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Spoken Dialogue System Example
(Pietquin, Geist, Chandramohan & Frezza-Buet)

Form-filling, task oriented information system for restaurants
Goal: determine the value of 3 slots

e Restaurant location
e Restaurant cuisine

* Restaurant price range

Information state of slot represents confidence in the value
(from 0 to 1) — State space is 3 dim continuous vactor

* Action space:

« Ask-A-Slot (one for each slot), ExplicitConfirm-Slot

(one for each slot), Implicit-Confirm-And-Ask-A-Slot (6

actions, in combination of 2 slots) and Close-Dialogue
qction.

Carnegie Mellon University
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Spoken Dialogue System Example

(Pietquin, Geist, Chandramohan & Frezza-Buet)

Form-filling, task oriented information system for restaurants
Goal: determine the value of 3 slots

 Restaurant location

* Restaurant cuisine

* Restaurant price range
Information state of slot represents confidence in the value
(from 0 to 1) — State space is 3 dim continuous vactor
Q-function representation?

e 351 =33x 13 Radial basis functions

e 3 Gaussian kernels for each state dimension

13 actions

Carnegie Mellon University
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What if We Have Very Little Data?
What is the Danger?

* Form-filling, task oriented information system for restaurants
* Goal: determine the value of 3 slots
 Restaurant location
* Restaurant cuisine
* Restaurant price range
* Information state of slot represents confidence in the value
(from 0 to 1) — State space is 3 dim continuous vactor
* Q-function representation?
e 351 =33x 13 Radial basis functions
e 3 Gaussian kernels for each state dimension
13 actions

Carnegie Mellon University
5




What if We Have Very Little Data?
What is the Danger? Overfitting

Form-filling, task oriented information system for restaurants
Goal: determine the value of 3 slots

 Restaurant location

* Restaurant cuisine

* Restaurant price range
Information state of slot represents confidence in the value
(from 0 to 1) — State space is 3 dim continuous vactor
Q-function representation?

e 351 =33x 13 Radial basis functions

e 3 Gaussian kernels for each state dimension

13 actions

Carnegie Mellon University
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Feature-Based Approximate RL

* Where do features come from?
* Does it matter?
* Yes!
* |mpacts computation
* |mpacts performance
* Changes feature class, representational
power
* Changes finite sample (finite dataset)
performance (can lead to overfitting, changes
estimation error

Carnegie Mellon University
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Overview of Selecting Features for
Feature-Based Approximate RL

1. Feature selection

Input: Big feature set

Output: Subset of original features
2. Feature compression/projection

Input: Big feature set

Output: Projected (dimensionality reduc) features
3. Feature construction

Input: Small feature set

Output: Superset of original feature set

Carnegie Mellon University
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Feature Selection

. Input: Big feature set
. Output: Subset of features
. Techniques build strongly on supervised
learning regularization
. L2 norm (Ridge regularization)
- min [|Y-Xw|]|,+b[|w]],
. L1 norm (Lasso)
- min [|Y-Xw|]|,+b[|w]],

Carnegie Mellon University
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Feature Selection for Approximate
RL

Objective of Fitting L2 Regularization L1 Regularization Orthogonal
QN (Ridge) (LASSO) Matching Pursuit
Fixed Point (LSTD) X LARS-TD (Kolter & | Painter-Wakefiled &
Ng 2009), Johns et Parr (2009)
al. (2010)
Fitted V/Q Iteration X LASSO on FQI Value pursuit
iteration
Bellman Residual X Loth et al (2007) Painter-Wakefiled &
Minimization Parr (2009)

Comparisons across AVI (approximate value iteration) & API
(approximate policy iteration) are rare

Carnegie Mellon University
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Feature Dimensionality Reduction

Take a set of features, and project down to a
lower dimensional basis

Can use any form of dimensionality reduction
(Principle component analysis, ...)

Carnegie Mellon University
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Feature Construction

. Protovalue function construction
(Mahadevan & colleagues)

. Bellman Error Basis Function (BEBF) (Parr et
al. 2007)

. Incremental Feature Dependency Discovery
(Geramifard & colleagues)

Carnegie Mellon University
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Proto-Value Functions

(Mahadevan: AAAI 2005, ICML 2005, UAI 2005)

Proto-Value Function

004"

0.02.- "

0024

Proto-value functions are reward-independentw
global (or local) basis functions, customized
to a state (action) space

Slide from Mahadevan Carnegie Mellon University
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Value Function Approximation
using Fourier and Wavelet Bases

Value function approximation using diffusion wavelets

OPTIMAL VF FOURIER BASIS WAVELET BASIS

These bases are automatically learned
from a set of transitions (s,a,s’)

Slide from Mahadevan Carnegie Mellon University
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Overview for Protovalue Function Basis Invention

(Mahadevan, AAAI,ICML,UAI 2005; Mahadevan & Maggioni, NIPS 2005;
Maggioni and Mahadevan, ICML 2006)

<0 Eigenfunctions of
Laplacian on state

|:> Build spacc: global basis
- Graph functions

Inverted
pendulum

Samples from random walk -
on manifold in state space VA
&

n.- l ?:' - ] .._ Y
Y e e |
— 2 et
Dilations of

diffusion operator:
local multiscale basis

June 25, 2006 ICML 2006 Tutorial functions

Slide from Mahadevan
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Overview of Selecting Features for
Feature-Based Approximate RL

1. Feature selection

Input: Big feature set

Output: Subset of original features
2. Feature compression/projection

Input: Big feature set

Output: Projected (dimensionality reduc) features
3. Feature construction

Input: Small feature set

Output: Superset of original feature set

Carnegie Mellon University
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Evaluation of Methods for Designing Features (for RL)

1. Empirical quality of resulting solution
Mean square error relative to true value function
Output: Subset of original features
2. Computational complexity
As a function of features, data set size, ...
Output: Projected (dimensionality reduc) features
3. Formal guarantees on performance
Is the method stable? (Converge to a fixed set of features)
If a small set of features is sufficient to represent V, can find that set?
4. Sample efficiency
How well does it use the available data to find good features?

Carnegie Mellon University
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Rest of Today

1. Feature selection

Input: Big feature set

Output: Subset of original features

Idea: Greedily select features.
2. Feature compression/projection

Input: Big feature set

Output: Projected (dimensionality reduc) features
3. Feature construction (may get to)

Input: Small feature set

Output: Superset of original feature set

Carnegie Mellon University
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OMP Overview: On the board

Carnegie Mellon University
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OMP Empirical Comparison

. LARS-TD: LSTD + L1 regularization
RM: BRM + L1 regularization

. LARS-B
. OMP-T
. OMP-B

D

RM

Carnegie Mellon University
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Empirical Setup

Problem State space Features Samples Trials LARS-TD L2? BRM double samples?
Chain Discrete, 50 states 208 500 1000 X Vv
Pendulum Continuous, 2d 268 200 1000 Vv Vv
Blackjack Discrete, 203 states 219 1600 1000 X X
Mountain Car Continuous, 2d 1366 5000 100 Vv X
Puddleworld Continuous, 2d 570 2000 500 X X
Two Room Continuous, 2d 2227 5000 1000 X X
_ |
size of dataset
used to fit V* number of
trials used to
evaluated
resulting
solution/
weights

Slide from Painter-Wakefield & Carnegie Mellon University
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IV =V,

OMP Results: TD generally better than BRM,
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*Important Notes on Empirical
Comparison

LARS-TD
* Sometimes added small amount of L2 regularization on
top of L1 regularization
OMP-BRM
 Sometimes added in small amount of L2 regularization
OMP-TD
* Added small amount of L2 regularization when
computing final solution for a given beta
* Seemed critical to get stable performance for harder
problems
* When # samples very small, more unstable

Carnegie Mellon University
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OMP-BRM and OMP-TD Summary

Takes in a set of features
Greedily adds features to set

OMP-TD has better empirical performance

than OMP-BRM, but OMP-BRM has stronger
theoretical guarantees

Carnegie Mellon University
24



OMP-BRM/TD Limitation

Scalability

Required to compute residual with all
(remaining) features at every iteration

Carnegie Mellon University
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Rest of Today

Feature selection

Input: Big feature set

Output: Subset of original features
|Idea: Greedily select features.

Feature compression/projection
Feature construction

Input: Small feature set
Output: Superset of original feature set

Idea: Greedily add conjunctions of features

Carnegie Mellon University
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Alternative: Generate Features

Carnegie Mellon University
27



iFDD

[{Geramifard et al. 2011}

Initial

Slide from Geramifard Carnegie Mellon University
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iFDD

[{Geramifard et al. 2011}

Initial Discovered | Potential
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original algorithm

w¢2 A ¢3 was an online

algorithm
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Batch-iFDD

< Run iFDD in Batch: Add new feature (conjunction) with
highest error reduction (akin to OMP-TD).

o Theorem.: iIFDD in batch approximately finds the feature
with the best guaranteed error reduction.

'V -IT(V)||
Py Z’L ym 8 6|
* —  argmax €{1,-,m}os(si)=1 SFDD*
f€pair(x) \/ Zze{l . m}.és(s:)=1 1
fx = argmax |05 _
fé€pair(x) ie{1,..., 'mz},:d)f (s;)=1 lFDD[Geramifard et al. 2012}

Carnegie Mellon University




Batch-iFDD

« Loop
(I) Run LSTD {Bradtke & Barto 1996}

(2) Expand feature sets

Carnegie Mellon University
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Batch-iFDD

< Loop
(I) Run LSTD {Bradtke & Barto 1996}

(2) Expand feature sets

Carnegie Mellon University
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Batch-iFDD

< Loop
(I) Run LSTD {Bradtke & Barto 1996}

(2) Expand feature sets

Slide from Geramifard Carnegie Mellon University
33



OMP-TD(100)

10
OMP-TD(250)
= [N
8 iFDD[ICML-11]
/IFDD*,OMP—TD(“O)
4t
0 10 20 £ 0
Iterations
Aoy

Goal




OMP-TD(100)
10
L OMP-TD(250)
— 8T \
8 iFDD[ICML-11]
/IFDD*,OMP-TD(MO)
4t
0 10 20 30 10
Iterations
- OMP-TD(100)
IU - \
.‘-_ OMP-TD(250)
X
8 iFDD[ICML-11]
=
£
b
2 st
= /lFDD*
nt " OMP-TD(440).
wd
0 50 100 150 200 250
Time(s)
Aoy

Goal

Iterations

Computation Time




| TD-Error||

| TD-Error||
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Feature Generation with OMP

Batch IFDD+ sample efficient and
(computationally) scalable

Still relies on decent input set of features
Requires input features are binary
Also limits type of features can create
OMP-TD can handle general features

Carnegie Mellon University
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W

Summary

Feature selection

Should be able to characterize OMP-BRM & OMP-TD
(computational complexity, strengths/limitations)

Should be able to implement both

Feature compression/projection (know these exist)
Feature construction

Should understand (at a high level) how Batch iFDD works
Be able to list benefits over OMP

Carnegie Mellon University
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