15-889e Real Life Reinforcement Learning

Homework 2 Due 11/23 at 1:30pm

Rules:

1. Homework is due Monday 11/23 at 1:30pm. Please see course website for policy on late submission.

2. We recommend that you typeset your homework using appropriate software such as BTEX. If you are
writing please make sure your homework is cleanly written and legible. The TAs will not invest undue
effort to decrypt bad handwriting.

3. Please submit the written portion of the homework and the programming portion separately.

4. You may do the programming part of the homework in pairs. If you choose to do this, you should
submit a single homework for that part, with both of your names and andrew ids.

5. You are allowed to discuss ideas about the written portion of the homework with others, but you must
write up your own solution. If you do discuss the written portion with others, please indicate your
collaborators in your submission. Also, if you use any outside sources (wikipedia, a technical paper or
chapter, etc) to answer the questions, please list them.




Problem 1:

Recall that importance sampling can be used to generate an estimate of the performance of one policy,
called the evaluation policy, given a trajectory that was generated by a different policy, called the
behavior policy. The importance sampling estimate for a trajectory t is:
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where 7, is the evaluation policy, m, is the behavior policy, y is the reward discount factor, H is the
trajectory length, and S;, A;, and R, are the state, action, and reward at time t. The product in this
equation is called the importance weight:

H

_ 1 (A¢]Se)
o =] G

t=1

and the sum is called the return. If there are multiple trajectories, D = {t;}/-, then the mean IS
estimator is:

IS(D) = %Z IS(D).
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A) Show that the expected value of IS(7) if T is produced by 7}, is the expected return of 7.
B) Show that
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importance sampling estimates from many trajectories. The researcher calls this new estimator
approximate importance sampling and is defined as:
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Show that AIS(D) € [0, HR,,4,] if the rewards are bounded by R; € [0, Ryax]-

D) Why is the result in C) important? Why does it suggest that approximate importance sampling
might give better estimates than ordinary importance sampling?

E) Show that AIS(D) is not always an unbiased estimator of the expected return of ..

F) Whatis AIS(D) an unbiased estimator of if D contains only a single trajectory? Show this result
mathematically.

G) Given what we know about approximate importance sampling, could we use it with the
Chernoff-Hoeffding inequality to produce a confidence interval on the performance of the
evaluation policy?



H) If you are given an evaluation policy, m,, but can select the behavior policy, 73, you might do so
with the goal of minimizing the variance of IS. Show (e.g., by counter-example) that using ;, =
T, is not necessarily optimal.



Expected Regret bounds

Assume a reinforcement learning algorithm A for discounted infinite-horizon MDPs has expected regret
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for all T' > 0 where E, is over probability distribution with respect to the optimal policy 7, and E4 is the
expectation w.r.t. the algorithm’s behavior. We further assume that rewards r, € [0, 1] are normalized.
a) Show that for any €’ > 0 and 7" > H log £ where H = 1/(1 — ) with discount factor ~ it holds
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b) Show that for any ¢ >0 and 7" > H log &
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where V) is the value function of the (possibly nonstationary) policy that algorithm A follows.
¢) Assume now f(T) = +/T. Show that for any ¢ > 0 and ¢t > 1+ Ig—; log? 4

E.[Va(s))] — Ea[Va(s))] < e (4)

This shows that for all time steps after ¢ (as defined above), the algorithm will make near optimal decisions
in expectation, similar to the PAC setting. Hint: To use the results you have already derived (in parts a or
b), it will be helpful to set € to a function of e.



Sample Efficency of RL Algorithms for HIV Treatment

For the programming you will get to investigate how different online RL algorithms perform experimen-
tally. The domain is to create structured treatment interruption strategies for HIV patients. Posing this as a
reinforcement learning problem is described in ”Clinical Data Based Optimal STT Strategies for HIV: a Re-
inforcement Learning Approach”: http://orbi.ulg.ac.be/bitstream/2268,/13368/1/ernst-benelearn-2006.pdf

A simulator for this domain has already been previously implemented in RLPy. RLPy is a software tool
to make it easier to run RL and sequential decision making experiments. We highly encourage you to use
RLPy for this assignment. If you would like to not use it, and implement a simulator yourself, please contact
us first to check if your alternate plan is acceptable.

RLPy is freely available on the web, and documentation about using it and pointers to the code base are
available at: http://rlpy.readthedocs.org/en/latest/

For this homework you will be implementing online sample efficient RL algorithms for this HIV domain.
Please implement and compare the results for at least 2 of the following:

e A PAC algorithm

e A regret minimizing algorithm

e A Bayes optimal algorithm

e An algorithm designed to be empirically data efficient

One of the two approaches you use should involve at least one of the following: Gaussian Processes,
random forests, neural nets or Monte Carlo tree search. You are welcome to use packages to implement GPs,
NN, or random forests. There is existing code for MCTS for POMDPs that you are welcome to build on,
but it will require modification for the RL case.

You should implement your algorithms, and perform at least 10 runs of each algorithm, and present
graphs showing

e the average reward per time step vs the time step
e the average cumulative reward per time step vs the time step

Please do this for two very different horizon lengths, such as H = 10 and H = 200. Plot these results
separately, as some algorithm’s behavior depends on the input horizon.

Algorithms 1-3 have formal guarantees under certain circumstances, but empirically it is very likely to
be more effective to tune the parameters. You should justify your choice of the parameters you use, and/or
explore more than one option.

In addition to the required figures, you should include a short writeup of what you did, how you ran the
experiments, and whether and why one or the other algorithm is more effective at leveraging data.

Please submit your code (that can be run using RLPy).



