

Feature Selection for Approximate Offline RL

Emma Brunskill

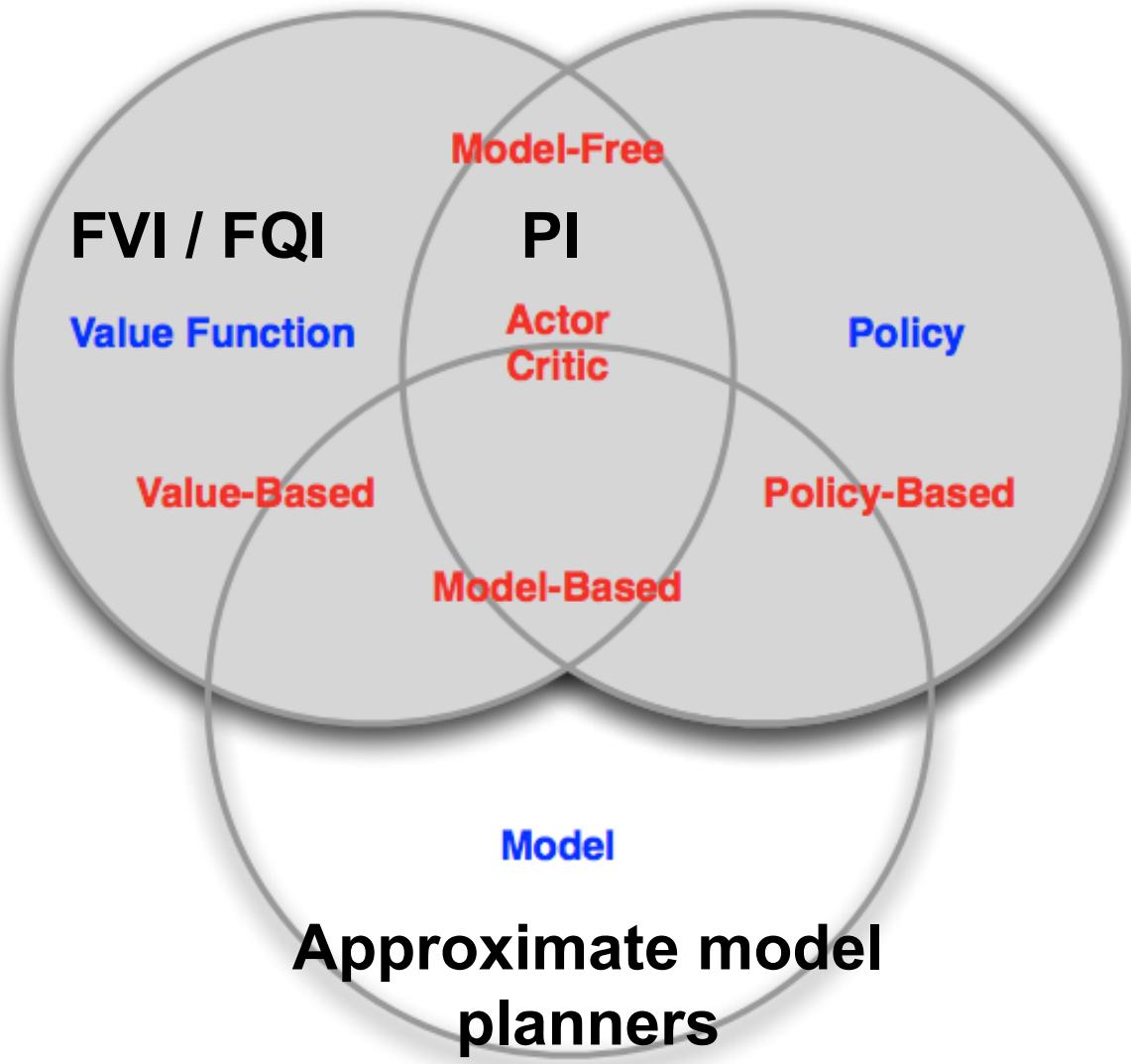


Image from David Silver

Spoken Dialogue System Example

(Pietquin, Geist, Chandramohan & Frezza-Buet)

- Form-filling, task oriented information system for restaurants
- Goal: determine the value of 3 slots
 - Restaurant location
 - Restaurant cuisine
 - Restaurant price range
- Information state of slot represents confidence in the value (from 0 to 1) → State space is 3 dim continuous vector
- Action space:
 - Ask-A-Slot (one for each slot), ExplicitConfirm-Slot (one for each slot), Implicit-Confirm-And-Ask-A-Slot (6 actions, in combination of 2 slots) and Close-Dialogue action.

Spoken Dialogue System Example

(Pietquin, Geist, Chandramohan & Frezza-Buet)

- Form-filling, task oriented information system for restaurants
- Goal: determine the value of 3 slots
 - Restaurant location
 - Restaurant cuisine
 - Restaurant price range
- Information state of slot represents confidence in the value (from 0 to 1) → State space is 3 dim continuous vector
- Q-function representation?
 - **351 = $3^3 \times 13$ Radial basis functions**
 - 3 Gaussian kernels for each state dimension
 - 13 actions

What if We Have Very Little Data?

What is the Danger?

- Form-filling, task oriented information system for restaurants
- Goal: determine the value of 3 slots
 - Restaurant location
 - Restaurant cuisine
 - Restaurant price range
- Information state of slot represents confidence in the value (from 0 to 1) → State space is 3 dim continuous vector
- Q-function representation?
 - **351 = $3^3 \times 13$ Radial basis functions**
 - 3 Gaussian kernels for each state dimension
 - 13 actions

What if We Have Very Little Data?

What is the Danger? Overfitting

- Form-filling, task oriented information system for restaurants
- Goal: determine the value of 3 slots
 - Restaurant location
 - Restaurant cuisine
 - Restaurant price range
- Information state of slot represents confidence in the value (from 0 to 1) → State space is 3 dim continuous vector
- Q-function representation?
 - **351** = $3^3 \times 13$ Radial basis functions
 - 3 Gaussian kernels for each state dimension
 - 13 actions

Feature-Based Approximate RL

- Where do features come from?
- Does it matter?
 - Yes!
 - Impacts computation
 - Impacts performance
 - Changes feature class, representational power
 - Changes finite sample (finite dataset) performance (can lead to overfitting, changes estimation error)

Overview of Selecting Features for Feature-Based Approximate RL

1. Feature selection

Input: Big feature set

Output: Subset of original features

2. Feature compression/projection

Input: Big feature set

Output: Projected (dimensionality reduc) features

3. Feature construction

Input: Small feature set

Output: Superset of original feature set

Feature Selection

- Input: Big feature set
- Output: Subset of features
- Techniques build strongly on supervised learning regularization
- L2 norm (Ridge regularization)
 - $\min_w ||Y - Xw||_2 + b ||w||_2$
- L1 norm (Lasso)
 - $\min_w ||Y - Xw||_2 + b ||w||_1$
- da

Feature Selection for Approximate RL

Objective of Fitting Q/V	L2 Regularization (Ridge)	L1 Regularization (LASSO)	Orthogonal Matching Pursuit
Fixed Point (LSTD)	X	LARS-TD (Kolter & Ng 2009), Johns et al. (2010)	Painter-Wakefiled & Parr (2009)
Fitted V/Q Iteration	X	LASSO on FQI	Value pursuit iteration
Bellman Residual Minimization	X	Loth et al (2007)	Painter-Wakefiled & Parr (2009)

Comparisons across AVI (approximate value iteration) & API (approximate policy iteration) are rare

Feature Dimensionality Reduction

Take a set of features, and project down to a lower dimensional basis

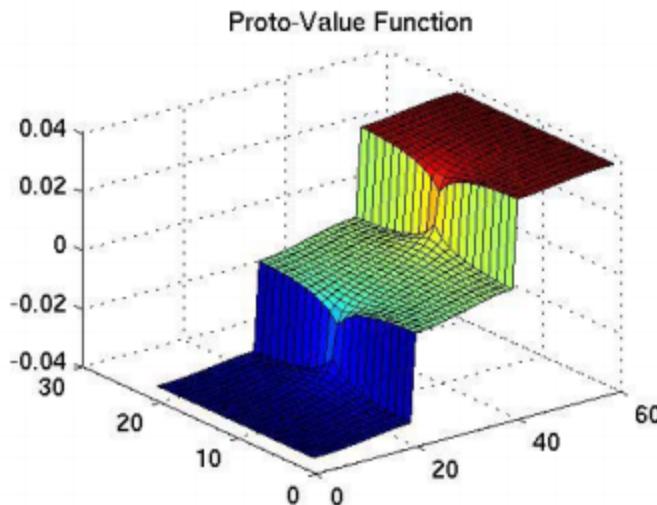
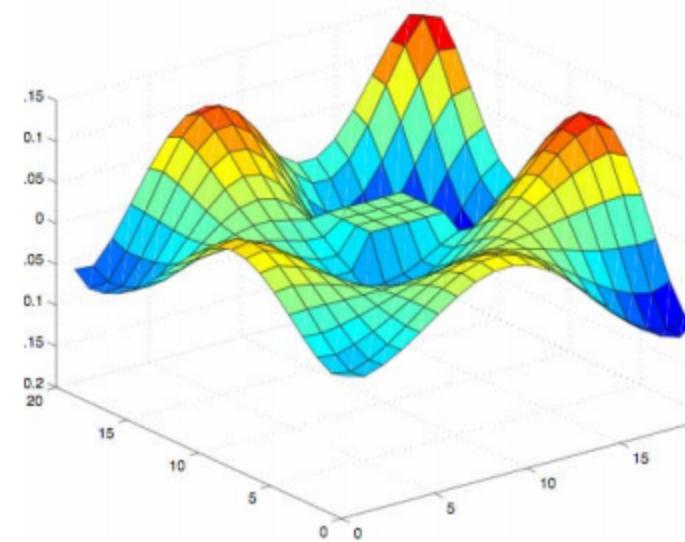
Can use any form of dimensionality reduction
(Principle component analysis, ...)

Feature Construction

- Protovalue function construction
(Mahadevan & colleagues)
- Bellman Error Basis Function (BEBF) (Parr et al. 2007)
- Incremental Feature Dependency Discovery
(Geramifard & colleagues)

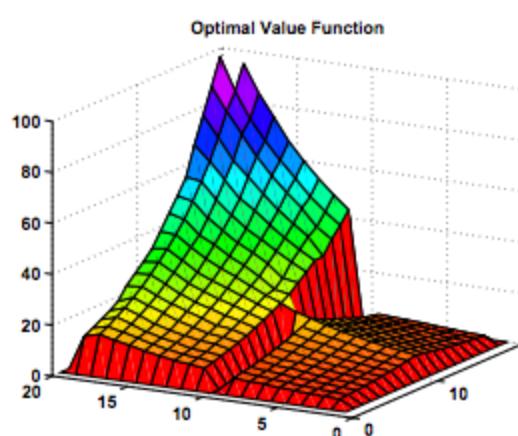
Proto-Value Functions

(Mahadevan: AAAI 2005, ICML 2005, UAI 2005)

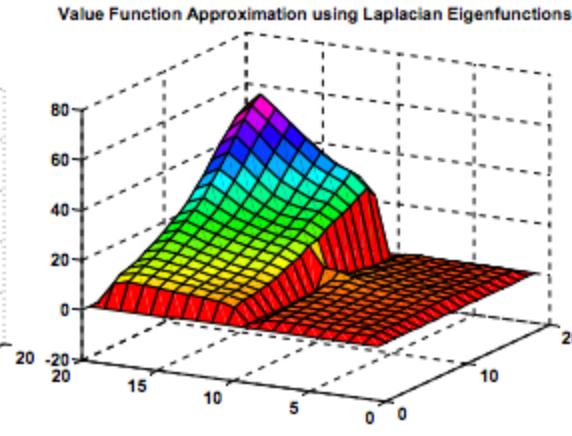


Proto-value functions are **reward-independent**
global (or local) basis functions, **customized**
to a state (action) space

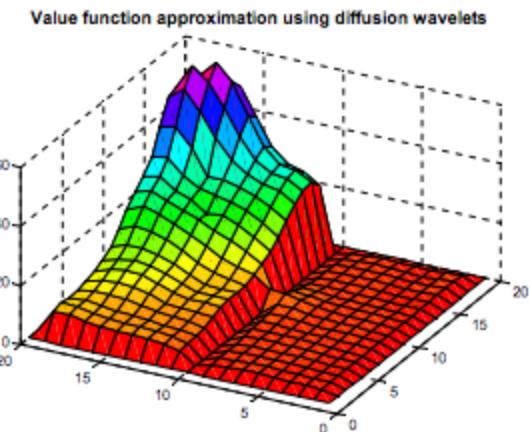
Value Function Approximation using Fourier and Wavelet Bases



OPTIMAL VF



FOURIER BASIS

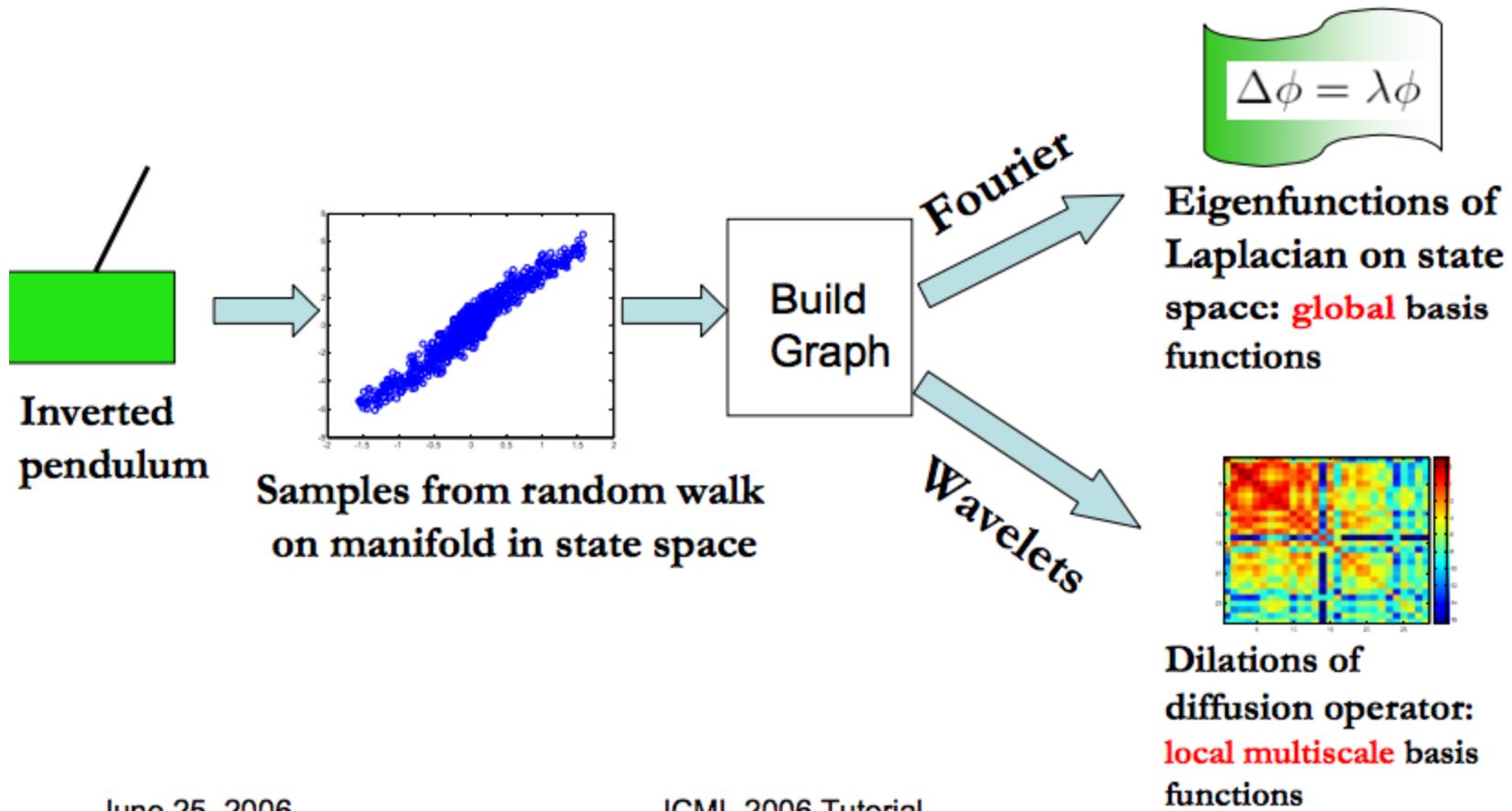


WAVELET BASIS

These bases are automatically learned from a set of transitions (s, a, s')

Overview for Protovalue Function Basis Invention

(Mahadevan, AAAI, ICML, UAI 2005; Mahadevan & Maggioni, NIPS 2005;
Maggioni and Mahadevan, ICML 2006)



June 25, 2006

ICML 2006 Tutorial

Slide from Mahadevan

Overview of Selecting Features for Feature-Based Approximate RL

1. Feature selection

Input: Big feature set

Output: Subset of original features

2. Feature compression/projection

Input: Big feature set

Output: Projected (dimensionality reduc) features

3. Feature construction

Input: Small feature set

Output: Superset of original feature set

Evaluation of Methods for Designing Features (for RL)

1. Empirical quality of resulting solution

Mean square error relative to true value function

Output: Subset of original features

2. Computational complexity

As a function of features, data set size, ...

Output: Projected (dimensionality reduc) features

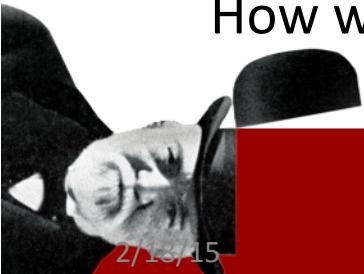
3. Formal guarantees on performance

Is the method stable? (Converge to a fixed set of features)

If a small set of features is sufficient to represent V , can find that set?

4. Sample efficiency

How well does it use the available data to find good features?



Rest of Today

1. Feature selection

Input: Big feature set

Output: Subset of original features

Idea: Greedily select features.

2. Feature compression/projection

Input: Big feature set

Output: Projected (dimensionality reduc) features

3. Feature construction (may get to)

Input: Small feature set

Output: Superset of original feature set

OMP Overview: On the board

2/18/15

OMP Empirical Comparison

- LARS-TD: LSTD + L1 regularization
- LARS-BRM: BRM + L1 regularization
- OMP-TD
- OMP-BRM

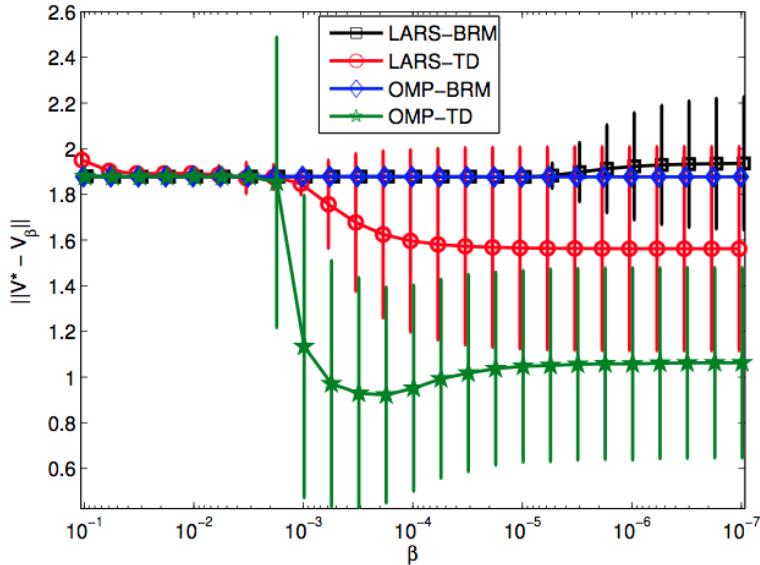
Empirical Setup

Problem	State space	Features	Samples	Trials	LARS-TD L_2 ?	BRM double samples?
Chain	Discrete, 50 states	208	500	1000	✗	✓
Pendulum	Continuous, 2d	268	200	1000	✓	✓
Blackjack	Discrete, 203 states	219	1600	1000	✗	✗
Mountain Car	Continuous, 2d	1366	5000	100	✓	✗
Puddleworld	Continuous, 2d	570	2000	500	✗	✗
Two Room	Continuous, 2d	2227	5000	1000	✗	✗

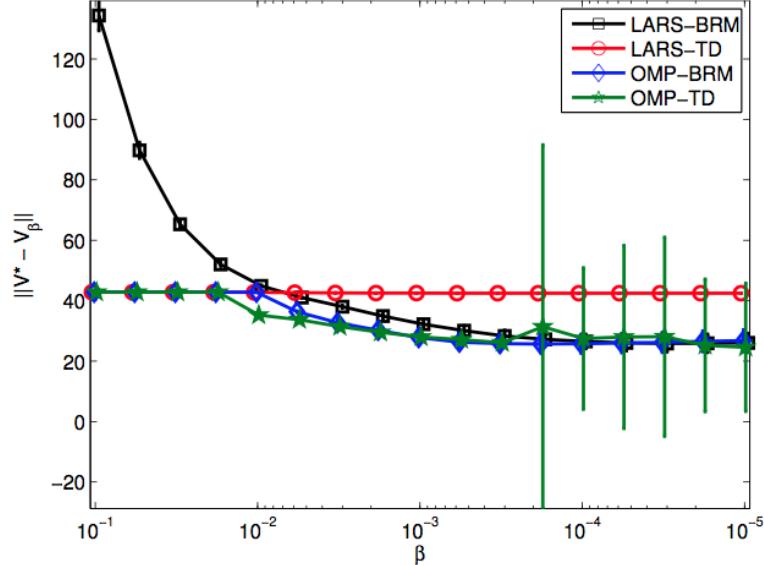
size of dataset
used to fit V^*

number of
trials used to
evaluate
resulting
solution/
weights

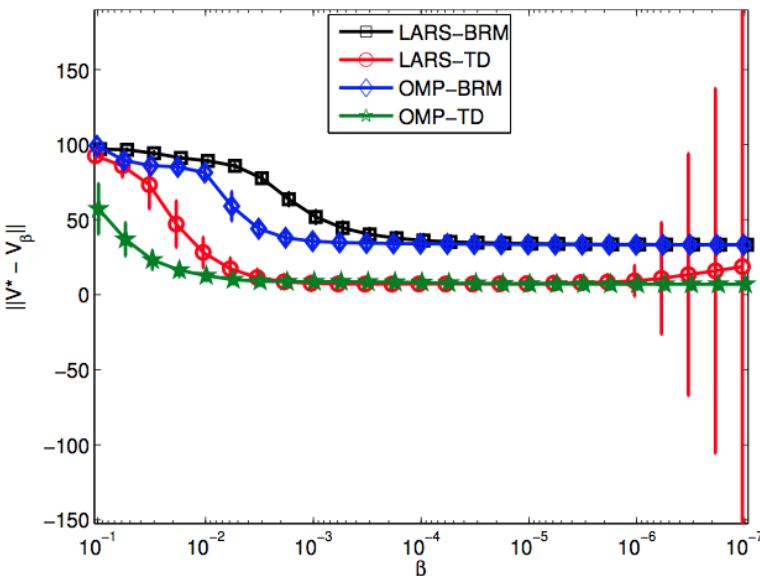
OMP Results: TD generally better than BRM, OMP Generally better than L1 Regularization



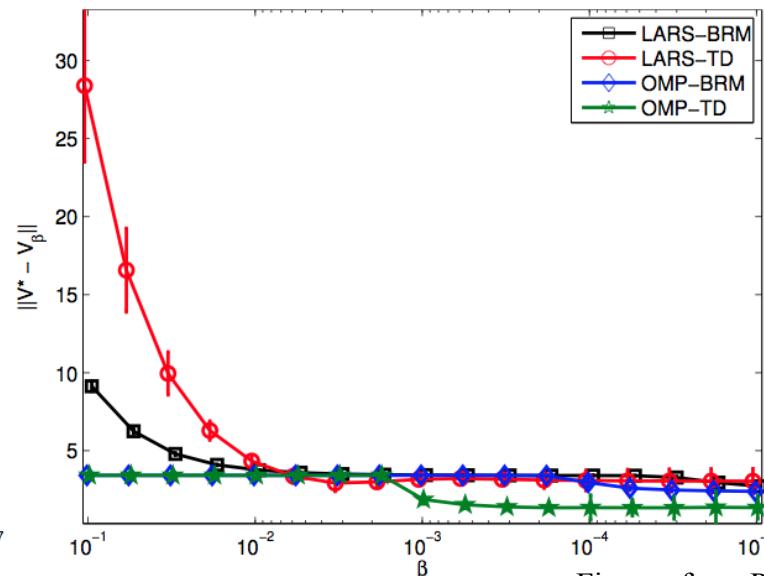
(c) Blackjack



(d) Mountain Car



(e) Puddleworld



(f) Two Room

*Important Notes on Empirical Comparison

- LARS-TD
 - Sometimes added small amount of L2 regularization on top of L1 regularization
- OMP-BRM
 - Sometimes added in small amount of L2 regularization
- OMP-TD
 - Added small amount of L2 regularization when computing final solution for a given beta
 - Seemed critical to get stable performance for harder problems
 - When # samples very small, more unstable
-

OMP-BRM and OMP-TD Summary

Takes in a set of features

Greedily adds features to set

OMP-TD has better empirical performance

than OMP-BRM, but OMP-BRM has stronger
theoretical guarantees

OMP-BRM/TD Limitation

Scalability

Required to compute residual with all (remaining) features at every iteration

Rest of Today

1. Feature selection

Input: Big feature set

Output: Subset of original features

Idea: Greedily select features.

2. Feature compression/projection

3. **Feature construction**

Input: Small feature set

Output: Superset of original feature set

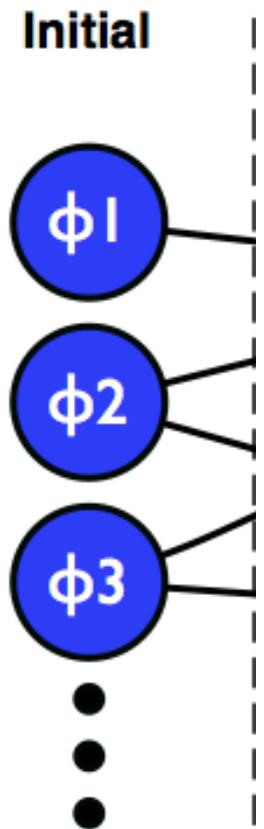
Idea: Greedily add conjunctions of features

Alternative: Generate Features

2/18/15

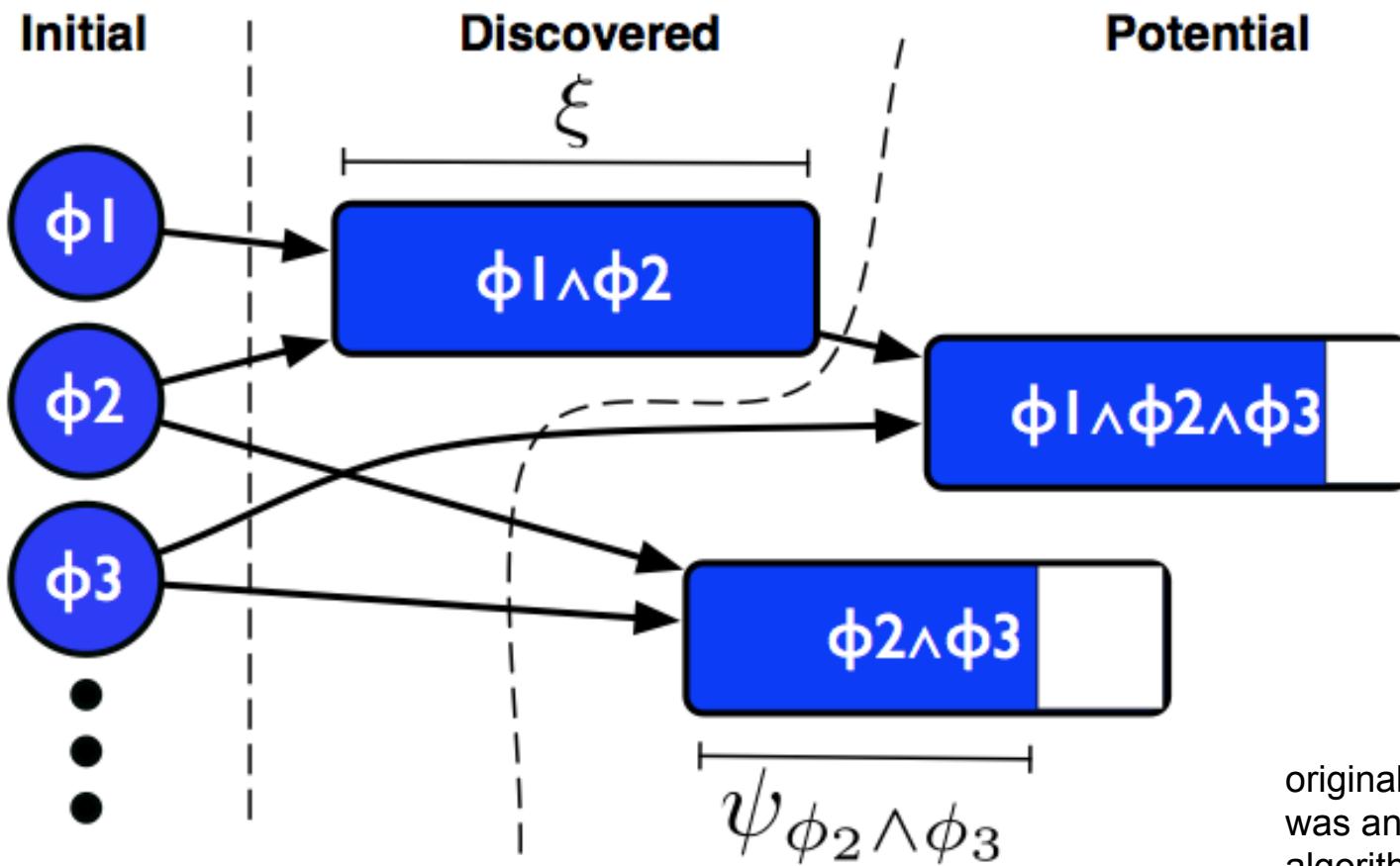
iFDD

[Geramifard et al. 2011]



iFDD

[Geramifard et al. 2011]



Batch-iFDD

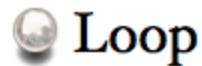
- Run iFDD in Batch: Add new feature (conjunction) with highest error reduction (akin to OMP-TD).
- Theorem:** iFDD in batch approximately finds the feature with the best guaranteed error reduction.

$$\|\tilde{\mathbf{V}} - \Pi \mathbf{T}(\tilde{\mathbf{V}})\|$$

$$\tilde{f}_1^* = \operatorname{argmax}_{f \in \text{pair}(\mathbf{x})} \frac{|\sum_{i \in \{1, \dots, m\}, \phi_f(s_i) = 1} \delta_i|}{\sqrt{\sum_{i \in \{1, \dots, m\}, \phi_f(s_i) = 1} 1}} \quad \text{iFDD}^+$$

$$\tilde{f}_2^* = \operatorname{argmax}_{f \in \text{pair}(\mathbf{x})} \sum_{i \in \{1, \dots, m\}, \phi_f(s_i) = 1} |\delta_i| \quad \text{iFDD}_{\text{[Geramifard et al. 2012]}}$$

Batch-iFDD

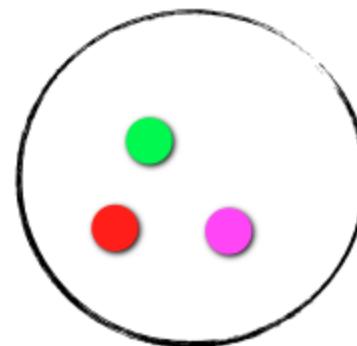


(1) Run LSTD [Bradtko & Barto 1996]

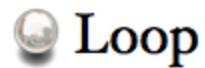
(2) Expand feature sets

Remaining

Used



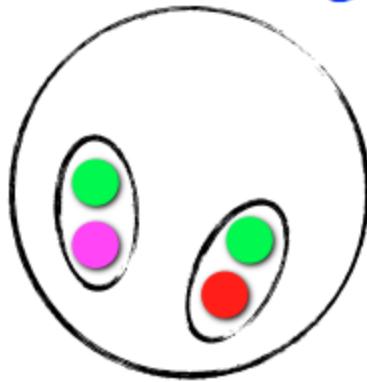
Batch-iFDD



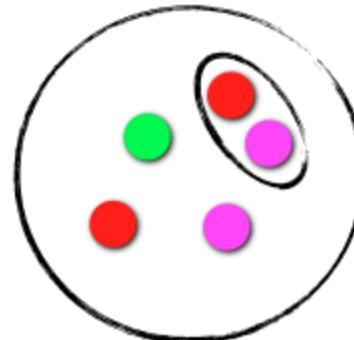
(1) Run LSTD [Bradtko & Barto 1996]

(2) Expand feature sets

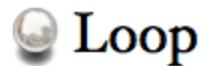
Remaining



Used



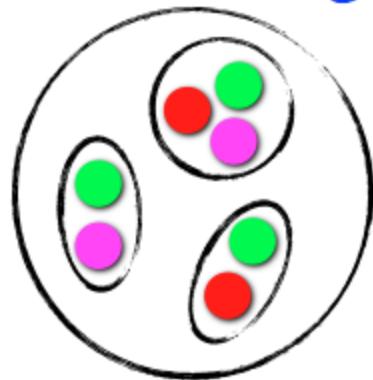
Batch-iFDD



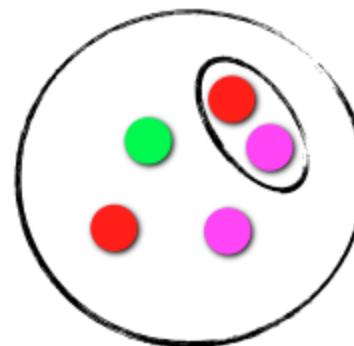
(1) Run LSTD [Bradtko & Barto 1996]

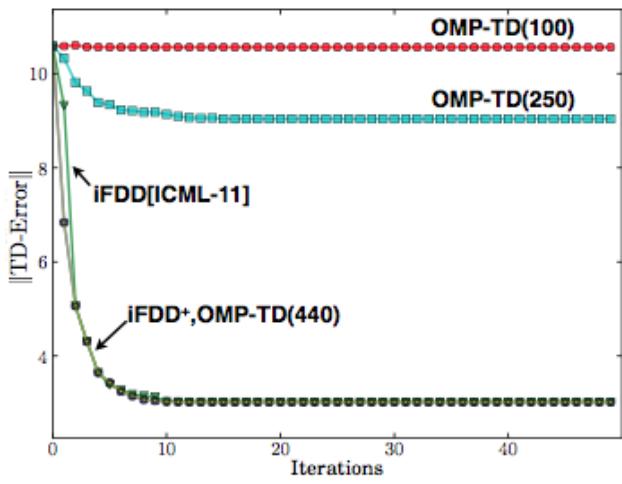
(2) Expand feature sets

Remaining



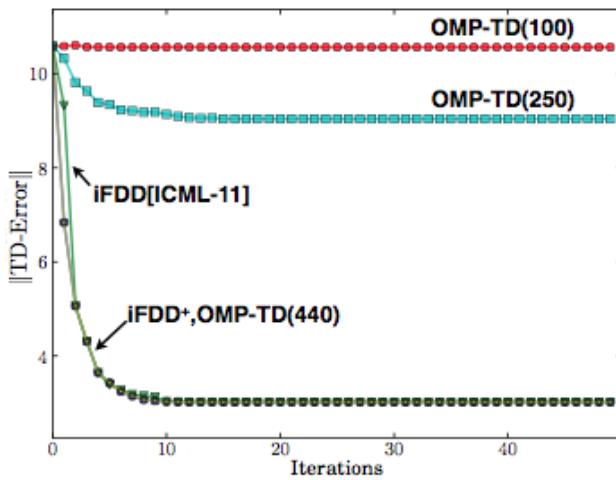
Used



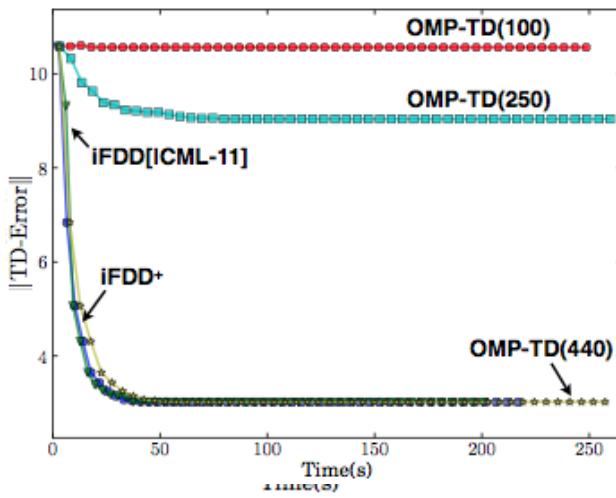


Algorithm 1

Goal

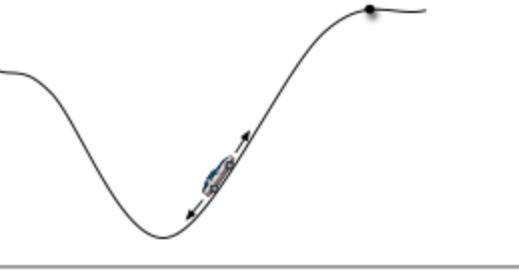


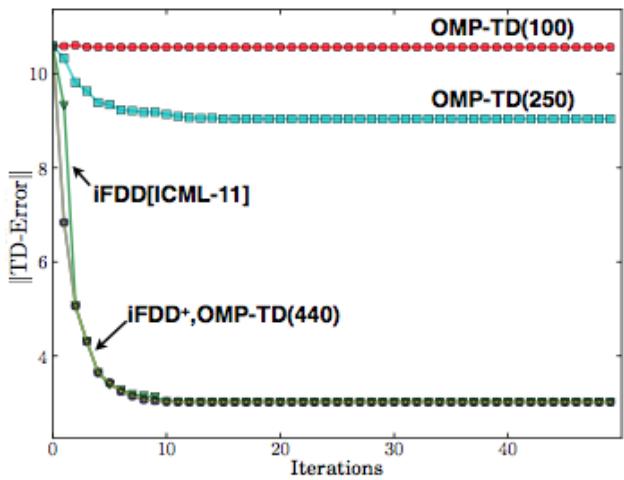
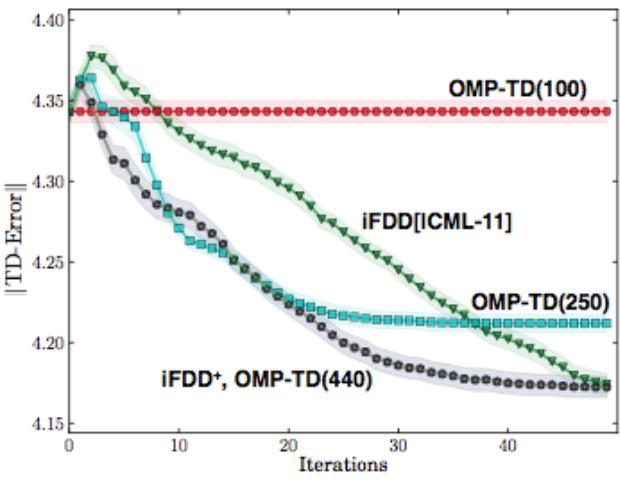
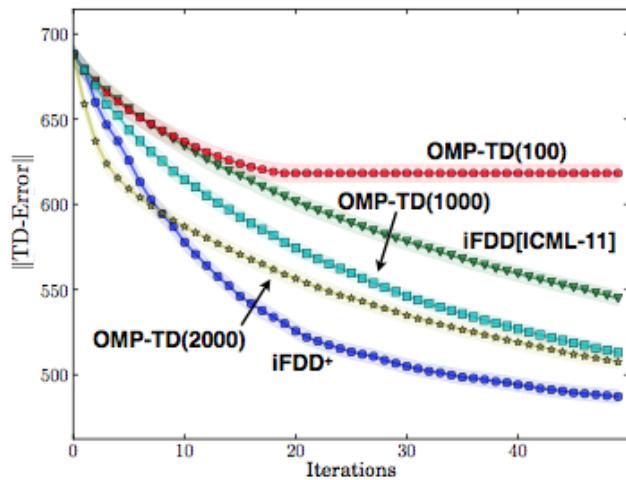
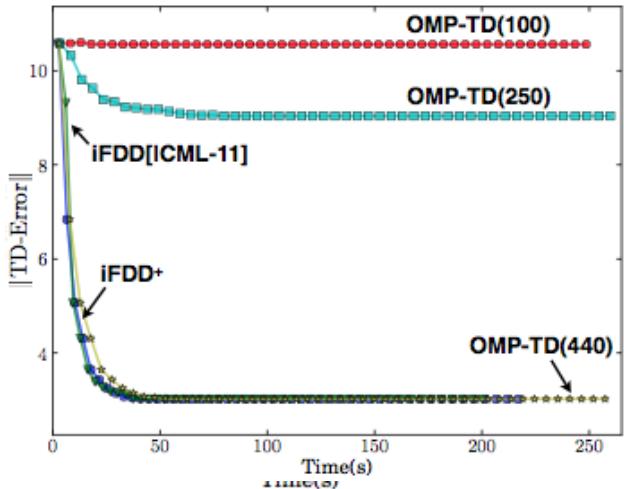
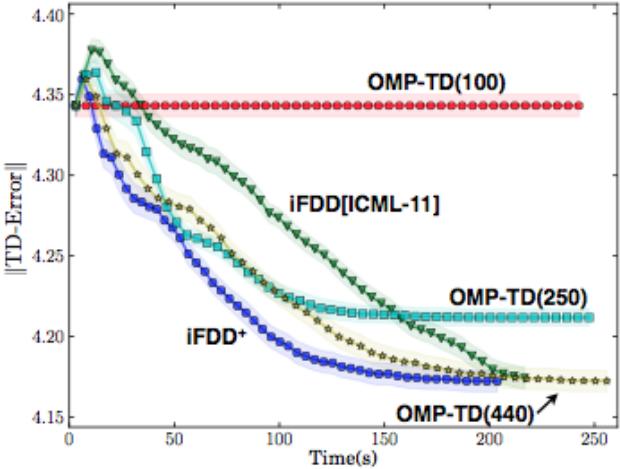
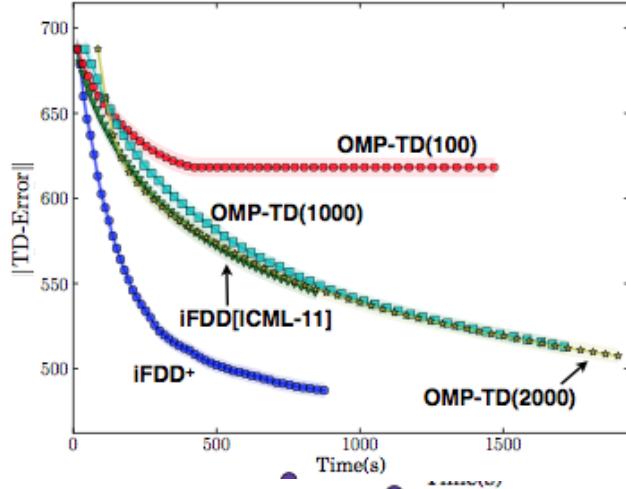
Iterations



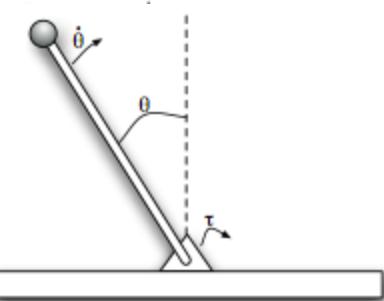
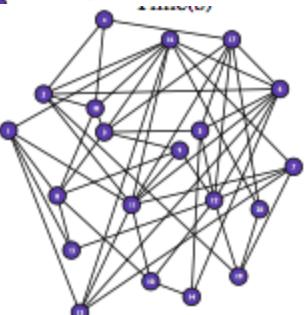
Computation Time

Goal





Goal



Feature Generation with OMP

Batch IFDD+ sample efficient and
(computationally) scalable

Still relies on decent input set of features

Requires input features are binary

Also limits type of features can create
OMP-TD can handle general features

Summary

1. Feature selection

Should be able to characterize OMP-BRM & OMP-TD
(computational complexity, strengths/limitations)

Should be able to implement both

2. Feature compression/projection (know these exist)

3. Feature construction

Should understand (at a high level) how Batch iFDD works

Be able to list benefits over OMP

