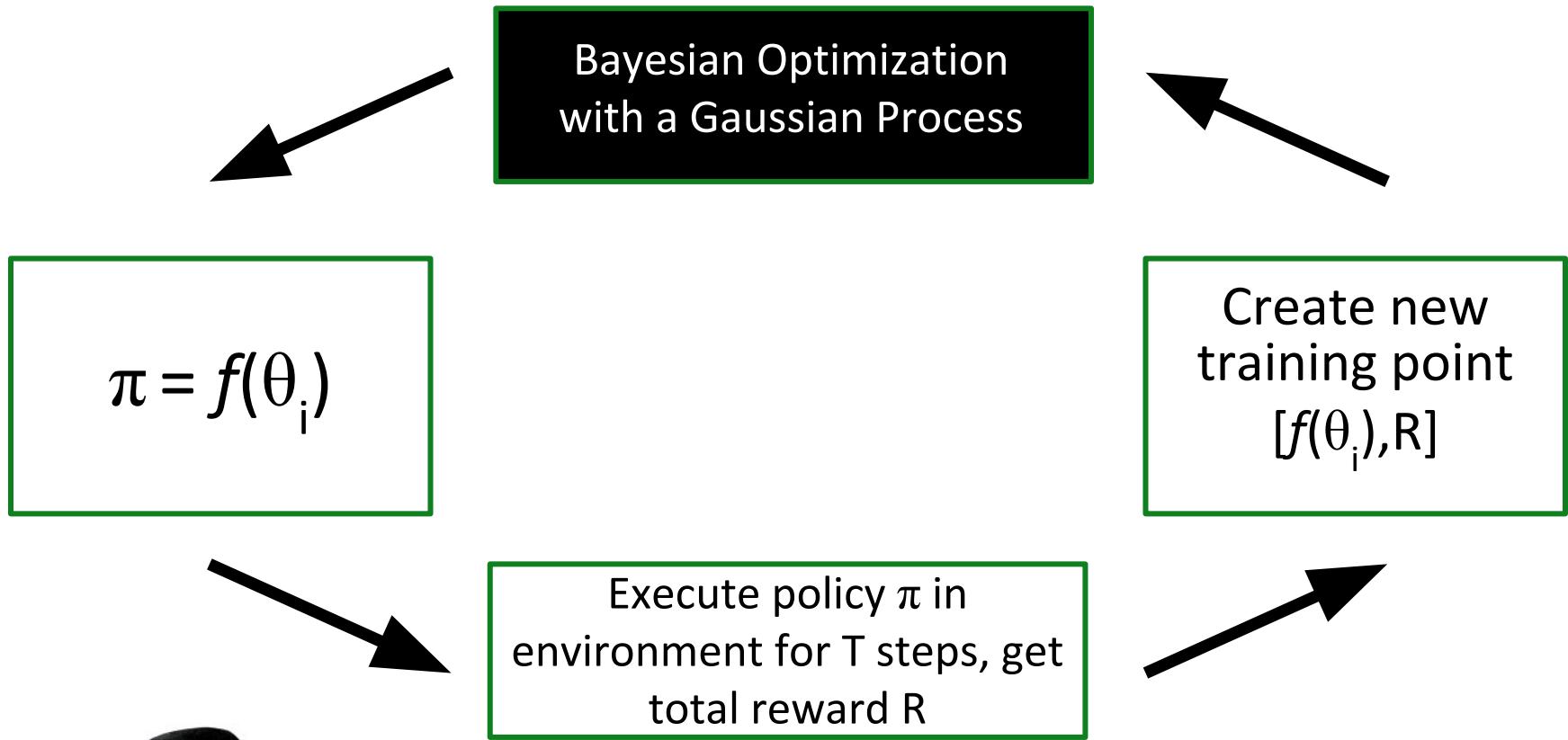
$$a_{\text{UCB}}(x; \beta) = \mu(x) - \beta\sigma(x)$$

$$\sigma(x) = \sqrt{K(x, x)}$$

Acquisition Function

- Probability of improvement
- Expected Improvement
- Upper confidence bound
- Other ideas?
- What are the limitations of these?

Policy Search as Black Box Bayesian Optimization



Policy Search as Bayesian Optimization

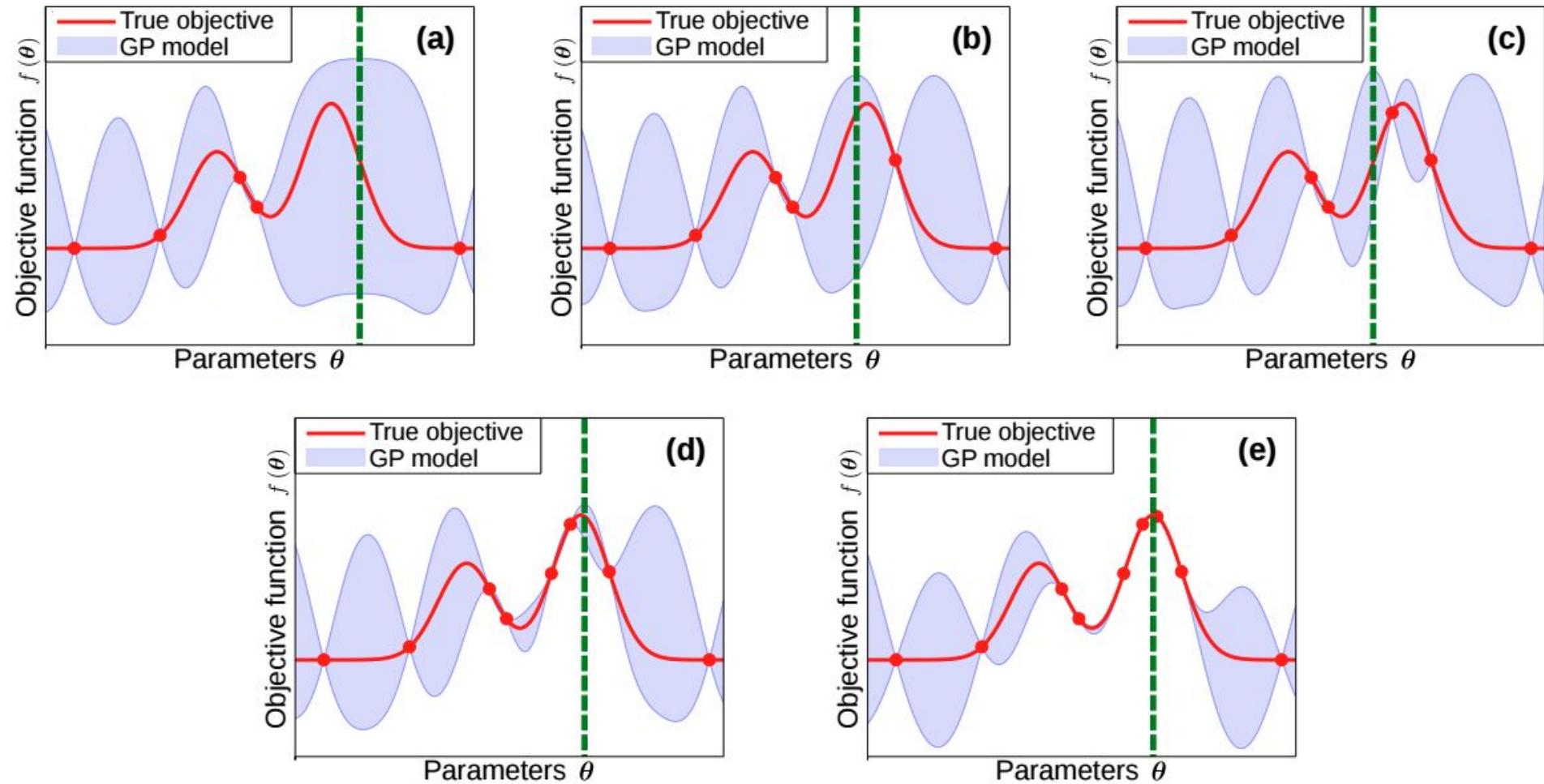


Figure modified from Calandra, Seyfarth, Peters & Deisenroth 2015

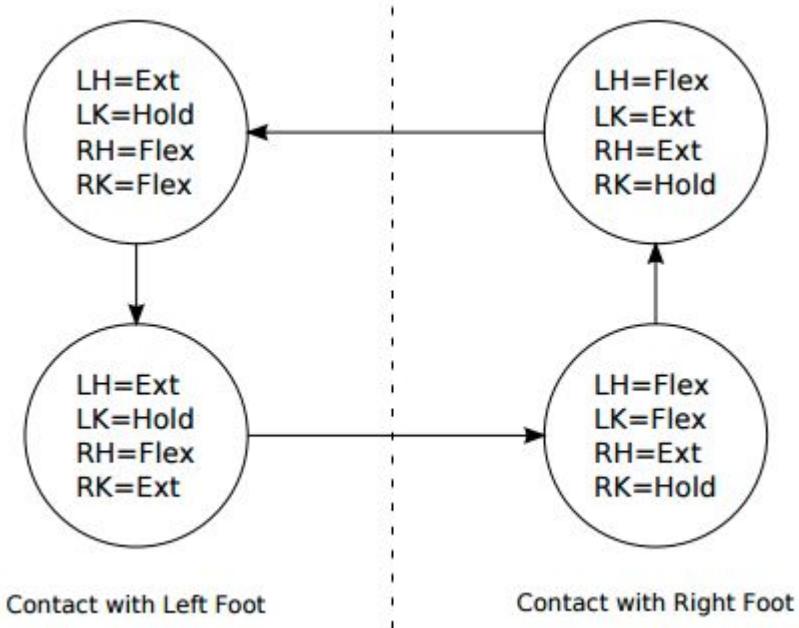
2/18/15

Carnegie Mellon University
36

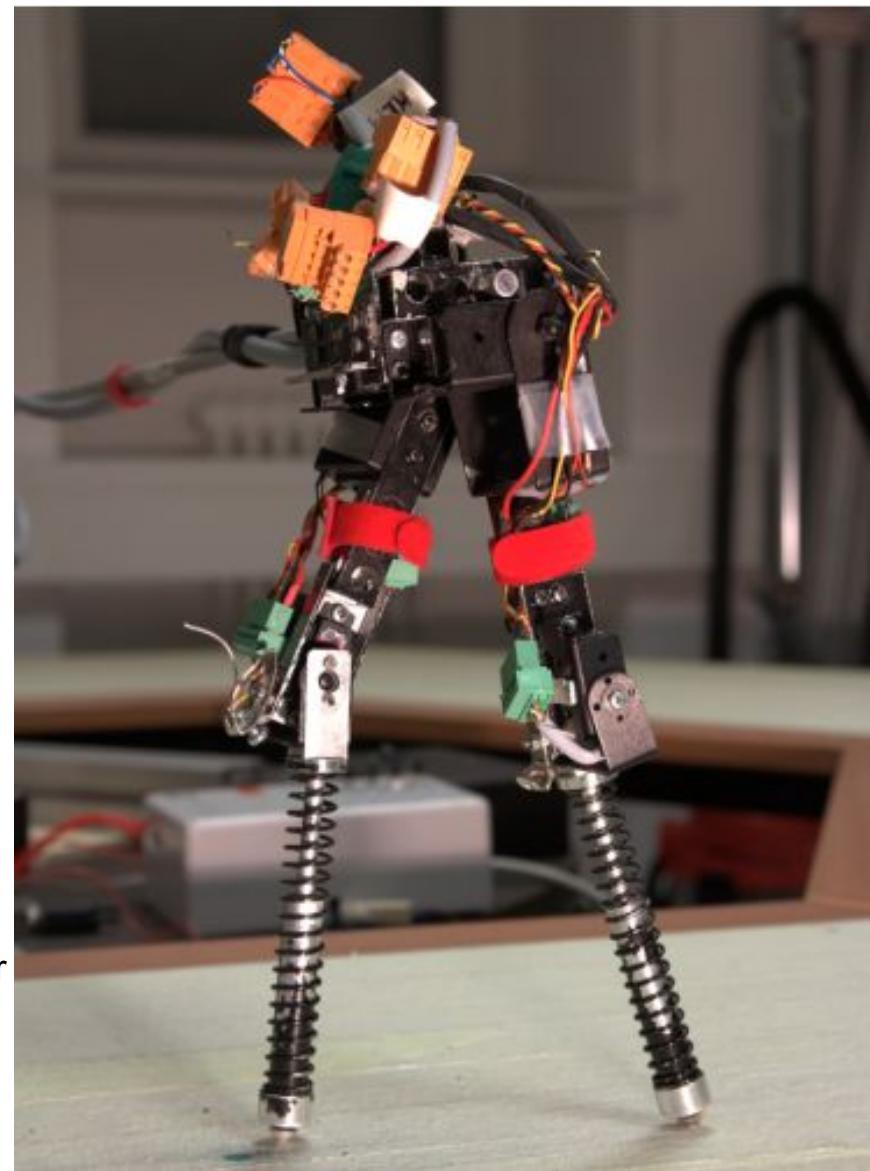
Gait Optimization

- GP Policy search
- Reduced samples needed to find a fast walk by about 3x
- Lizotte et al. IJCAI 2007

More Gait Optimization



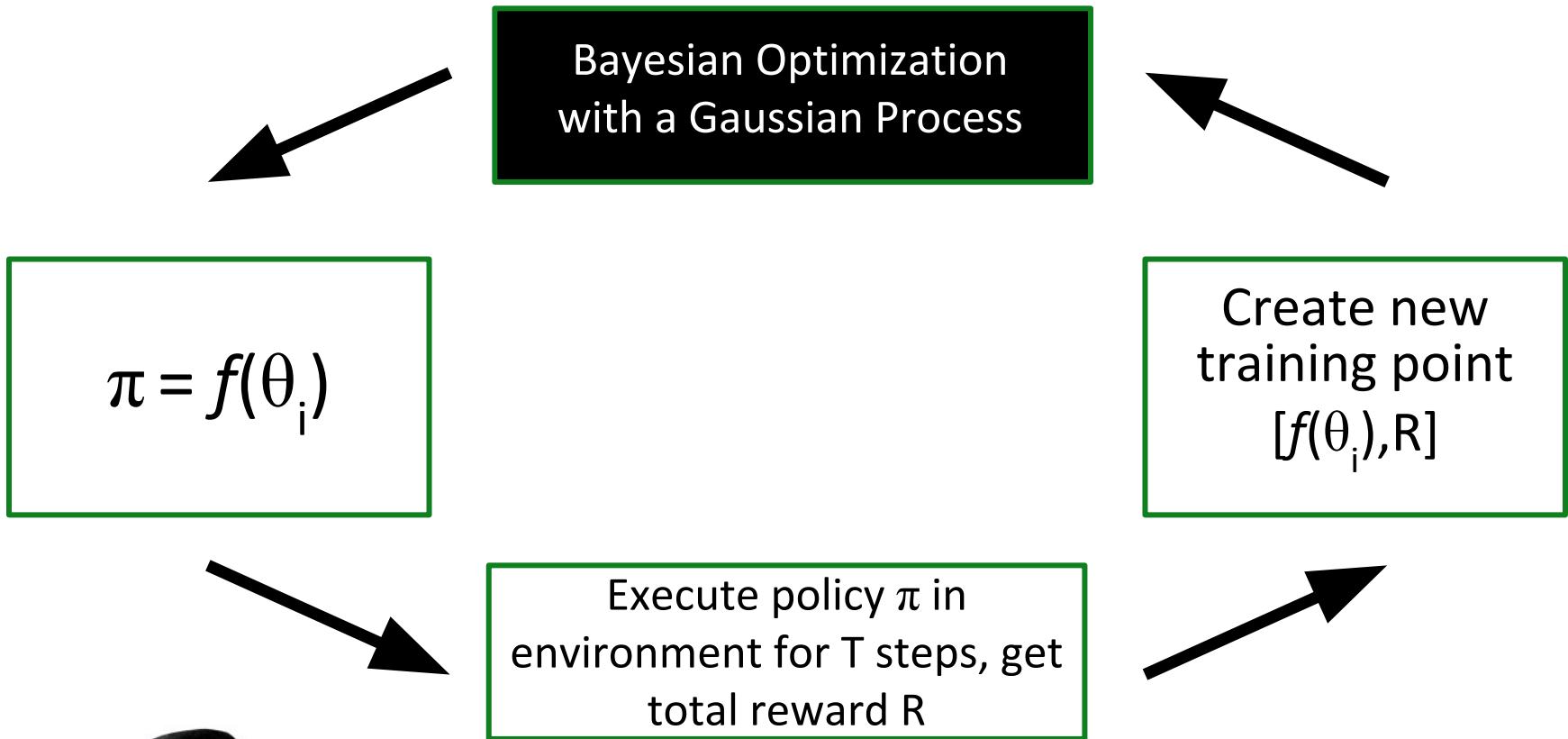
Gait parameters: 4 threshold values of the FSM (two for each leg) & 4 control signals applied during extension and flexion (separately for knees and hips).



videos

2/18/15

Why is this Suboptimal?



Throwing Away All Information But Policy Parameter & Total Reward from Trajectory.

Also Ignores Structure of Relationship Between Policies

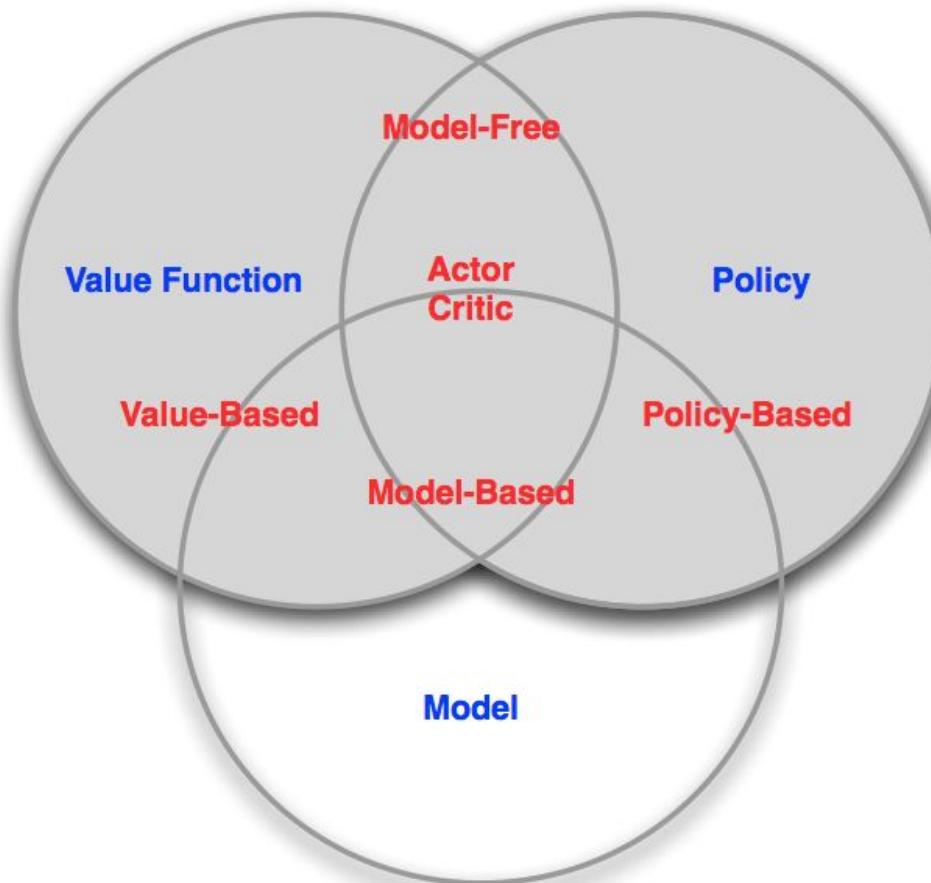


Figure from David Silver

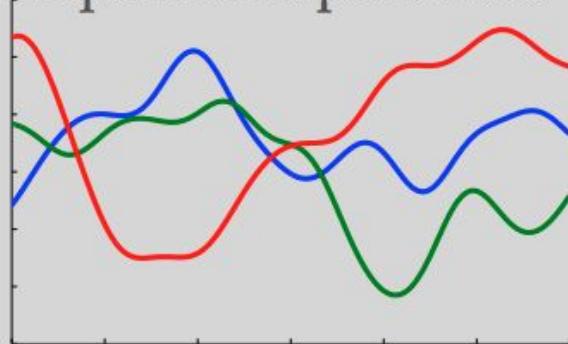
2/18/15

Carnegie Mellon University
41

Covariance function: Key choice for GP

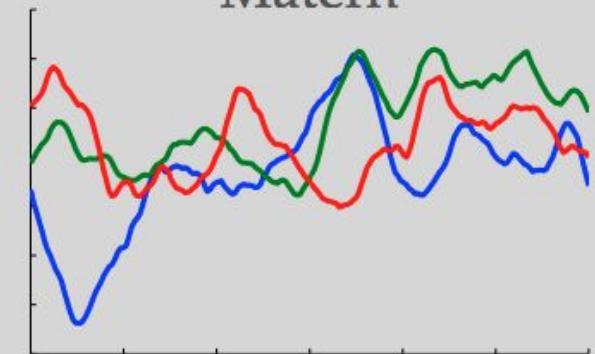
When
should 2
policies be
considered
“close”?

Squared-Exponential



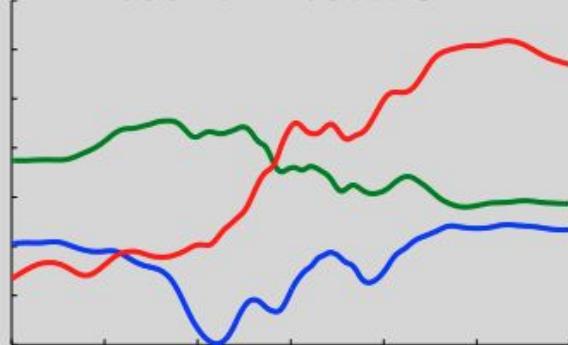
$$C(x, x') = \alpha \exp \left\{ -\frac{1}{2} \sum_{d=1}^D \left(\frac{x_d - x'_d}{\ell_d} \right)^2 \right\}$$

Matérn



$$C(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} r}{\ell} \right)^\nu K_\nu \left(\frac{\sqrt{2\nu} r}{\ell} \right)$$

“Neural Network”



$$C(x, x') = \frac{2}{\pi} \sin^{-1} \left\{ \frac{2x^\top \Sigma x'}{\sqrt{(1 + 2x^\top \Sigma x)(1 + 2x'^\top \Sigma x')}} \right\}$$

Periodic



$$C(x, x') = \exp \left\{ -\frac{2 \sin^2 \left(\frac{1}{2}(x - x') \right)}{\ell^2} \right\}$$

Figures from Ryan Adams

Behavior Based Kernel

(Wilson et al. JMLR 2014)

$$D(\theta_i, \theta_j) = \sqrt{KL(P(\xi|\theta_i) || P(\xi|\theta_j))} + \sqrt{KL(P(\xi|\theta_j) || P(\xi|\theta_i))}$$

KL divergence Probability of trajectory under policy Θ_i

$$K(\theta_i, \theta_j) = \exp(-\alpha \cdot D(\theta_i, \theta_j))$$

Behavior Based Kernel

(Wilson et al. JMLR 2014)

$$D(\theta_i, \theta_j) = \sqrt{\underbrace{KL(P(\xi|\theta_i) || P(\xi|\theta_j))}_{\substack{\text{KL} \\ \text{divergence}}} + \sqrt{KL(P(\xi|\theta_j) || P(\xi|\theta_i))}}$$

Prob. trajectory
under policy Θ_i

$$\hat{D}(\theta_i, \theta_j) = \sum_{\xi \in \xi_i} \log \left(\frac{P(\xi|\theta_i)}{P(\xi|\theta_j)} \right) + \sum_{\xi \in \xi_j} \log \left(\frac{P(\xi|\theta_j)}{P(\xi|\theta_i)} \right)$$

Behavior Based Kernel (BBK)

(Wilson et al. JMLR 2014)

$$D(\theta_i, \theta_j) = \sqrt{\underbrace{KL(P(\xi|\theta_i) || P(\xi|\theta_j))}_{\substack{\text{KL} \\ \text{divergence}}} + \sqrt{KL(P(\xi|\theta_j) || P(\xi|\theta_i))}}$$

Prob. trajectory
under policy Θ_i

$$\hat{D}(\theta_i, \theta_j) = \sum_{\xi \in \xi_i} \log \left(\frac{P(\xi|\theta_i)}{P(\xi|\theta_j)} \right) + \sum_{\xi \in \xi_j} \log \left(\frac{P(\xi|\theta_j)}{P(\xi|\theta_i)} \right)$$

Do we need to know the dynamics model?

Throwing Away All Information But Policy Parameter & Total Reward from Trajectory.

Also Ignores Structure of Relationship Between Policies

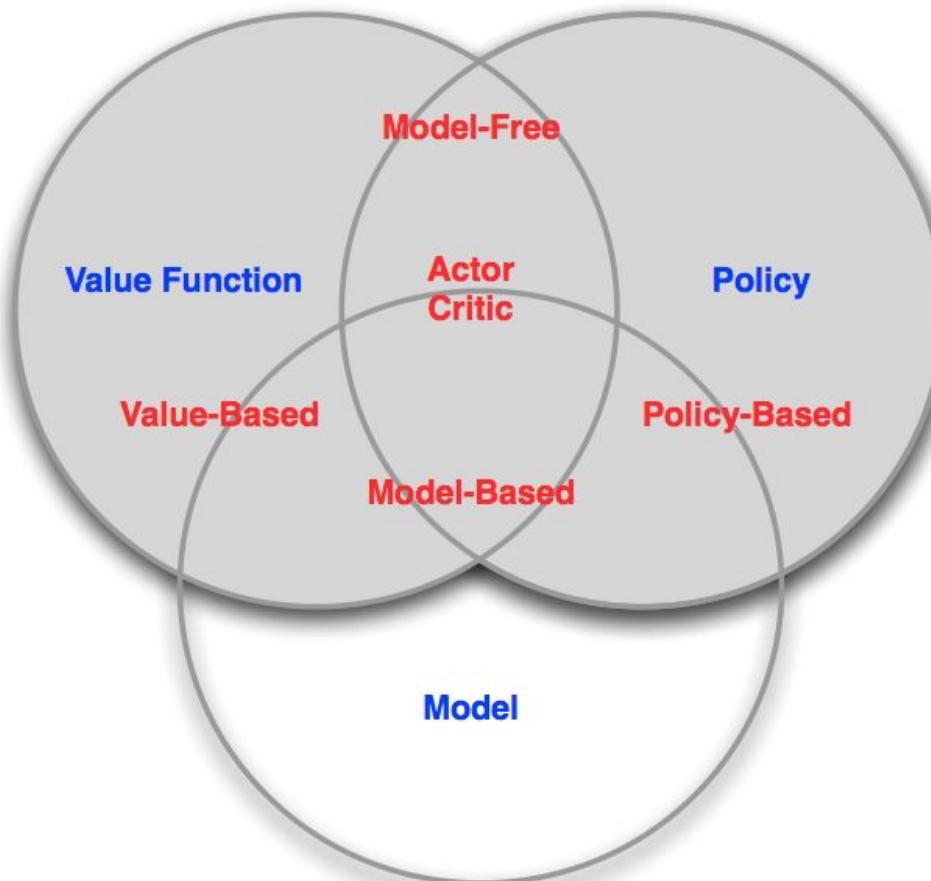
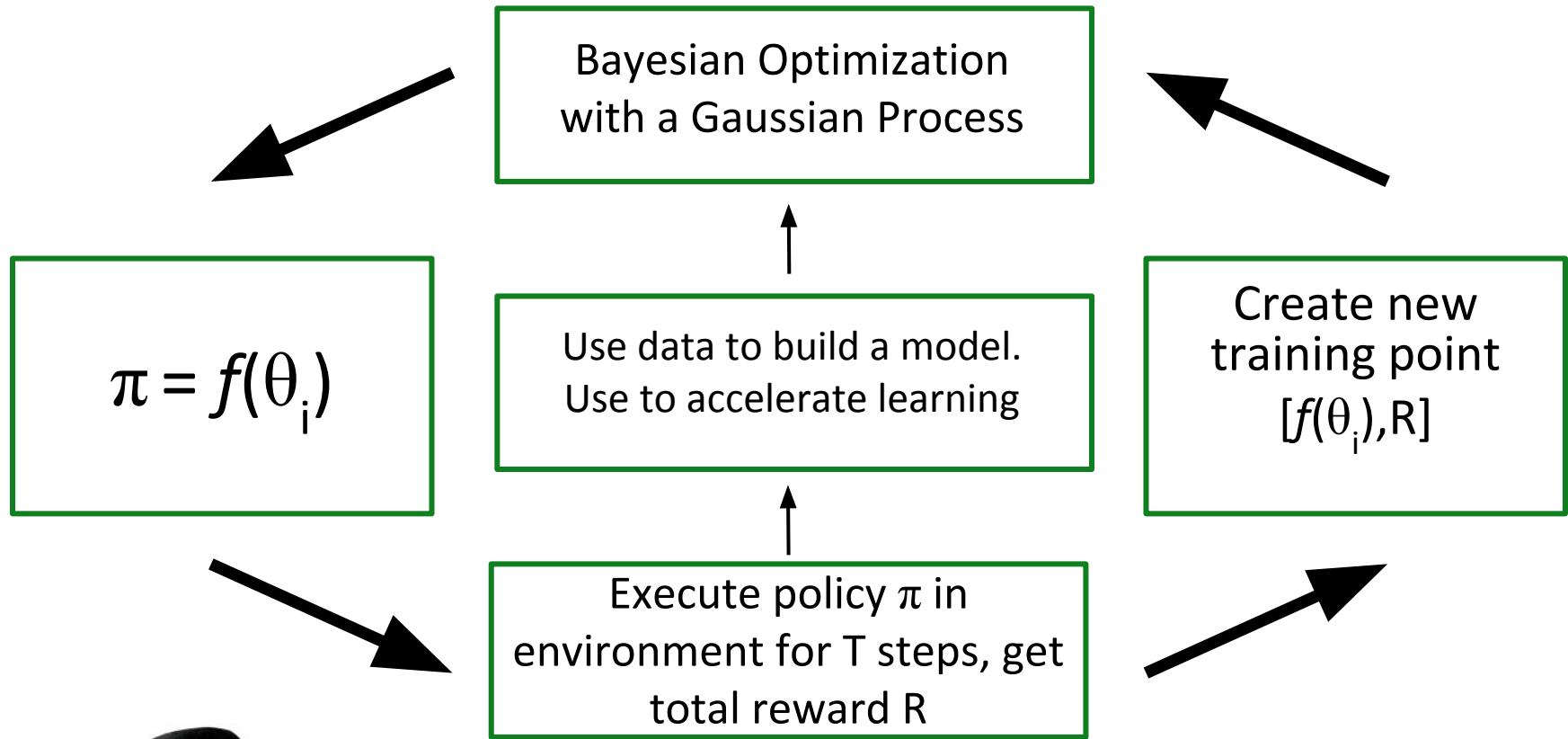


Figure from David Silver

2/18/15

Carnegie Mellon University
46

Model-Based Bayesian Optimization Algorithm (MBOA) (Wilson et al. JMLR 2014)



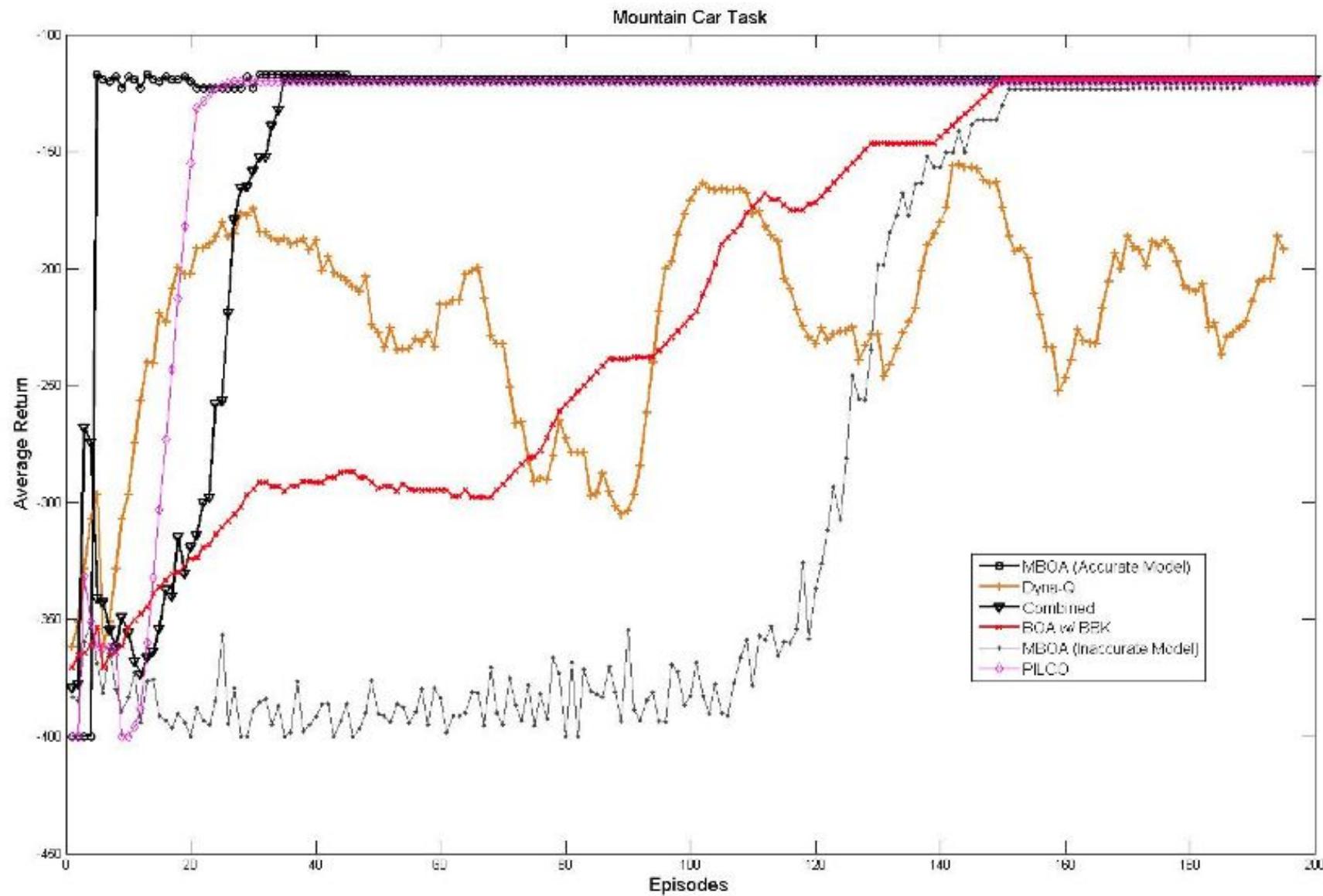


Figure from Wilson, Fern & Tadepalli
JMLR 2014

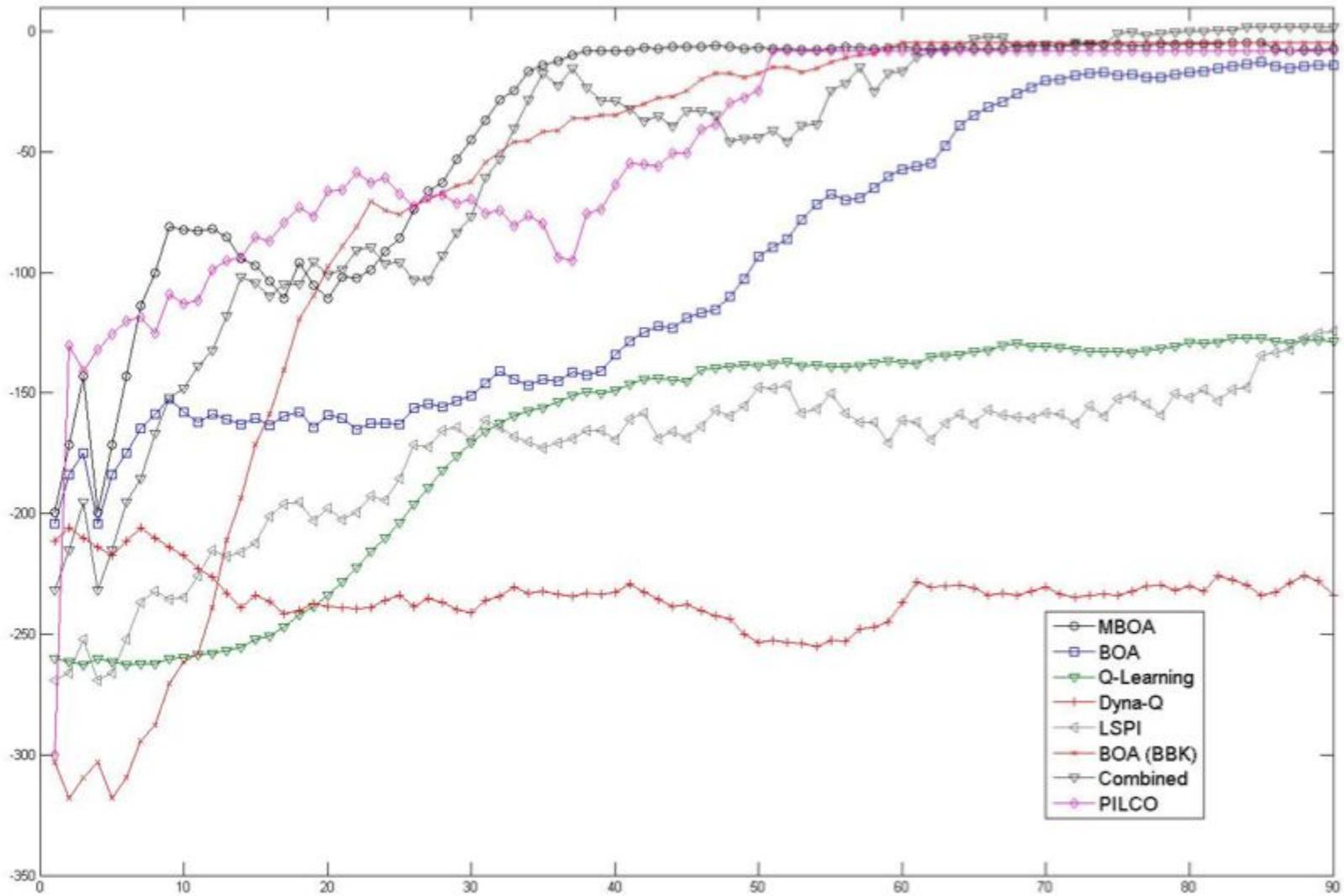


Figure from Wilson, Fern & Tadepalli
JMLR 2014

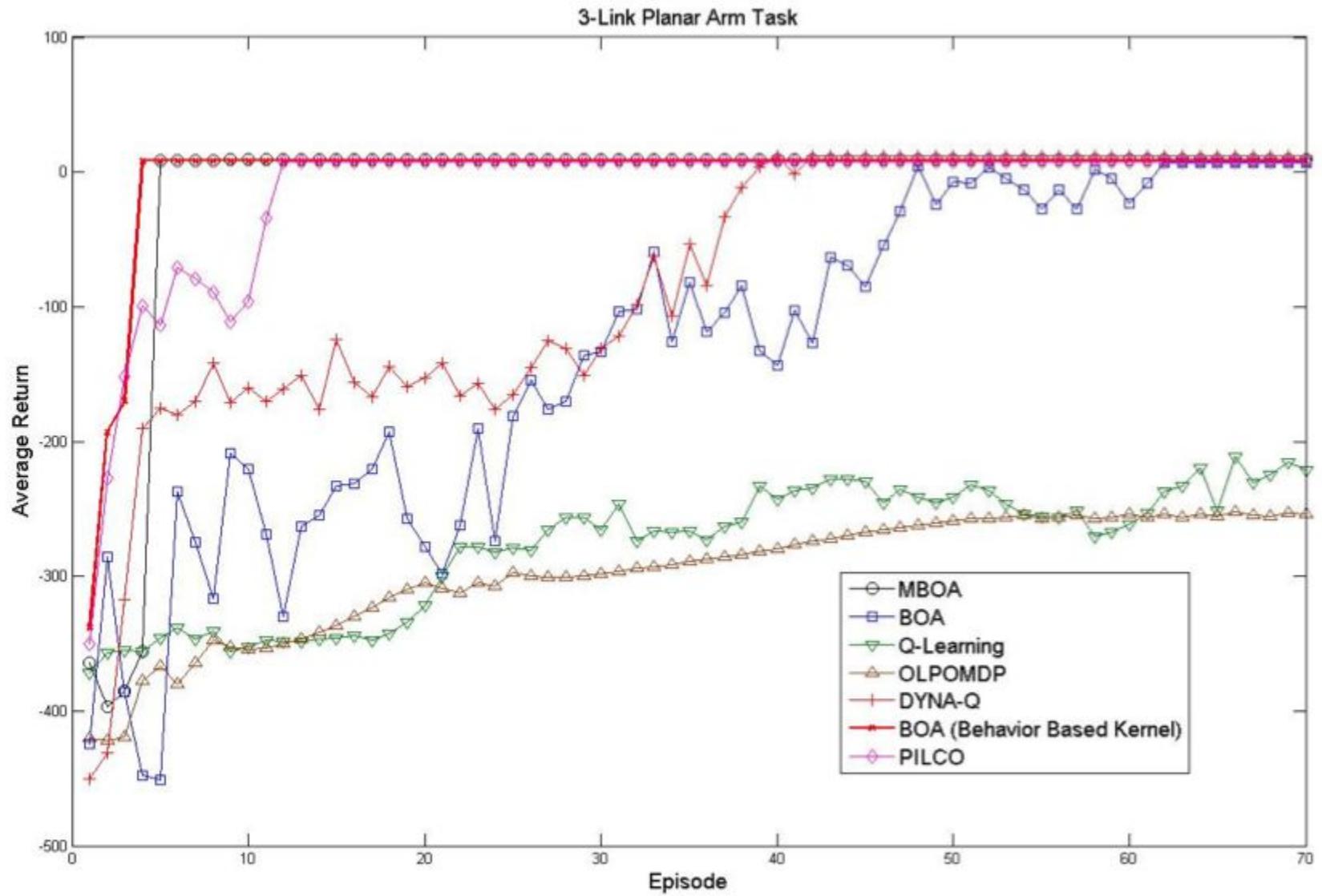


Figure from Wilson, Fern & Tadepalli
JMLR 2014

Bicycle Balancing Task

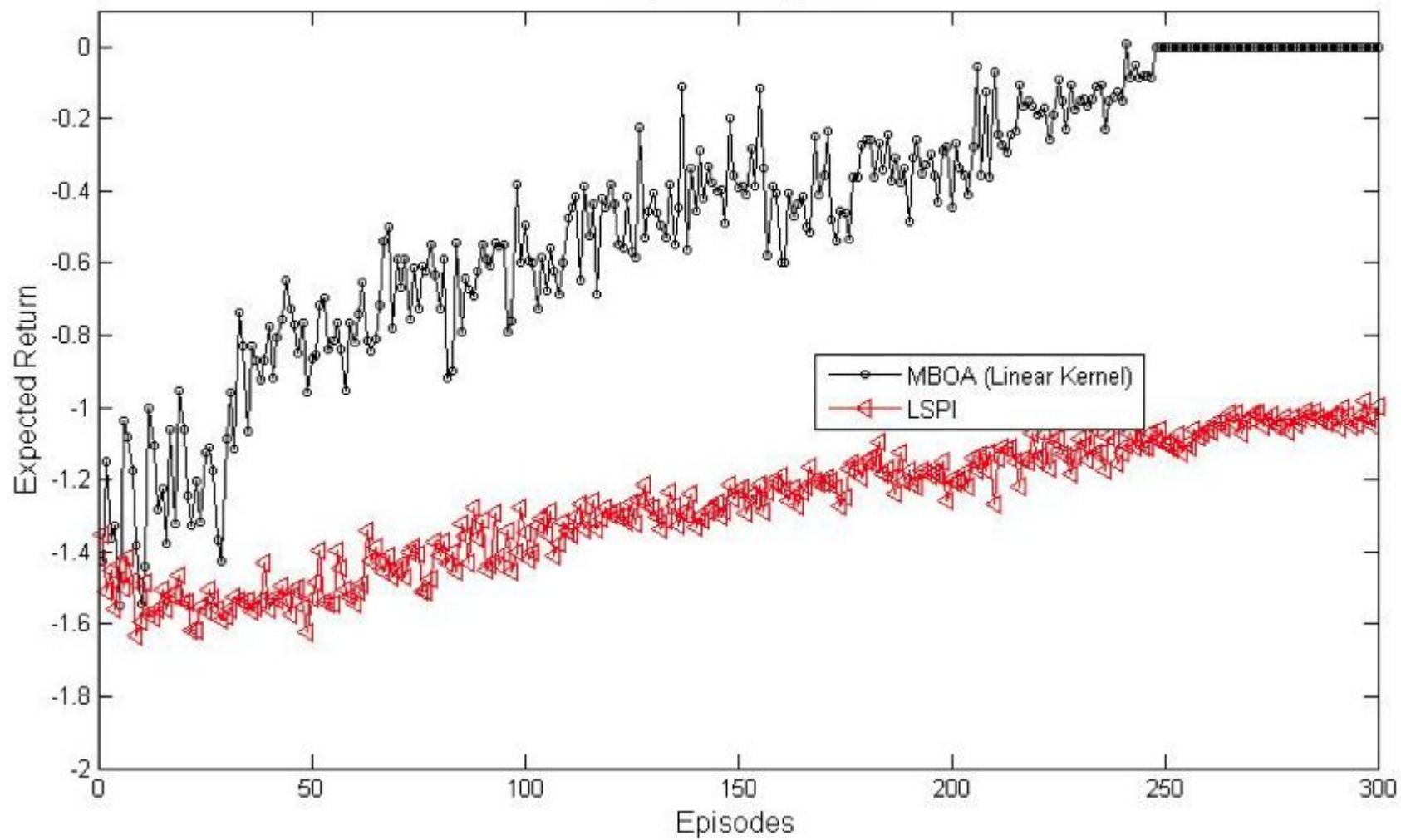


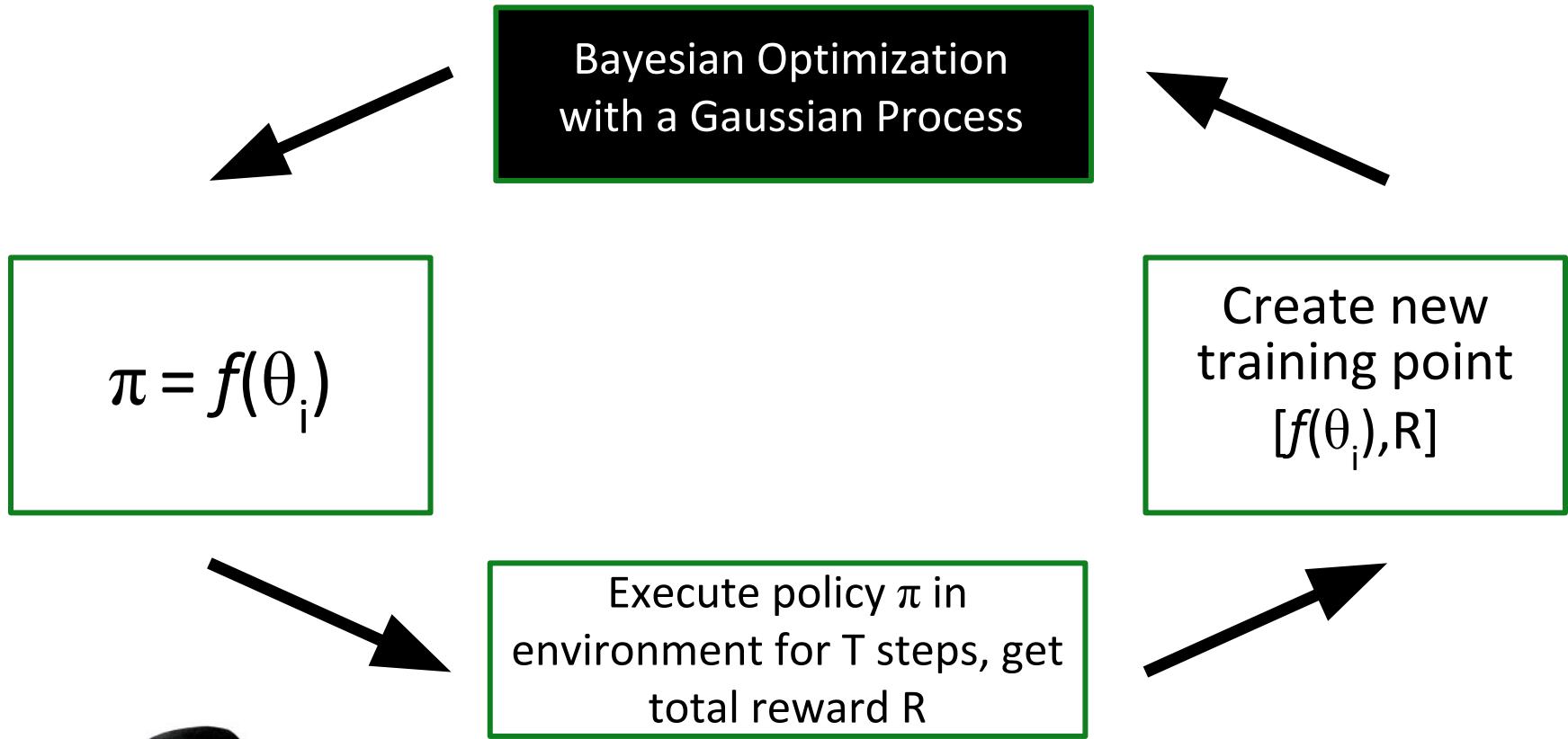
Figure from Wilson, Fern & Tadepalli
JMLR 2014

New Kernel vs Model Based Information?

- Using model information often greatly improves performance... if it's a good model
- If it's not good, learns to ignore
- New kernel to relate policies (BBK) much less of an impact

Other Ways to Go Beyond Black-Box Bayesian Optimization

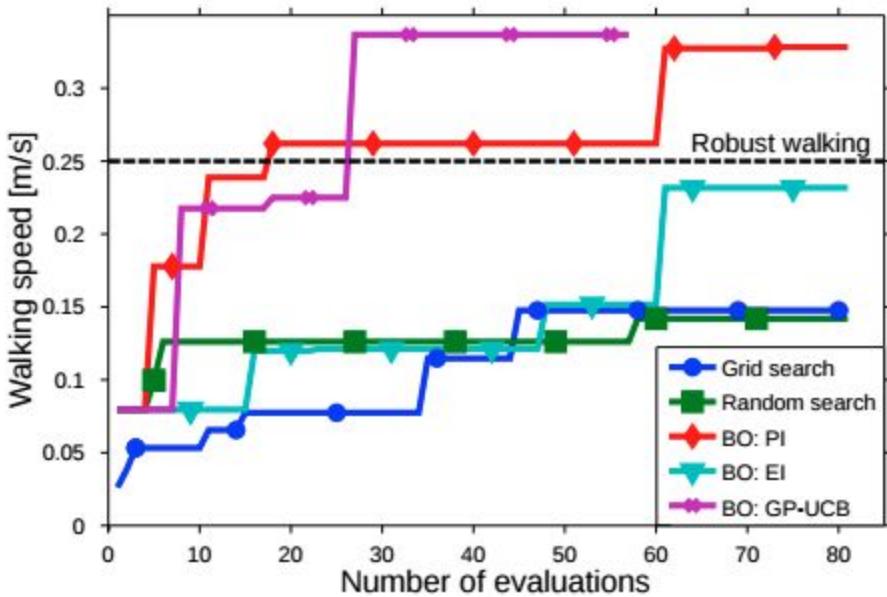
Current work in my group (Rika, Christoph, Dexter Lee, Joe Runde)



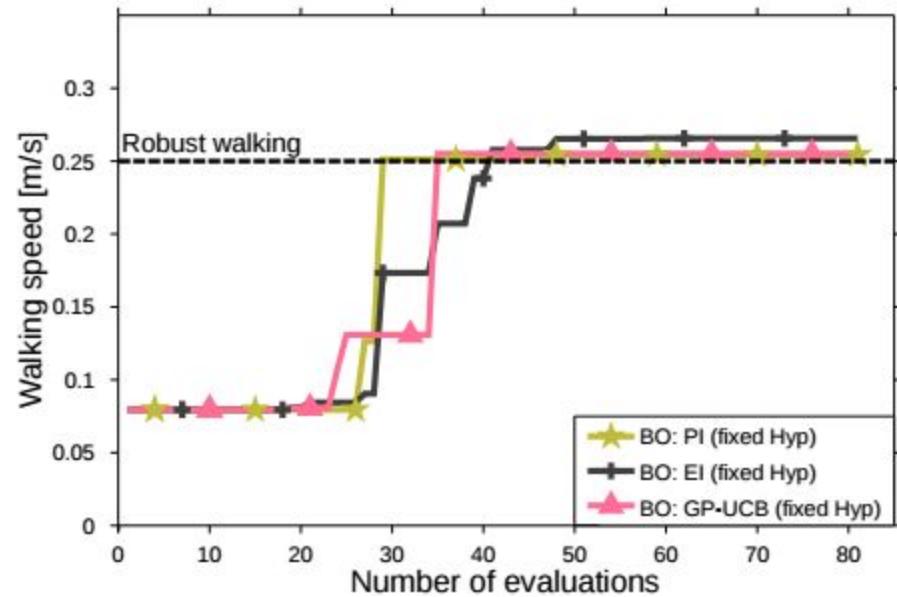
Subtleties of Bayesian Optimization

- Still have to choose policy class (this determines the input space)
- Have to choose kernel function
- Have to choose hyperparameters of kernel function (can optimize these)
- Have to choose acquisition function

Impact of Acquisition Function & Hyperparameters



(a) Different optimization methods



(b) BO with fixed hyperparameters

Manually fixed hyperparameters led to sub-optimal solutions for all the acquisition functions.

Summary: Bayesian Optimization for Efficient Policy Search

- Benefits
 - Direct policy search
 - Finds global optima
 - Uses sophisticated function class (GP) to model input policy param & output policy value
 - Use smart (but typically myopic) acquisition function to balance exploration/exploitation in searching policy space
 - Can be very sample efficient
- Not a silver bullet
 - Still have to decide on policy space
 - Choose kernel function (though squared expl often works well)
 - Should optimize hyperparameters

Stuff to Know: Bayesian Optimization for Efficient Policy Search

- Properties (global optima, no gradient information used)
- Define and know benefits/drawbacks of different acquisition functions
- Understand how to take a policy search problem and formulate as a black box Bayesian optimization problem
- Be able to list some things have to do in practice (optimize hyperparameters, etc)