Bypassing Network Flooding Attacks using FastPass

Dan Wendlandt, David G. Andersen, Adrian Perrig
Carnegie Mellon University

Abstract

We describe the design and implementation of FastPass,
a next-generation network architecture that thwarts band-
width flooding attacks by providing destinations with fine-
grained control over their upstream network capacity. Prior
attempts to achieve network flood resilience have required
destinations to successfully receive an initial unprotected
packet (capability-based designs) or have relied upon global
cooperation (filtering-based designs). FastPass requires nei-
ther. Instead, it allows destinations to distribute crypto-
graphic availability tokens to potential senders that instruct
routers to prioritize a limited rate of traffic from the sender
in the case of network congestion. In contrast to prior ar-
chitectures, we show that availability tokens provide two
highly desirable DoS resilience properties: (1) hosts capa-
ble of identifying legitimate users can quickly communicate
regardless of the size of the attack directed against them;
and (2) hosts unable to differentiate between legitimate and
malicious senders can strictly limit the ability of attackers
to overwhelm incoming network capacity.

1 Introduction

An ounce of prevention is worth a pound of cure.
— Benjamin Franklin

Over the past ten years, the Internet has expanded at a
frantic pace, changing the way people communicate, shop,
conduct business, and find information. While this growth
is likely to continue in many areas, we believe that a lack of
guaranteed availability presents a significant barrier to the
adoption of the Internet in many “critical infrastructure” set-
tings that include near real-time response. For the Internet
to support such applications requires a bound on the time to
begin communication as well as a guarantee that subsequent
communication cannot be disrupted.

Today’s Internet architecture offers reachability, the abil-
ity to find a path to a particular destination, as its funda-
mental design goal [9]. In this paper, we advocate that the
Internet of the future should position availability as the fun-
damental service provided by the network layer, giving des-
tinations complete control over their incoming bandwidth.
Such a shift would provide two strong properties: first, des-
tinations capable of identifying legitimate users could pri-
oritize such traffic to resist attacks of arbitrary size. Sec-
ond, destinations unable to distinguish between good and

bad users could require senders to commit something of
value (e.g., a deposit or proof of work) before they could
send traffic at even a low rate. Compared to the Internet’s
original sender-driven design, this “default off” approach
to network forwarding priority places the destination in a
significantly more powerful position to defend itself against
network flooding attacks, while maintaining the traditional
open architecture when no congestion exists.

FastPass provides hosts with an efficient and simple
mechanism to leverage arbitrary destination-specific poli-
cies to prioritize and rate-limit incoming network traffic at
routers in the case that links become congested. Each Inter-
net destination, a public web-site, corporate VPN server, or
a real-time device, can utilize its particular domain knowl-
edge about incoming clients to vet incoming traffic while
keeping the actual network infrastructure generic to the type
of admission control performed. Furthermore, we provide
these properties without introducing additional trust or co-
operation requirements beyond what is assumed in today’s
Internet.

At a high level, FastPass enabled destinations distribute
small (80 bytes) availability tokens to clients who are in-
vited to open a connection to the server. Tokens are efficient
cryptographic signatures created with the destination’s pri-
vate key. The corresponding public key is distributed with
the destination’s routing advertisements so that it reaches all
Internet routers to be used for token verification. Tokens can
be provided to the clients in advance or via an out-of-band
channel. Potential token distribution mechanisms include:

* A user obtains a token from a large, distributed token
provider, similar to today’s content delivery networks.
While the service being protected may be difficult to
split or copy, token granting can easily be replicated
and distributed for DDoS resilience.

» After a customer makes a purchase, an e-commerce
site supplies the client host with a supply of tokens
guaranteeing future access to the site at a limited rate.

* An online brokerage customer obtains a cryptographic
authentication dongle from the company in order to
securely access her account. The user’s computer se-
curely obtains a token from this dongle.

The tokens are then stored on the user’s system until the
client first attempts to contact the destination, at which point
the client inserts the token data into the initial packet follow-
ing the IP header before transmission. Using the public key
distributed by the routing protocol, routers verify tokens for

each packet, prioritizing only the traffic with tokens con-
taining a valid signature for the addressed destination. With
this first packet protected, all future traffic can be protected
using additional tokens supplied by the destination, or more
likely, using efficient mechanisms such as router-based net-
work capabilities (see Section 3.6).

FastPass differs from past capability schemes by not re-
quiring an initial unprotected setup packet that is vulnerable
to Denial-of-Capability (DoC) [3], an attack in which floods
of set-up packets prevent legitimate set-up requests from
reaching the destination. Furthermore, in solving this prob-
lem FastPass does not rely on remote domains to perform
filtering on a victim’s behalf, as is the case with coordinated
filtering approaches. FastPass does not require that the des-
tination be able to perfectly distinguish between good and
bad clients, but instead gives destinations the power to ef-
fectively control the rate of incoming traffic in either case.
As a result, the malicious use of tokens is self-limiting.
Contributions: FastPass is a novel architecture that pro-
tects all types of traffic, including connection establishment
and datagram packets, yet requires no additional public key
infrastructure, has no single point of failure, and requires
no additional trust relationships beyond what is already re-
quired to forward traffic. While our description and dis-
cussion of FastPass raises some new research questions and
design debates, the architecture presents a novel solution to
the unsolved Denial of Capability vulnerability and there-
fore represents important progress toward building a future
Internet architecture resistant to flooding attacks.

2 Related Work

Early network flood defense research used preventative ap-
proaches that traced packets back to the host or network
from which they originated [6, 20, 21], or forced attackers
to use their real IP addresses [11].

More recent approaches have favored attack prevention,
by having routers make filtering or prioritization decisions
in the face of congested buffers. Early router-based pro-
posals [12, 19] considered the feasibility of routers identi-
fying and filtering aggregates of attack traffic. With limited
knowledge, however, such router-based filtering is impre-
cise, providing no strong guarantees that sufficient quanti-
ties of attack traffic will be blocked or that no legitimate
traffic will be filtered.

In response, researchers proposed two classes of DoS
resilience schemes utilizing explicit signaling by network
destinations: network capabilities and cooperative filter-
ing. In network capabilities schemes such as SIFF [27]
and TVA [28], a source sends a connection setup packet
which is cryptographically marked by each router along the
path to the destination to create a source and destination-
specific bit-string called a “capability”. The destination can
choose to echo this data-chunk to the original source for in-
clusion in later packets to indicate the destination’s desire
to receive traffic from that host. Routers cryptographically

verify the authenticity of capabilities as they forward pack-
ets, giving priority to capability protected traffic in the case
of congestion. Capability-based systems possess an appeal-
ing simplicity: they require no per-flow state in routers or
message exchanges between routers and end-hosts and per-
form only local operations to mark and later verify capabil-
ities. Nonetheless, routers acquire the knowledge needed to
accurately filter unwanted traffic in a fine-grained fashion.

Unfortunately, the Achilles heel of current capability sys-
tems is the requirement that a sender’s set-up packet must
reach the destination without any prioritization, opening
this set-up channel to Denial-of-Capability (DoC). [3].
SIFF relied on legitimate set-up packets competing with at-
tack set-up packets until one reached the destination by ran-
dom chance. TVA provided improved robustness to floods
on the request channel by having each router fair-queue re-
quest packets based on its network ingress point at the con-
gested network domain. The fair-queueing attempts to iso-
late requests from “good domains” from requests from do-
mains containing attackers, yet our evaluation shows that
even this current approach is vulnerable to a DoC.

As an alternative, AITF [4] proposes that destinations
communicate host-specific filtering requests to remote do-
mains to filter attack traffic. Scalability requirements, how-
ever, force AITF to make a significant security assumption
in order to offer fine-grained destination specific control:
filtering happens only at the network edge, meaning that the
cooperation of domains hosting attacking sources is needed
if the scheme is to distinguish itself from simple destina-
tion filtering. FastPass achieves both the stateless and local
simplicity of network capabilities and the ability to protect
set-up and single datagram traffic offered by cooperative fil-
tering.

Similar to the “Off by Default!” work of Ballani, et al [5],
the FastPass design is motivated by the long-standing secu-
rity principle of default deny. However, unlike Ballani we
apply this only in the case of network congestion and do
not attempt to control non-flood traffic that could easily be
filtered by a local firewall. Additionally, the default-deny
portion of Ballani’s architecture has properties that differ
from the goals of FastPass: (1) a destination must always
knows the IP address of permitted senders to “turn on”; and
(2) a sender must tolerate a non-bounded average waiting
time of > 30 seconds to establish a connection.

FastPass’s ability to leverage third-party infrastructure
for token distribution is similar in motivation to the semi-
nal capability architecture proposed by Anderson, et al.[2],
which unlike FastPass, required a trusted and coordinated
infrastructure of servers to forward “request to send” pack-
ets all the way to destinations for approval. Overlay-based
approaches such as Mayday [1] and SOS [14] aim to pro-
tect servers by deploying networks of nodes that filter traf-
fic on their behalf. While this approach has the advantage
of being compatible with today’s Internet architecture, its
requirement for a large network of proxies means that it is
primarily suited to protecting a few well-funded services
that can afford such an overlay network, and less suited to

protecting smaller services or individual clients.

While FastPass and related schemes address packet
floods, other attacks target a server by targeting it with
expensive application-layer requests. Approaches such as
Kill-Bots use Captchas to rapidly distinguish human- and
machine-generated requests at Web servers [13]. This work
complements FastPass: a successful approach to DoS miti-
gation must address attacks at all layers.

3 FastPass Design

This section presents the FastPass architecture, describing
the goals and trade-offs considered for tokens, key distribu-
tion, and router forwarding. We also describe features of the
protocol that improve overall packet processing efficiency
and manage the malicious replay of tokens.

3.1 Problem Statement

FastPass aims to provide connectivity in the face of attacks
that flood network links upstream of an intended victim.

We define Time to Communication (TTC) as the time re-
quired to successfully establish an “un-interruptible” con-
nection protected by capabilities or filters. We measure
TTC beginning when the source first desires to initiation
of communication (e.g., sending a TCP SYN packet). In
a capability-based scheme, TTC ends when the sender re-
ceives areply to its capability request. In a reactive filtering-
based scheme like Pushback [12] or AITF [4], TTC is the
time required to install enough filters to allow normal com-
munication.

Mission-critical applications and services should obtain
a guarantee for connection establishment within a small,
bounded amount of time. To support this, FastPass has as
its primary goal to give destinations complete control over
their incoming network capacity to enable such applications
to obtain a predictable and small TTC. This property should
hold even in the face of large traffic floods and be indepen-
dent of the network capacity, the number of attackers, and
the network topology between the senders and receivers.
In effect, resilience to floods should depend only on the
amount of incoming traffic already authorized by the des-
tination, not on the resources of the attacker. This property
is not achieved by current DoS-prevention mechanisms.

3.2 Overview

In FastPass, hosts obtain a traffic authorization token that
allows them to connect to a destination even in the case of
network congestion. A host may obtain these tokens in a
variety of ways, as noted in the introduction: directly from
the destination at an earlier time, from a third party service,
or via an out-of-band mechanism.

The basis of FastPass’s tokens is a destination-specific
signature, which routers can verify using the destination’s

32 bits

Type =RW Total Size

T = Expiration Time

| = Identifier

Rabin-Williams
Signature
(~= 80 bytes)

Figure 1: The FastPass token layout.

public key to confirm that a destination has indeed autho-
rized the token-holder to send traffic to it.

At a high level, FastPass operates as follows:

1. A destination domain D generates a public/private key
pair, Kp and Kp~!.

2. D distributes its public key Kp along with its reacha-
bility information in a BGP-like inter-domain routing
protocol. At each AS, this key is injected into the IGP.
Each router thus has the public key of all destinations
in its routing table.

3. D uses its private key Kp~' to run a token granting
service, or provides pre-made tokens to a trusted third
party to distribute tokens on its behalf.

4. When a source S knows that it will want to connect
to D in the future, it acquires a token from D’s token
granting service.

5. To provide a token, D uses the private key to create a
digital signature proving that the token-owner has the
right to contact D. The token consists primarily of the
signature itself, as well as some meta-data for expiring
tokens and verifying uniqueness.

6. When S contacts D, it includes the token in its first
packet.

7. When forwarding packets, the router uses D’s pub-
lic key Kp (acquired in Step #2) and meta-data in the
packet to validate the token.

8. Packets with valid tokens are placed in a high-priority
traffic queue for forwarding. All other traffic is for-
warded best-effort.

9. If D wishes to continue communicate with the client,
its reply will include a limited number of new tokens
authorizing additional traffic.

3.3 FastPass Availability Tokens

The primary goal of FastPass is to provide control over the
rate of all incoming traffic. This requires routers to verify
that a destination wishes to receive a packet without any
active input from the destination (e.g., echoing a capability
in the case of route-based capability schemes).

FastPass tokens (Figure 1) consist of a short message
along with a digital signature of that message, which guar-

antees the authenticity of the token when it is verified by a
router. The message consists of two values: a 32-bit expi-
ration time 7 and I, a 32-bit identifier field unique to all
currently valid tokens distributed by a given destination.
The signature S is a Rabin-Williams (RW) [17] signature
of these two values under the private key of D: {T || I} K

The signature ensures integrity and authenticity of the to-
ken information, preventing alteration of the identifier or
the expiration timestamp. Rabin-Williams is known for ex-
tremely fast signature verification, which requires only a
single modular multiplication.

Tokens deliberately do not contain a source address. As
a result, tokens can be given to an individual without know-
ing anything about how that person will eventually contact
the destination. This design choice is fundamental to our
goal of supporting a flexible notion of identity: specifically,
that the identifier used by a destination to inform the infras-
tructure about its preference for or against a flow should be
flexible and topology independent. Architectures like TVA
use a router-based packet-marking scheme similar to Pi [26]
to identify network aggregates for filtering. However, this
approach often results in false positives when legitimate
traffic located near a malicious source is also filtered. Fast-
Pass, in contrast, can even differentiate between different
hosts sharing a single NAT IP address.

Tokens can be generated by standard PCs and may be
distributed either preemptively before an attack occurs or
on-line through the use of an always available out-of-band
mechanism. Destinations may wish to apply vastly different
policies for allocating network resources. Private sites may
allow access only to expressly authorized users, while pub-
lic sites may require proof of computation or a Captcha [22]
(reverse Turing test) before granting access. Each of these
policies has merit in different circumstances; an infrastruc-
ture should not mandate a particular one. A Captcha, for
example, would be inappropriate for a service accessed pri-
marily by other programs, and computational puzzles can
be biased against small clients such as PDAs. This gener-
ality is a major strength of the design (we discuss potential
policies in greater detail in Section 6).

In addition to standard capability functionality, end-hosts
will need to manage their tokens, storing acquired tokens
and potentially refreshing tokens that are about to expire (no
client cryptographic processing is needed). Token manage-
ment software might also assist in the transaction between
the host and the token granting service, e.g., by prompting
a user for a user-name and password or performing com-
putation as a proof-of-work. We make no assumptions that
tokens are protected in the case that end-hosts are compro-
mised.

3.4 FastPass Keys and Trust Model

From a security perspective, our primary design goal was
to create an architecture that requires no additional trust be-
yond what is already needed to forward traffic and has no

heavyweight public key infrastructure (PKI) or single point
of failure.

FastPass keys operate at a one key per domain granular-
ity; roughly what is today represented by a stub atomic sys-
tem (AS). More specifically, we borrow from the idea of
a “Failure Atomic Unit” in routing [23], and assume that
the indivisible units of routing on the core Internet are di-
rectly tied to a particular organization and to a group of ma-
chines that are “linked by failure” (e.g., they share a com-
mon bottleneck, access link, etc.). While this granularity
is not strictly necessary—FastPass could operate at smaller
granularities—per-domain is a better match in the face of
route aggregation and limited routing table sizes.

Although the Rabin-Williams public keys used in Fast-
Pass could be signed by a “root of trust” and distributed as
public-key certificates using a PKI, we propose to distribute
the public keys directly through the inter-domain routing
protocol along with the reachability information. In general,
overloading a protocol with additional functionality and re-
quirements is not advisable. However, in this case, the pub-
lic key information can itself be viewed as additional reach-
ability information that is required in the case of congestion.
Since the token verification process is intimately tied to the
forwarding process for reaching the destination, distribution
through the routing protocol is preferred to avoid inconsis-
tencies between routing state and public-key information.
We can avoid a PKI because traffic’s “trust” mostly follows
the reverse path of route updates in BGP—thus, a malicious
router that could modify the public key would already be
on the path towards that destination. While a secure routing
protocol is needed to prevent other serious control-plane at-
tacks against destination availability, FastPass requires no
additional security.

With FastPass, only routing prefixes from the same AS
(i.e., using the same public key) can be aggregated and still
be used to perform destination-based public key look-up
operations. While some compelling proposals for future
router architectures make this point moot by utilizing a flat
address-space [23], we recognize this as a potential down-
side of the use of routing to distribute keys. If only some
packets require token verification (see Section 3.6), routers
could still aggregate locally to keep forwarding tables small,
and perform key-lookups in a larger table with higher mem-
ory latency which impacts only packets subject to token ver-
ification.

3.5 FastPass Router Processing

FastPass-enabled routers must prioritize and forward pack-
ets in a manner that is simple to understand, thereby allow-
ing destinations to easily reason about its token granting
policies. Conceptually, FastPass routers have two output
queues per interface: authorized traffic and best effort traf-
fic. The former is strictly prioritized over the latter.

When a router receives a packet, it checks to see if the
packet contains a token. If no token exists, a next-hop
lookup is performed and the request is placed in the best-

Capability Header
|P Header
Verifying Capability
Marking Capability FastPass
Echoed Capability Router Capabilities
FastPass
‘ Token
type size
Transport Header
RW Token (e.g., TCPSyn)

Figure 2: Using router-based capabilities as a path-specific
optimization, FastPass adds two headers to a packet follow-
ing the IP header. The capability header contains fields for
three capabilities: one to be verified for priority forwarding,
one to be marked by the router to build a new capability, and
one to be echoed back to the remote host.

effort queue for forwarding. If there is a token, the router
first checks the expiration time T to see if the token is still
valid. This function requires coarse time synchronization
depending on the granularity required for token expiration
(we envision this to be on the order of minutes). Next, the
router uses a Bloom Filter-based [10] duplicate detection
scheme (Section 3.7) to test if it has seen the token ID I be-
fore. If the token is expired or a duplicate, a route lookup is
performed and the packet is placed in the best-effort queue
with the token removed.

If T and [are valid, the router looks up the next hop and
the public key associated with the destination of the packet.
The router then checks the Rabin-Williams signature of the
message consisting of 7 and I and places packets with ver-
ified tokens in the authorized traffic queue if capacity ex-
ist. If no capacity exists, the token is forwarded best-effort.
Packets with invalid tokens are stripped of their token and
also transmitted best effort. We discuss the feasibility of
per-packet cryptographic processing in Section 4.3.

Once the packet arrives, the destination determines
whether or not to echo one or more new tokens to the client
in a reply packet. Containing a valid token in no way im-
plies that the destination will grant additional tokens for the
client to send more traffic in the future. If a destination
wishes to reduce the rate of an incoming flow, it can simply
reduce the number of tokens it hands out to this host. If de-
sired, the token-protected packets from the client can also
include as data a return-path token to protect the server’s
reply packets.

3.6 Path-specific Optimizations

While simple and effective, the token-based scheme as de-
scribed above is resource intensive for both routers verify-
ing tokens and the Internet destinations generating new to-
kens for clients. However, once connection setup is com-
plete, the use of tokens can easily be replaced by a path-
specific protection scheme such as the one described in
TVA. When using this optimization, each packet (including

the initial token request, depicted in Figure 2) would include
a capability header, with tokens protecting any packets that
have not yet acquired valid capabilities.

TVA assumes that capability request traffic is limited to
5% of link capacity, with the remainder of the link avail-
able for capability protected and best-effort traffic. For the
remainder of the paper we take a similar approach, but esti-
mate the percentage of overall traffic containing tokens to be
10% in order to include datagram traffic such as DNS. For
each outgoing interface, a router can only transmit packets
with tokens at 10% of the link rate. If more valid requests
exist for an outgoing queue then capacity to transmit them,
as many as possible are checked and the remainder have
their tokens stripped and are forwarded best-effort.

Router-based capability schemes allow destinations to
specify a “permitted sending rate” for each client, which the
destination can modify every few seconds with a refreshed
capability in order to throttle incoming traffic. Thus, for
long-lived flows, capabilities provide the same rate-limiting
protection offered by tokens in the face of malicious hosts
with previously granted access.

3.7 Throttling Token Replay

An attacker with a single token must not be able to reuse this
token to mount a flooding attack by repeatedly sending the
same valid token. FastPass ensures that a token can only be
used infrequently on any given path, and as a result, only a
small number of duplicated tokens will reach the bottleneck
links near the victim.

FastPass provides these properties by hashing the token’s
ID and the destination AS into a Bloom filter and reject-
ing ID/destinations pairs that have appeared in the previ-
ous ¢ seconds. This approach limits token reuse to once
per ¢ seconds through any Internet router. Even if k tokens
are acquired and shared among many different hosts in a
massive “bot-network”, attackers will be limited to flood-
ing % packets per second through any network bottleneck
that may exists near the destination. This effectively ren-
ders even large bot-networks unable to significantly benefit
from token replication.

Bloom filters provide compact lookups, have no false
negatives, and allow false positive probabilities to be driven
to arbitrarily low rates with the use of additional memory.
To illustrate this, consider a router with a gigabit link on
which 10% of the capacity is allocated to token requests
and a circular buffer of + Bloom filters, with each filter
containing one second worth of token traffic. The router
will process up to 80,000 tokens/sec, with each of the ¢
filters being checked to see if a token is duplicated. If k
different hash functions are used, inserting n tokens into
a filter of size m bits gives a false positive probability of

(1—(1— L))k & (1 — ¢)k, With the optimal k value of

m
k= 1In 2(%), this is approximated by (0.6185) . Thus, a
filter of 300 KB can prevent duplicates for one second with

. . 2,400,000 1
a false positive probability of under (0.6185) 80000 < 106

per packet. A circular buffer configuration of #+ Bloom fil-
ters can therefore filter traffic for ¢ seconds with less than
(1—(1- ﬁ)’)~ I’W false positive probability per packet.

The duration of duplicate suppression within all Internet
routers must be bounded from above and below in order to
assist destinations in planning token distribution (see Sec-

tion 6).

4 Evaluation & Analysis

This section presents an experimental evaluation of Fast-
Pass compared to the recent capability-based DDoS defense
architecture outlined in TVA [28].

4.1 Click Router Implementation

We have implemented FastPass router and end-host pro-
cessing in the Click modular router [15], running on top
of a generic capability system. The implementation uses
the Rabin-Williams implementation using SFS [16] and
the GNU MP library. Due to the lack of public-key
cryptographic support in the Linux kernel, we run Click
at user-level, which limits our implementation’s forward-
ing capacity to 19,200 152 byte non-token packet-per-
second (pps). When forwarding token traffic, the router is
bounded by cryptographic processing to a maximum rate
of 12,400 pps. Additionally, we implemented a simple
single-threaded token-granting server for use in the eval-
vation. The router, end-host, and server code is open-
source and available at http://www.cs.cmu.edu/
~dwendlan/fastpass/.

We ran experiments using the Emulab [25] pc3000 hosts
equipped with 3GHz 64-bit Intel Xeon processors and 2GB
RAM. Because of userlevel Click’s limited forwarding ca-
pacity, we artificially constrain the emulated “access” link
capacities and simulate only the token channel (i.e., the 10%
of the link used to forward token packets). In the scenarios
described below, the token channel for a “transit link™ is 2
Mbps and the channel the bottleneck link is 1 Mbps. With
10% of a link dedicated to requests, this setup represents
20Mbps and 10Mbps links, respectively. We limit each
attackers to a quarter of the victim’s token capacity (250
kbps). Each stub network is also assumed to be connected
to the token granting server by a connection (not shown)
that is already protected either by another token or through
over-provisioning. Links between transit domains have a
latency of 10 msec and links to the token granting server 5
msec, while stub networks experience no delay in reaching
their transit domain.

While many factors, including the link rates, attack rates,
and total number of attackers are scaled down from a real-
istic Internet attack, the high-eve trends exhibited in these
experiments are sufficient to highlight several key distinc-
tions between FastPass and TVA.

In our experiments, each Emulab host emulates a single
large Internet domain, similar to a transit AS. Domains rep-

1 Mbps (bottleneck)

Figure 3: The dual domain topology, each with 20 stub net-
works. Domains A and B are connected via a 2 Mbps link,
while Domain A is the sole provider of access for the victim
over a link of of 1 Mbps.

resent different trust domains in the network, and so both
TVA and FastPass make prioritization decisions for pack-
ets as they enter a new domain. As described in Section 2,
TVA fair-queues requests based upon their ingress interface
into the current domain. To provide a more realistic topol-
ogy, each domain connects to a number of stub networks
that are emulated on the same physical machine for our ex-
periments, but are treated as separate networks by TVA’s
filtering. These stub networks represent customers or peers
of the transit networks, and are connected to the transit do-
main with 2Mbps links.

For each experiment run, both transit domains host the
same number of attackers (the number of which varies by
trial) and legitimate hosts (held constant at 50 for each trial).
Legitimate hosts are randomly assigned to a stub network of
the transit domain. Attackers constantly flood packets to the
victim, while legitimate clients send their initial packet at a
random time, and resend with an aggressive but reasonable
timeout interval of 500ms until a connection is established.

We limit the number of stub networks that can contain
attackers to at most one-half of the stub networks for each
transit domain. This helps TVA, which attempts to isolated
bad traffic by inspecting its last-hop domain. Without this,
TVA effectively converges to the same best-effort forward-
ing of set-up requests provided by SIFF.

4.2 Time to Communication

We calculate Time to Communication (TTC) as the time
from when a destination first desires to connect to the vic-
tim until the time the reply (with protecting capability) is
received. TTC thus includes the time the packet is queued,
time spent waiting for a timeout as a result of packet loss,
as well as propagation delay. For token-protected traffic,
TTC also includes the time to acquire a token from the to-
ken granting service.

We compare the TTC values provided by FastPass to
those achieved using TVA’s AS-input marking to highlight
key differences between the two architectures. Our topol-
ogy is a simple chain of two “transit domains”, each with 20
connected “stub networks”. We chose this topology because

http://www.cs.cmu.edu/~dwendlan/fastpass/
http://www.cs.cmu.edu/~dwendlan/fastpass/

38 TVA TTC (90th Percentile)]
& TVA TTC (Mean)
(G—© FastPass TTC (90th Percentile & Mean)

%
S
T

B =N
=) =)

[Y
=]

Time To Communication, TTC (seconds)

=

iy 4 iy
10 20 30 40 50
Number of Attackers

Figure 4: Average and 90th percentile TTC value for Fast-
Pass and TVA as attack size increases. Because FastPass
limits the incoming attackers to a very low rate of prioritized
packets, it scales significantly better in the face of attacks.

it is capable of showing TVA’s best and worst cases while
also demonstrating FastPass’s topology independence.

For FastPass experiments, we do not assume that the to-
ken granting server can distinguish between good and bad
clients. Instead, the server implements a simple policy of
limiting clients to a single new token per minute with tokens
valid for one minute (effectively, the duration of the experi-
ment). Routers suppress duplicates for 5 seconds, meaning
the the vast majority of attackers packets to not receive pri-
ority because they are detected as duplicates.

Figure 4 shows the TTC each scheme provides for a given
number of attackers. Because TVA provides no mechanism
for limiting incoming traffic, TTC increases along with the
number of attackers, quickly yielding significant waiting
times. In contrast, FastPass’s TTC is constant and small
since the total amount of prioritized traffic from both legiti-
mate senders and attackers is strictly limited. While the in-
efficiency of our user-level implementation limits the size of
attacks we could measure, the TTC for FastPass would have
continued to remain largely constant until enough attacker
existed to overwhelm the 1 Mbps link with non-duplicated
tokens (see Section 6 for related analysis).

Figure 5 shows a CDF of TTC values broken down by
domain for the trial with 40 attackers. From this we see that
TVA TTC values have a heavy-tailed distribution, which
is the result of legitimate senders being forced to share
per-domain queues with attack traffic from the same stub
domain. This highlights TVA’s inability to perform fine-
grained filtering.

Figure 5 also demonstrates the impact of topology on
TVA. Notice that domain A is ideal for TVA, because
the bottleneck router can perfectly distinguish “good” and
“bad” domains. Because we only allowed attackers in half
of all stub domains, half of the TTC values in domain A are
essentially zero. The significantly degraded performance

\
1

ks e S
9
L s B s s s

I
=
I

S Sy
¥

Fraction of Initial Packets
T

— FastPass (Both Domains)
—- TVA (Domain A)
-+« TVA (Domain B)

| | | . | | |
10 20 30 40 50 60
Time to Communication, TTC (secs)

Figure 5: CDF showing FastPass and TVA performance for
the 40 attacker trial. The FastPass lines for both domains
overlap, but the TTC for TVA clients in domain B is signifi-
cantly degraded.

for hosts in domain B results from the fact that both le-
gitimate and illegitimate traffic “mix” and become indis-
tinguishable prior to reaching the bottleneck, where prior-
itization is most desirable. In fact, if we consider a source
d domains away from the victim, where each domain con-
nects to { other domains, we see that for TVA the worst case
TTC scales exponentially as O(4).

Because FastPass does not prioritize traffic based on
topology, its TTC is the same for both domains. The TTC
for all FastPass requests is slightly larger than the best TVA
time because of the additional latency of communicating
with the token-granting service and generating a new token.

4.3 Implementation Considerations

Our implementation of the FastPass tokens uses the ex-
tremely fast Rabin-Williams signature scheme, which re-
quires only a single modular multiplication for signature
verification. FastPass is also practical because tokens are
included only in a small fraction of total traffic—initial set-
up packets or datagram traffic (e.g. DNS). Most traffic is
protected by path-specific and highly efficient router-based
capabilities, leaving perhaps 10% of the capacity of the net-
work links for token traffic. Furthermore, tokens must be
verified only once per network “trust domain” (i.e., an AS or
collection of cooperative AS’s), with internal routers trust-
ing the verification of the border routers.

FastPass in Hardware: How fast could a dedicated hard-
ware implementation of a FastPass router perform? Rabin-
Williams verification is based upon modular multiplication
of very large numbers. Most hardware implementations
of RW use optimized Montgomery multiplication [18] to
achieve very fast ASIC and FPGA results. Our conserva-
tive back-of-the-envelope calculations estimate that a con-
temporary implementation could achieve over % million
ops/sec in a high-end FPGA, and nearly 2.5 million ops/sec

Operation | single op | rate
RW verify | 61 usec | 16,459/ sec
RWsign | 3.4 msec 297 / sec

Table 1: 1024-bit Rabin-Williams software benchmarks.

in a custom ASIC [24]. This rate is 10% of the forward-
ing rate of the fastest OC-192 line card available for Cisco
routers [8]. While an ASIC implementation may be expen-
sive, the line cards that would require it already cost in ex-
cess of $100,000.

FastPass in Software: While hardware implementa-
tions are the likely choice for high-speed routers, lower-
end routers may also need to verify tokens. In addi-
tion, tokens will often be generated using RW signing
by servers running commodity hardware. Table 1 shows
micro-benchmarks on a 3.2Ghz Pentium-IV based PC with
1GB of RAM. Kernel Click routers can forward in excess
of 1Mpps [7], meaning signature verification is the clear
bottleneck for a software router. We therefore conserva-
tively assume that a kernel-Click router performing Fast-
Pass token verification could support 16kpps of token traf-
fic, which then permits 160kpps of data traffic. At an av-
erage packet size of 512 bytes, such a router could support
655Mbps.

Recent hardware trends are also very favorable for a soft-
ware FastPass implementation. First, newer 64-bit archi-
tectures allow modular multiplications to be performed in
fewer total iterations. Second, each packet’s RW signatures
can be verified independently. This type of “embarrassingly
easy” parallelism is ideally suited to emerging multi-core
processors.

S Oversubscription & Provisioning

FastPass provides a reliable mechanism for receivers to in-
form the network whether incoming traffic is desired or
not, enabling destinations to protect legitimate traffic but
quickly limit and stop malicious network floods. However,
no DoS defense system can let a destination handle more
than its upstream capacity allows, even if all requests are
legitimate. Additionally, since most links in the Internet are
shared by multiple destination entities, these entities “share
fate” in that they are impacted if the group collectively al-
lows in more traffic than the shared link can carry. We refer
to this problem as link oversubscription and term the de-
liberate creation of such congestion by malicious parties a
collusion attack.

We note that in general, any system that determines pri-
ority based on destination authorization is vulnerable to this
type of attack. For example, filtering schemes such as AITF
permit victims to filter only traffic that is addressed to them;
they cannot block traffic destined to other hosts, even if that
traffic congests their bottleneck link. The same problem
was noted as a challenge to TVA. Broadly, the existence of
over-subscription and collusion attacks can be thought of as

a trade-off required to achieve the highly desirable proper-
ties of fine-grain filters and low false positives provided by
schemes leveraging destination-specific input.

Because of this “fate-sharing” property, architectures that
use destination specific input are best suited to protect links
near the network edge and cannot strictly guarantee avail-
ability in the core of the Internet, where capacity is shared
by a large number of destinations. Fortunately, destination-
based fairness or per-destination capacity limits offer a
good—though not perfect—solution to this problem for net-
works looking to provide strict guarantees to particular cus-
tomers. ISPs can use a number of simple, effective tactics
to reduce the power of collusion attacks. For example, the
ISP can push a set of limits to its border routers. Examples
of effective limits include:

Per-destination-AS fair queueing: Ensure that traffic is
shared between destination autonomous systems, perhaps
with appropriate weights to account for large and small cus-
tomers, or those who pay different amounts.

Customer capacity limit propagation: If a customer has
an access link capacity of x, then no border router should
pass traffic to the customer at a rate no higher than x.
Elephant squashing: Like the monitoring scheme used in
SIFF and TVA, monitor the largest F' flows and limit them
so that no destination AS consumes more than % of the total
link capacity.

While such limits are not perfect, they greatly reduce
the effects of collusion attacks. Interestingly, these tactics
are completely ineffective against normal DDoS attacks that
come from widely dispersed sources: under such an attack,
they merely push the packet loss to the edge, but good flows
still experience vastly increased loss. Only in conjunction
with an architecture such as FastPass do they show their
value. With each of these schemes, the fairness decisions
can be made on a per-AS basis instead of a per-flow basis,
requiring far fewer router resources to implement. The lim-
its would likely be tied in with a customer’s service level
agreement (SLA) that already exists to govern latency and
throughput guarantees.

Closer to the source, protection for individual senders
can easily be provided by fair queueing on a per-sender ba-
sis. At this point, the level of aggregation is relatively low,
and ISPs already have per-sender configuration information
making this process extremely practical.

Finally, indirect attacks are most powerful near the victim
— originating from hosts sharing the same upstream ISP, for
instance — where they are also more susceptible to correc-
tion through local means. In contrast to directed flooding
attacks which may originate from anywhere in the world,
indirect attacks are significantly more amenable to correc-
tion by the enforcement of AUPs and applicable laws.

6 Managing Token Distribution

FastPass intentionally does not specify a particular policy
for deciding what a client must do to merit a token, how

long that token is valid for, or how tokens are distributed.
Leaving this decision to the end-point is a strength of the
FastPass design, but we discuss potential strategies in this
section to give the reader an intuition for why tokens enable
a powerful defense against network floods.

6.1 Token Accounting

Recall from Section 3 that each router blocks duplicate to-
kens for ¢ seconds. To assist destinations in making token
distribution decisions this value should have global upper
and lower bounds.

The upper bound (f,pper) is the maximum time a legiti-
mate user that has been granted only a single token must
wait before reusing the token if the initial packet carrying
the token is lost due to token-channel oversubscription or
network errors. More highly trusted clients may receive
several tokens to guard against the impact of single token
loss.

The lower bound (#,,..,) guarantees that a (perhaps ma-
licious) client with a single token is limited to the rate of
tlu:ver pps through any router until the token expires. This
rate, combined with knowledge of the capacity provisioned
by its upstream provider, allows a destination to make intel-
ligent token granting decisions.

If the upstream provider guarantees x tokens per second
of forwarding capacity through any potential bottleneck,
then to maximize availability, a destination should not issue
more than x tokens for any particular time-period. Token
replication and replay by a distributed attacker provides no
increased threat, since any particular bottleneck cannot be
flooded using duplicate tokens. The use underlying capa-
bilities, which can easily be revoked on the order of sec-
onds, reduces the number of tokens that a destination must
hand out and greatly simplifies token management for des-
tinations.

Such a strong availability guarantee may be ideal for
highly critical network services, but a more common web-
site token-granting policy would likely allow some statisti-
cal multi-plexing over time, depending on the level of trust
the destination has in its policies for distinguishing legiti-
mate users during token distribution.

Viewing tokens (and traffic permitted by the underlying
capabilities) as the destination admitting rate-limited flows
demonstrates how FastPass can be useful even to public
sites. For example, a site may hand-out a token to any
user when lightly loaded, but require increasingly difficult
computational puzzles per token granted as the total num-
ber of requests increases so that it never distributes more
tokens than it has capacity to accept. Such an approach
could even be effective in maximizing link good-put in the
case of a flash-crowd, since the maximum sustainable num-
ber of users can be admitted and have guaranteed band-
width. More generally, the scheduling of a scarce resource
is a well-studied problem and tokens allow destinations to
choose an arbitrary scheduling policy for their incoming
bandwidth.

Token accounting can also leverage accountability if the
token-granter records information linking an individual to
the ID field of token that is later used in a token flood.
This fact opens the door for interesting economic incentive
schemes in which users (or their ISP) pay a deposit and then
freely acquire tokens, forfeiting the deposit only if tokens
are misused.

6.2 Third-Party Token Granting

The discussion of token accounting also highlights an im-
portant fact impacting a destination’s choice of token distri-
bution mechanisms. An on-line token granting service (i.e.,
any service such as Akamai that is always available to grant
tokens) provides better control for a destination managing
its incoming bandwidth. This is because on-line token ser-
vices can hand-out tokens valid only for a short duration,
since the user can always simply return to acquire another
one once a token expires. In contrast, if a destination relies
on giving out tokens ahead of time for use in future days or
even weeks, it must have a better idea of who its legitimate
users are. Thus, preemptive token distribution is likely to be
most valuable for private destinations that can easily iden-
tify users, while public destinations would be better served
by an on-line model.

Having a limited number of third-party availability
providers with extremely well-provisioned and geograph-
ically diverse resources is also attractive from a resource
conservation perspective, as it requires only a very few In-
ternet destinations to buy the network capacity to sustain
massive attacks of unwanted traffic, while the remainder
of the Internet uses these sites for token distribution. This
design in part mimics the root-servers of the DNS sys-
tem which have achieved strong network flood resilience
through the use of of over-provisioning, replication, and
anycast.

Third-Party servers make use of the fact that token distri-
bution, unlike many of the complex services offered on the
Internet, is easily replicated and distributed. These third-
party servers may serve simply as an initial gate-keeper
by enforcing a simple criteria for granting tokens — a re-
verse turing test or the completion of a computational puz-
zle. More sophisticated validation could also occur without
any potentially undesirable secret-sharing, if the destination
keeps its token-granting key private and instead periodically
provides the third-party with a new supply of signed tokens
to distribute. Likewise, if the third-party was using a login
to authenticate legitimate users (as might be the case with an
e-commerce merchant) the site could supply the third-party
with only a one-way hash of both the customer’s user-id and
password as authenticators without disclosing any sensitive
information.

6.3 Heterogeneous Destination Domains

Up to this point, our discussion treated a destination pri-
marily as a single entity, when in reality a single key may

cover a large number of different participating parties, as
is the case for a web-hosting provider or a large university.
Potentially, all destinations with the same key would be at
risk if a single party is compromised or is otherwise promis-
cuous with granting tokens. However, such parties almost
certainly already have an existing relationship with the key-
owning entity running the AS. This leads to the straightfor-
ward use of a system in which the AS keeps the private
token-signing key secret but provides tokens to different
parties in its domain using a quota system to minimize secu-
rity dependencies among the parties. For added security, the
AS possessing the private key could use a bastion host that
is only locally addressable and configured to run minimal
services.

7 Conclusion

Time-to-communication (TTC, i.e., the duration to set up
a protected channel of communication) is a likely to be a
critical metric for any DDoS resilient architecture as Inter-
net services become increasingly critical. Recent capability
systems provide many useful properties but are insufficient
to protect connection set-up and datagram traffic.

FastPass provides a comprehensive and robust DDoS de-
fense capable of protecting all traffic, yet free of assump-
tions about inter-ISP cooperation that hamper deployment
and security. Our analysis and evaluation show that Fast-
Pass drastically outperforms prior systems, even when a
destination cannot easily identify legitimate clients, and that
our design could be implemented with modest hardware up-
dates. While much further work and evaluation remains, a
token-based network flood resilience scheme like FastPass
provides a compelling concept for the foundation of a future
availability-based network architecture.

References

[1] D. G. Andersen. Mayday: Distributed Filtering for Internet Services.
In Proc. 4th USENIX Symposium on Internet Technologies and Sys-
tems (USITS), Mar. 2003.

T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet denial
of service with capabilities. In Proc. 2nd ACM Workshop on Hot
Topics in Networks (Hotnets-1I), Nov. 2003.

K. Argyraki and D. R. Cheriton. Network capabilities: The good,
the bad, and the ugly. In Proc. ACM Workshop on Hot Topics in
Networks (Hotnets-1V), Nov. 2005.

K. Argyraki and D. R. Cheriton. Active Internet traffic filtering:
Real-time response to denial-of-service attacks. In Proc. USENIX
Annual Technical Conference, Anaheim, CA, Apr. 2005.

H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S. Shenker.
Off by default! In Proc. ACM Workshop on Hot Topics in Networks
(Hotnets-1V), Nov. 2005.

S. Bellovin. ICMP Traceback Messages, Internet-Draft, draft-
bellovin-itrace-00.txt, Work in Progress, Mar. 2000.

G. Calarco. High performance click router. https:
//amsterdam.lcs.mit.edu/pipermail/click/
2004-November/003364.html, Nov. 2004. Message to
the click-users mailing list.

[2]

[3]

[4

=

[5

=

[7]

10

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

(20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

[28]

Cisco Systems. Cisco 12000 series one-port oc192c/stm-64c dpt line
card, Feb. 2006.

D. Clark. The Design Philosophy of the DARPA Internet Protocols.
In Proc. ACM SIGCOMM, pages 109-114, Stanford, CA, Aug. 1988.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A
scalable wide-area Web cache sharing protocol. In Proc. ACM SIG-
COMM, pages 254-265, Sept. 1998.

P. Ferguson and D. Senie. Network Ingress Filtering. Internet Engi-
neering Task Force, May 2000. Best Current Practice 38, RFC 2827.

J. Toannidis and S. M. Bellovin. Implementing Pushback: Router-
Based Defense Against DDoS Attacks. In Proc. Network and Dis-
tributed System Security Symposium (NDSS), Feb. 2002.

S. Kandula, D. Katabi, M. Jacob, and A. Berger. Botz-4-Sale: Sur-
viving Organized DDoS Attacks That Mimic Flash Crowds. In Proc.
NSDI, May 2005.

A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay
services. In Proc. ACM SIGCOMM, pages 61-72, Aug. 2002.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click modular router. ACM Transactions on Computer Systems, 18
(3):263-297, Aug. 2000.

D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Sep-
arating key management from file system security. In SOSP, pages
124-139, Dec. 1999.

A.J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press Series on Discrete Mathematics
and its Applications. CRC Press, 1997.

P. L. Montgomery. Modular multiplication without trial division.
Math. Computation, (44):519-521, 1985.

K. Park and H. Lee. On the effectiveness of route-based packet fil-
tering for distributed DoS attack prevention in power-law Internets.
In Proc. ACM SIGCOMM, Aug. 2001.

S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Network sup-
port for IP traceback. IEEE/ACM Transactions on Networking, 9(3),
June 2001.

A. C. Snoeren, C. Partridge, et al. Single-packet IP traceback.
IEEE/ACM Transactions on Networking, 10(6), Dec. 2002.

L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA:
Using hard Al problems for security. In Advances in Cryptology —
EuroCrypt, 2003.

M. Vutukuru, N. Feamster, M. Walfish, H. Balakrishnan, and
S. Shenker. Revisiting Internet address: Back to the future! Tech-
nical Report 025, MIT Computer Science and Artificial Intelligence
Laboratory, Apr. 2006.

D. Wendlandt, D. G. Andersen, and A. Perrig. Fastpass: Providing
first-packet delivery. Technical Report 005, CMU CyLab, Mar. 2006.
B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar. An integrated experi-
mental environment for distributed systems and networks. In Proc.
USENIX OSDI, pages 255-270, Dec. 2002.

A. Yaar, A. Perrig, and D. Song. Pi: A path identification mecha-
nism to defend against DDoS attacks. In Proc. IEEE Symposium on
Security and Privacy, 2003.

A. Yaar, A. Perrig, and D. Song. SIFF: A stateless Internet flow filter
to mitigate DDoS flooding attacks. In Proc. IEEE Symposium on
Security and Privacy, May 2004.

X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In Proc. ACM SIGCOMM, Aug. 2005.

https://amsterdam.lcs.mit.edu/pipermail/click/2004-November/003364.html
https://amsterdam.lcs.mit.edu/pipermail/click/2004-November/003364.html
https://amsterdam.lcs.mit.edu/pipermail/click/2004-November/003364.html

	Introduction
	Related Work
	FastPass Design
	Problem Statement
	Overview
	FastPass Availability Tokens
	FastPass Keys and Trust Model
	FastPass Router Processing
	Path-specific Optimizations
	Throttling Token Replay

	Evaluation & Analysis
	Click Router Implementation
	Time to Communication
	Implementation Considerations

	Oversubscription & Provisioning
	Managing Token Distribution
	Token Accounting
	Third-Party Token Granting
	Heterogeneous Destination Domains

	Conclusion

