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Abstract

We present a new dynamic matching sparsification scheme. From this scheme we derive a
framework for dynamically rounding fractional matchings against adaptive adversaries. Plugging
in known dynamic fractional matching algorithms into our framework, we obtain numerous ran-
domized dynamic matching algorithms against adaptive adversaries (the first such algorithms).
In particular, our two main results are randomized algorithms which work against an adaptive
adversary, achieving

1. (2 + ε) approximation ratio in polylog worst-case update time.

2. (2 + ε) approximation ratio in constant amortized update time.

Similar results were only previously known using randomization against oblivious adversaries.
In comparison, no algorithms that work against adaptive adversaries were previously known to
even guarantee sub-polynomial approximation ratio in worst-case sub-polynomial update time,
or any sub-linear approximation ratio in constant amortized update time.

A third result we obtain from our framework are randomized algorithms which work against
an adaptive adversary in bipartite graphs, achieving

3. better-than-two approximation ratio in arbitrarily-small polynomial update time.

The only such result with arbitrarily-small poly(n) update time assumes an oblivious adversary.
In comparison, previous algorithms which work against adaptive adversaries and guarantee any
(2− ε)-approximation ratio all require Ω( 4

√
m) update time.
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1 Introduction

The field of dynamic graph algorithms studies the maintenance of solutions to graph-theoretic
problems subject to graph updates, such as edge additions and removals. For any such dynamic
problem, a trivial approach is to recompute a solution from scratch following each update, using a
static algorithm. Fortunately, significant improvements over this naïve polynomial-time approach
are often possible, and many fundamental problems admit polylogarithmic update time algorithms.
Notable examples include minimum spanning tree and connectivity [46, 47, 51, 69] and spanners
[9, 14, 34]. Many such efficient dynamic algorithms rely on randomization and the assumption of a
weak, oblivious adversary, i.e., an adversary which cannot decide its updates adaptively based on
the algorithm’s output. As recently pointed out by Nanongkai and Saranurak [58],

It is a fundamental question whether the true source of power of randomized dynamic
algorithms is the randomness itself or in fact the oblivious adversary assumption.

In this work, we address this question for the heavily-studied dynamic matching problem. For
this problem, the assumption of an oblivious adversary is known to allow for constant-approximate
worst-case polylogarithmic update time algorithms [3, 8, 14, 24, 61, 66].1 In contrast, all determinis-
tic algorithms with worst-case time guarantees have polynomial update time [15, 20, 41, 60, 63]. The
main advantage of deterministic algorithms over their randomized counterparts is their robustness
to adaptive adversaries; i.e., their guarantees even hold for update sequences chosen adaptively.
Before outlining our results, we motivate the study of algorithms which are robust to adaptive
adversaries by addressing some implications of the oblivious adversary assumption.

Static implications. As Mądry [57] observed, randomized dynamic algorithms’ assumption of an
oblivious adversary renders them unsuitable for use as a black box for many static applications.
For example, [33, 36] show how to approximate multicommodity flows by repeatedly routing flow
along approximate shortest paths, where edges’ lengths are determined by their current congestion.
These shortest path computations can be sped up by a dynamic shortest path algorithm, provided it
works against an adaptive adversary (since edge lengths are determined by prior queries’ outputs).
This application has motivated much work on faster deterministic dynamic shortest path algorithms
[11, 12, 13, 43, 44], as well as a growing interest in faster randomized dynamic algorithms which
work against adaptive adversaries [25, 26, 42].

Dynamic implications. The oblivious adversary assumption can also make a dynamic algorithm
A unsuitable for use by other dynamic algorithms, even ones which themselves assume an oblivious
adversary! For example, for dynamic algorithms that use several copies of A whose inputs depend on
each other’s output, the different copies act as adaptive adversaries for one another, as the behavior
of copy i can affect that of copy j, which in turn can affect that of copy i. (See [58].)

Faster algorithms that are robust to adaptive adversaries thus have the potential to speed up
both static and dynamic algorithms. This motivated Nanogkai et al. [59], who studied dynamic
MST, to ask whether there exist algorithms against adaptive adversaries for other well-studied
dynamic graph problems, with similar guarantees to those known against oblivious adversaries.

In this paper we answer this latter question affirmatively for the dynamic matching problem,
for which we give the first randomized algorithms that are robust to adaptive adversaries (and
outperform known deterministic algorithms). As an application of these new algorithms, we present
improved dynamic maximum weight matching algorithms.

1A dynamic algorithm has worst-case update time f(n) if it requires f(n) time for each update. It is said to have
amortized update time f(n) if it requires O(t · f(n)) time for any sequence of t updates. If we assume an oblivious
adversary, these time bounds need only hold for sequences chosen before the algorithm’s run.
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1.1 Our Contributions

Our main contribution is a framework for dynamically rounding fractional matchings against adap-
tive adversaries. That is, we develop a method which given a dynamically-changing fractional match-
ing (i.e., a point ~x in the fractional matching polytope, P , {~x ∈ Rm≥0 |

∑
e3v xe ≤ 1 ∀v ∈ V }),

outputs a matching M of size roughly equal to the value of the fractional matching,
∑

e xe. This
framework allows us to obtain dynamic matching algorithms robust to adaptive adversaries, includ-
ing adversaries that see the algorithms’ entire state after each update.

Key to our framework is a novel matching sparsification scheme, i.e., a method for computing a
sparse subgraph which approximately preserves the maximum matching size. We elaborate on our
sparsification scheme and dynamic rounding framework and their analyses in Section 1.2 and later
sections. For now, we discuss some of the dynamic matching algorithms we obtain from applying
our framework to various known dynamic fractional matching algorithms.

Our first result (applying our framework to [22]) is a (2 + ε)-approximate matching algorithm
with worst-case polylogarithmic update time against an adaptive adversary.

Theorem 1.1. For every ε ∈ (0, 1/2), there exists a (Las Vegas) randomized (2+ε)-approximate
algorithm with update time poly(log n, 1/ε) w.h.p. against an adaptive adversary.

All algorithms prior to this work either assume an oblivious adversary or have polynomial worst-
case update time, for any approximation ratio.

Our second result (applying our framework to [23]) yields (amortized) constant-time algorithms
with the same approximation ratio as Theorem 1.1, also against an adaptive adversary.

Theorem 1.2. For every ε ∈ (0, 1/2), there exists a randomized (2 + ε)-approximate dynamic
matching algorithm with poly(1/ε) amortized update time whose approximation and update time
guarantees hold in expectation against an adaptive adversary.

No constant-time algorithms against adaptive adversaries were known before this work, for any
approximation ratio. A corollary of Theorem 1.2, obtained by amplification, is the first algorithm
against adaptive adversaries with logarithmic amortized update time andO(1)-approximation w.h.p.

Finally, our framework also lends itself to better-than-two approximation. In particular, plugging
in the fractional matching algorithm of [21] into our framework yields (2−δ)-approximate algorithms
with arbitrarily-small polynomial update time against adaptive adversaries in bipartite graphs.

Theorem 1.3. For any constant k ≥ 10, there exists a βk-approximate dynamic bipartite match-
ing algorithm with expected update time O(n1/k) against an adaptive adversary, for βk ∈ (1, 2).

Similar results were recently achieved for general graphs by [10], though only assuming an
oblivious adversary. All other (2− δ)-approximate algorithms are deterministic (and so do not need
this assumption), but have Ω( 4

√
m) update time.

As a warm-up to our randomized rounding framework, we get a family of deterministic algorithms
with arbitrarily-small polynomial update time, with the following time-approximation tradeoff.

Theorem 1.4. For any K > 1, there exists a deterministic O(K)-approximate matching algo-
rithm with worst-case Õ(n1/K) update time.

These algorithms include the first deterministic constant-approximate algorithms with any o( 4
√
m)

worst-case update time. They also include the first deterministic o(log n)-approximate algorithm
with worst-case polylog update time. No deterministic algorithms with worst-case polylog update
time were known for any sublinear n1−ε approximation ratio.
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Application to Weighted Matching. Our dynamic matching algorithms have applications to
dynamic maximum weight matching (MWM), by standard reductions (see [3, 68]). Since our match-
ing algorithms work against adaptive adversaries, we can apply these reductions to our algorithms
as a black box, and need not worry about the inner workings of these reductions. As an added
bonus, the obtained MWM algorithms work against adaptive adversaries, since their constituent
subroutines do. So, plugging any of our algorithms into the above reductions yields MWM algo-
rithms against adaptive adversaries whose approximation ratio is roughly twice that of our dynamic
matching algorithms, with a logarithmic slowdown. Many of the bounds obtained this way were
not even known against oblivious adversaries.

1.2 Techniques

In this section we outline our sparsification scheme and framework for dynamic matching against
adaptive adversaries. Specifically, we show how to use edge colorings—partitions of the edges into
(few) matchings—to quickly round fractional matchings dynamically against adaptive adversaries.2

Before detailing these, we explain why the work of Gupta and Peng [41] motivates the study of
dynamic matching sparsification.

In [41], Gupta and Peng present a (1 + ε)-approximate O(
√
m/ε2) time algorithm, using a

sparsifier and what they call the “stability” of the matching problem, which lends itself to lazy
re-computation, as follows. Suppose we compute a matching M of size at least C times µ(G), the
maximummatching size inG. Then, regardless of the updates in the following period of ε·µ(G) steps,
the edges ofM not deleted during the period remain a C+O(ε) matching in the dynamic graph, since
both the size of M and µ(G) can at most change by ε ·µ(G) during such a period. So, for example,
using a static O(m/ε)-time (1+ε)-approximate matching algorithm [56] every ε·µ(G) updates yields
a (1 + O(ε))-approximate dynamic matching algorithm with amortized update time Oε(m/µ(G)).
To obtain better update times from this observation, Gupta and Peng apply this idea to a sparsifier
of size S = O(min{m,µ(G)2}) which contains a maximum matching of G and which they show how
to maintain in O(

√
m) update time, using the algorithm of [60]. From this they obtain a (1+O(ε))-

approximate matching algorithm with update time O(
√
m)+(S/ε)/(ε·µ(G)) = O(

√
m/ε2). We note

that this lazy re-computation approach would even allow for polylogarithmic-time dynamic matching
algorithms with approximation ratio C+O(ε), provided we could compute C-approximate matching
sparsifiers of (optimal) size S = Õε(µ(G)),3 in time Õε(µ(G)).

In this work we show how to use edge colorings to sample such size-optimal matching sparsifiers
in optimal time. For simplicity, we describe our approach in terms of the subroutines needed to
prove Theorem 1.1, deferring discussions of extensions to future sections.

Suppose we run the dynamic fractional matching algorithm of [22], maintaining a constant-
approximate fractional matching ~x in deterministic worst-case polylog time. Also, for some ε > 0,
we dynamically partition G’s edges into O(log n) subgraphs Gi, for i = 1, 2, . . . , O(log1+ε(n)),
where Gi is the subgraph induced by edges of x-value xe ∈ ((1 + ε)−i, (1 + ε)−i+1]. By the fractional
matching constraint (

∑
e3v xe ≤ 1 ∀v ∈ V ) and since xe ≥ (1 + ε)−i for all edges e ∈ E(Gi), the

maximum degree of any Gi is at most ∆(Gi) ≤ (1 + ε)i. We can therefore edge-color each Gi with
2(1+ε)i(≥ 2∆(Gi)) colors in deterministic worst-case O(log n) time per update in Gi, using [18]; i.e.,
logarithmic time per each of the poly log n many changes which algorithm A makes to ~x per update.
Thus, edge coloring steps take worst-case poly log n time per update. A simple averaging argument

2An orthogonal approach was recently taken by Cohen et al. [27], who used matchings to round fractional edge
colorings, in an online setting.

3We note that any sparsifier containing a constant-approximate matching must have size Ω(µ(G)).
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shows that the largest color in these different Gi is an O(log n)-approximate matching, which can be
maintained efficiently. Extending this idea further yields Theorem 1.4 (see Appendix A). So, picking
a singe color yields a fairly good approximation/time tradeoff. As we show, randomly combining a
few colors yields space- and time-optimal constant-approximate matching sparsifiers.

To introduce our random sparsification scheme, we start by considering the sample of a single
color M among the 2(1 + ε)i colors of the coloring of subgraph Gi. For each edge e ∈ Gi, since
xe ∈ ((1 + ε)−i, (1 + ε)−i+1], when sampling a random color M among these 2(1 + ε)i colors, we
sample the unique color containing e with probability proportional to xe. Specifically, we have

Pr[e ∈M ] =
1

2(1 + ε)i
∈
[

xe
2(1 + ε)

,
xe
2

)
.

Our approach will be to sample min
{

2(1+ε)i, 2 logn
ε2

}
colors without replacement in Gi. By linearity,

this yields a subgraph H of G which contains each edge e with probability roughly

pe , min

{
1, xe ·

log n

ε2

}
. (1)

As shown by Arar et al. [3], sampling a subgraph H with each edge e ∈ E[G] belonging to H
independently with probability pe as above, with ~x taken to be the (2 + ε)-approximate fractional
matching output by [22], yields a (2 + ε)-approximate matching sparsifier.4 We prove that sampling
H in this dependent manner yields as good a matching sparsifier as does independent sampling.

To bound the approximation ratio of our dependent-sampling-based sparsifiers, we appeal to
the theory of negative association (see Section 2.1). In particular, we rely on sampling without
replacement being a negatively-associated joint distribution. This implies sharp concentration of
(weighted) degrees of vertices in H, which forms the core of our analysis of the approximation
ratio of this sparsification scheme. In particular, we show that our matching sparsification yields
sparsifiers with approximation ratio essentially equaling that of any “input” fractional matching in
bipartite graphs, as well as a (2 + ε)-approximate sparsifiers in general graphs, using the fractional
matchings of [22, 23].

Finally, to derive fast dynamic algorithms from this sparsification scheme, we note that our
matching sparsifier H is the union of only poly log n many matchings, and thus has size Õ(µ(G)).
Moreover, sampling this sparsifier requires only poly log n random choices, followed by writing H.
Therefore, sampling H can be done in Õ(µ(G)) time (given the edge colorings, which we maintain
dynamically). The space- and time-optimality of our sparsification scheme implies that we can
maintain a matching with approximation ratio essentially equal to that of the obtained sparsifier, in
worst-cast poly log n update time. In particular, we can re-sample such a sparsifier, and compute a
(1+ε)-approximate matching in it, in Õε(µ(G)) time, after every period of ε·µ(G) steps. This results
in an Õε(µ(G))/(ε · µ(G)) = Õε(1) amortized time per update (which can be easily de-amortized).
Crucially for our use, during such periods, µ(G) and µ(H) do not change by much, as argued before.
In particular, during such short periods of few updates, an adaptive adversary—even one which sees
the entire state of the algorithm after each update—cannot increase the approximation ratio by
more than a 1 + O(ε) factor compared to the approximation quality of the sparsifier. The above
discussion yields our result of Theorem 1.1—a (2+ε)-approximate dynamic matching algorithm with
worst-case polylogarithmic update time against adaptive adversaries. Generalizing this further, we
design a framework for dynamically rounding fractional matchings against adaptive adversaries,
underlying our results of Theorems 1.1, 1.2 and 1.3.

4We note that a simple argument implying H contains a (2+ε)-fractional matching with respect to G only implies
a (3 + ε)-approximation. This is due to the 3

2
integrality gap of the fractional matching polytope, and in particular

the fact that fractional matchings may be 3
2
times larger than the largest matching in a graph (see, e.g., a triangle).
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1.3 Related Work

Here we discuss the dynamic matching literature in more depth, contrasting it with the results
obtained from our dynamic rounding framework.

The first non-trivial result for dynamic matching was given by Ivkovic and Lloyd [49], who
showed how to maintain a maximal matching (which is a 2-approximate matching) in O((m+n)1/

√
2)

amortized update time. Much later, Sankowski [64] presented an O(n1.495) update time algorithm
for maintaining the value (size) of a maximum matching. Both algorithms above are only sublinear
in n+m for sufficiently sparse graphs, and are both far from the gold standard for data structures
– polylog update time. On the other hand, several works show that for exact maximum matching,
polylog update time is impossible, assuming several widely-held conjectures, including the strong
exponential time hypothesis and the 3-SUM conjecture [1, 2, 29, 45, 53]. A natural question is then
whether polylog update time suffices to maintain an approximate maximum matching.

Polylog-time algorithms. In seminal work, Onak and Rubinfeld [61] presented the first polylog-
time algorithm for constant-approximate matching. Baswana et al. [7] improved this with an
O(log n)-time maximal (and thus 2-approximate) matching algorithm. Some years later a determin-
istic (2+ε)-approximate matching algorithm with amortized poly(log n, 1/ε) update time algorithm
was presented by Bhattacharya et al. [21]. Solomon [66] then gave a randomized maximal matching
algorithm with constant amortized time. Recently, several randomized (2+ε)-approximate/maximal
matching algorithms with worst-case polylog time were developed, with either the approximation
ratio or the update time holding w.h.p. [3, 14, 24]. All prior randomized algorithms assume an
oblivious adversary. Obtaining the same guarantees against an adaptive adversary remained open.
Another line of work studied the dynamic maintenance of large fractional matchings in polylog up-
date time, thus maintaining a good approximation of the maximum matching’s value (though not
a large matching) [17, 19, 22, 23, 40]. The best current bounds for this problem are deterministic
(2 + ε)-approximate fractional matching algorithms with poly(log n, 1/ε) worst-case and poly(1/ε)
amortized update times [22, 23]. Our randomized algorithms of Theorems 1.1 and 1.2 match these
bounds, for integral matching, against adaptive adversaries.

Polytime algorithms. Many sub-linear time dynamic matching algorithms have been developed
over the years. These include (1+ε)-approximate algorithms with O(

√
m/ε2) worst-case update time

algorithms [41, 63] (the former building on a maximal O(
√
m)-time algorithm of [60]), and (2 + ε)-

approximate algorithms with worst-case O(min{ 3
√
m,
√
n}/poly(ε)) update time [20]. The fastest

polytime algorithm to date with worst-case update time is a
(
3
2 + ε

)
-approximate O( 4

√
m/poly(ε))-

time algorithm in bipartite graphs [15] (similar amortized bounds are known in general graphs [16]).
In contrast, we obtain algorithms with arbitrarily-small polynomial update time, yielding a constant
approximation deterministically (Theorem 1.4), and even better-than-2 approximation in bipartite
graphs against adaptive adversaries (Theorem 1.3). This latter bound matches bounds previously
only known for dynamic fractional matching [21], and nearly matches a recent O(∆ε)-time algorithm
for general graphs, which assumes an oblivious adversary [10].

Matching sparsifiers. Sparsification is a commonly-used algorithmic technique. In the area of
dynamic graph algorithms it goes back more than twenty years [32]. For the matching problem in
various computational models, multiple sparsifiers were developed [5, 6, 15, 16, 20, 39, 41, 54, 63, 67].
Unfortunately for dynamic settings, all these sparsifiers are either polynomially larger than µ(G), the
maximum matching size in G, or were not known to be maintainable in no(1) time against adaptive
adversaries. In this paper we show how to efficiently maintain a generalization of matching kernels
of [20] of size Õ(µ(G)), efficiently, against adaptive adversaries.
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2 Preliminaries

A matching in a graph G = (V,E) is a subset of vertex-disjoint edges M ⊆ E. The cardinality
of a maximum matching in G is denoted by µ(G). An edge coloring of a graph G = (V,E) is a
partition of the edge set of G into matchings. That is, it is an assignment of colors to the edges of
G such that each vertex is incident on at most one edge of each color. A fractional matching is a
non-negative vector ~x ∈ Rm≥0 satisfying the fractional matching constraint,

∑
e3v xe ≤ 1 ∀v ∈ V .

In a fully-dynamic setting the input is a dynamic graph G, initially empty, on a set of n fixed
vertices V , subject to edge updates (additions and removals). An α-approximate matching algorithm
A maintains a matching M of size at least |M | ≥ 1

α · µ(G). If the algorithm A is deterministic,
|M | ≥ 1

α · µ(G) holds for any sequence of updates. If A is randomized, this bound on M ’s size can
hold in expectation or w.h.p., though here one must be more careful about the sequence of updates.
The strongest guarantees for randomized algorithms are those which hold for sequences generated
by an adaptive adversary.

Dynamic Edge Coloring. An important ingredient in our matching algorithms are algorithms
for the “complementary” problem of edge coloring, i.e., the problem of covering the graph’s edge-
set with matchings (colors). Vizing’s theorem [70] asserts that ∆ + 1 colors suffice to edge color
any graph of maximum degree ∆. (Clearly, at least ∆ colors are needed.) In dynamic graphs,
a deterministic (2∆ − 1)-edge-coloring algorithm with O(log n) worst-case update time is known
[18]. Also, a 3∆-edge-coloring can be trivially maintained in O(1) expected update time against
an adaptive adversary, by picking random colors for each new edge (u, v) until an available color is
picked.5

2.1 Negative Association

For our randomized sparsification algorithms, we sample colors without replacement. To bound
(weighted) sums of edges sampled this way, we rely on the following notion of negative dependence,
introduced by Joag-Dev and Proschan [50] and Khursheed and Lai Saxena [52].

Definition 2.1 (Negative Association). We say a joint distribution X1, X2, . . . , Xn is negatively
associated (NA), or alternatively that the random variables X1, X2, . . . , Xn are NA, if for any non-
decreasing functions g and h and disjoint subsets I, J ⊆ [n] we have

Cov(g(Xi : i ∈ I), h(Xj : j ∈ J)) ≤ 0. (2)

One trivial example of NA variables are independent variables, for which Inequality (2) is sat-
isfied with equality for any functions f and g. A more interesting example of NA distributions are
permutation distributions, namely a joint distribution where (X1, X2, . . . , Xn) takes on all permu-
tations of some vector ~x ∈ Rn with equal probability [50]. More elaborate NA distributions can be
constructed from simple NA distributions as above by several NA-preserving operations, including
scaling of variables by positive constants, and taking independent union [31, 50, 52]. (That is, if
the joint distributions X1, X2, . . . , Xn and Y1, Y2, . . . , Ym are both NA and are independent of each
other, then the joint distribution X1, X2, . . . , Xn, Y1, Y2, . . . , Ym is also NA.)

An immediate consequence of the definition of NA is that NA variables are negatively correlated.
A stronger consequence is that NA variables X1, . . . , Xn satisfy E[exp(λ

∑
iXi)] ≤

∏
i E[exp(λXi)]

(see [31]), implying applicability of Chernoff-Hoeffding bounds to sums of NA variables.
5Dynamic algorithms using fewer colors are known, though they are slower [30]. Moreover, as the number of

colors γ∆ used only affects our update times by a factor of γ (and does not affect our approximation ratio), the above
simple 2∆- and 3∆-edge-coloring algorithms will suffice for our needs.
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Lemma 2.2 (Chernoff bounds for NA variables [31]). Let X be the sum of NA random variables
X1, X2, . . . , Xm with Xi ∈ [0, 1] for each i ∈ [m]. Then for all δ ∈ (0, 1), and κ ≥ E[X],

Pr[X ≤ (1− δ) · E[X]] ≤ exp

(
−E[X] · δ2

2

)
,

Pr[X ≥ (1 + δ) · κ] ≤ exp

(
−κ · δ

2

3

)
.

Another tail bound obtained from E[exp(λ
∑

iXi)] ≤
∏
i E[exp(λXi)] for NA variables is Bern-

stein’s Inequality, which yields stronger bounds for sums of NA variables with bounded variance.
See, e.g., [28].

Lemma 2.3 (Bernstein’s Inequality for NA Variables). Let X be the sum of NA random variables
X1, X2, . . . , Xk with Xi ∈ [0,M ] for each i ∈ [k]. Then, if σ2 =

∑k
i=1 Var(Xi), then for all a > 0,

Pr[X > E[X] + a] ≤ exp

(
−a2

2(σ2 + aM/3)

)
.

3 Edge-Color and Sparsify

In this section we present our edge-coloring-based matching sparsification scheme, together with
some useful properties of this sparsifier necessary to bound its quality. We then show how to
implement this scheme in a dynamic setting against an adaptive adversary with (1− ε) loss in the
approximation ratio. We start by defining our sparsification scheme in a static setting.

3.1 The sparsification scheme

Our edge-coloring-based sparsification scheme receives a fractional matching ~x as an input, as well as
parameters ε ∈ (0, 1), d ≥ 1 and integer γ ≥ 1. It assumes access to a γ∆-edge-coloring algorithm for
graphs of maximum degree ∆. For some logarithmic number of indices i = 1, 2, . . . , 3 log1+ε(n/ε) =
O(log(n/ε)/ε), our algorithm considers subgraphs Gi induced by edges with x-value in the range
((1 + ε)−i, (1 + ε)−i+1], and γ∆(Gi) ≤ γ(1 + ε)i-edge-colors each such subgraph Gi. It then samples
at most γd colors without replacement in each such Gi. The output matching sparsifier H is the
union of all these sampled colors. The algorithm’s pseudocode is given in Algorithm 1, below.

Algorithm 1 Edge-Color and Sparsify

1: for all i ∈ {1, 2, . . . , d2 log1+ε(n/ε)e} do
2: let Ei , {e | xe ∈ ((1 + ε)−i, (1 + ε)−i+1]}.
3: compute a γd(1 + ε)ie-edge-coloring χi of Gi , G[Ei]. B Note: ∆(Gi) < (1 + ε)i

4: Let Si be a sample of min{γdd(1 + ε)e, γd(1 + ε)ie} colors without replacement in χi.
5: return H , (V,

⋃
i

⋃
M∈Si

M).

We note the obvious sparsity of this matching sparsifier H, implied by its being the union of
O
(
log(n/ε)

ε · γ · d
)
matchings in G, all of which have size at most µ(G), by definition.

Observation 3.1. The number of edges in H output by Algorithm 1 is at most

|E(H)| = O

(
log(n/ε)

ε
· γ · d · µ(G)

)
.

7



3.2 Basic properties of Algorithm 1

As we shall see in Appendix B.2, the subgraph H output by Algorithm 1 is a good matching
sparsifier, in the sense that µ(H) ≥ 1

c · µ(G) for some small c, provided the fractional matching is
a good approximate fractional matching. We will refer to this c as the approximation ratio of H.
Our analysis of the approximation of H will rely crucially on the following lemmas of this section.

Throughout our analysis we will focus on the run of Algorithm 1 on some fractional matching
~x with some parameters d, γ and ε, and denote by H the output of this algorithm. For each edge
e ∈ E, we let Xe , 1[e ∈ H] be an indicator random variable for the event that e belongs to this
random subgraph H. We first prove that the probability of this event occurring nearly matches pe
given by Equation (1) with logn

ε2
replaced by d. Indeed, the choice of numbers of colors sampled in

each Gi was precisely made with this goal in mind. The proof of the corresponding lemma below,
which follows by simple calculation, is deferred to Appendix B.

Lemma 3.2. If d ≥ 1
ε and γ ≥ 1, then for every edge e ∈ E, we have

min{1, xe · d}/(1 + ε)2 ≤ Pr[e ∈ H] ≤ min{1, xe · d} · (1 + ε). (3)

Moreover, if xe > 1
d , then Pr[e ∈ H] = 1.

Crucially for our analysis, where we concern ourselves with bounding weighted vertex degrees,
the variables Xe for edges of any given vertex are NA, as we establish in the following key lemma.

Lemma 3.3 (Negative Association of edges). For any vertex v, the variables {Xe | e 3 v} are NA.

To prove the above lemma, we will need to consider the following NA distributions.

Proposition 3.4. Let e1, e2, . . . , en be some ordering of elements in a universe of size n. For each
i ∈ [k], let Xi be an indicator for elements ei being sample in a sample of k ≤ n random elements
without replacement from e1, e2, . . . , en. Then X1, X2, . . . , Xn are NA.

Proof. Randomly sampling k elements from e1, e2, . . . , en without replacement is equivalent to let-
ting the vector (X1, X2, . . . , Xn) take on all permutations of a 0− 1 vector with k ones, with equal
probability. The proposition therefore follows from NA of permutation distributions [50].

Proof of Lemma 3.3. For all Gi, add a dummy edge to v for each color not used by (non-dummy)
edges of v in Gi. Randomly sampling k = min{dγde, dγ · (1 + ε)ie} colors in the coloring without
replacement induces a random sample without replacement of the (dummy and non-dummy) edges
of v in Gi. By Proposition 3.4, the variables {Xe | e 3 v, non-dummy e ∈ Gi} are NA (since subsets
of NA variables are themselves NA). The sampling of colors in the different Gi is independent, so
by closure property of NA under independent union the variables {Xe | e 3 v} are indeed NA.

The negative correlation implied by negative association of the variables {Xe | e 3 v} also implies
that conditioning on a given edge e′ 3 v being sampled into H only decreases the probability of any
other edge e 3 v being sampled into H. So, from lemma 3.2 and 3.3 we obtain the following.

Corollary 3.5. For any vertex v and edges e, e′ 3 v, we have

Pr[e ∈ H | e′ ∈ H] ≤ Pr[e ∈ H] ≤ min{1, xe · d} · (1 + ε).

Finally, we will need to argue that the negative association of edges incident on any vertex v
holds even after conditioning on some edge e′ 3 v appearing in H.
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Lemma 3.6. For any vertex v and edge e′ 3 v, the variables {Ye , [Xe | Xe′ = 1] | e 3 v} are NA.

This lemma’s proof is essentially the same as that of Lemma 3.3, while noting that if e′ is in
H, then the unique matching containing e′ in the edge coloring of Gi 3 e′ must be sampled. This
implies that the remaining colors sampled from the coloring of Gi also constitute a random sample
without replacement, albeit a smaller sample from a smaller population (both smaller by one than
their unconditional counterparts).

3.3 The Dynamic Rounding Framework

Here we present our framework for dynamically rounding fractional matchings.
Key to this framework is Observation 3.1, which implies that we can sampleH using Algorithm 1

and compute a (1 + ε)-approximate matching in H in Oε(µ(G)) time. This allows us to (nearly)
attain the approximation ratio of this subgraph H dynamically, against an adaptive adversary.

Theorem 3.7. Let γ ≥ 1, d ≥ 1 and ε > 0. Let Af be a constant-approximate dynamic
fractional matching algorithm with update time Tf (n,m). Let α = α(d, ε, γ,Af ) be the approx-
imation ratio of the subgraph H output by Algorithm 1 with parameters d, ε and γ when run
on the fractional matching of Af . Let Ac be a dynamic γ∆-edge-coloring algorithm with up-
date time Tc(n,m). If the guarantees of Af and Ac hold against an adaptive adversary, then
there exists an α(1 + O(ε))-approximate dynamic matching algorithm A against an adaptive
adversary, with update time

O
(
Tf (n,m) · Tc(n,m) + log(n/ε) · γ · d/ε3

)
.

Moreover, if Af and Ac have worst-case update times, so does A, and if the approximation ratio
given by H is w.h.p., then so is the approximation ratio of A.

Our approach for Theorem 3.7 is to maintain a fractional matching ~x using Af , and γ ·(1+ε)i(≥
γ · ∆(Gi)) edge colorings of the subgraphs Gi , G[{e | xe ∈ ((1 + ε)−i, (1 + ε)−i+1]}] using Ac.
This requires Tc(n,m) time for each of the Tf (n,m) changes to ~x by Af in each update, or a
total of O(Tf (n,m) · Tc(n,m)) time per update. In addition, we use Algorithm 1 to sample a
good matching sparsifier and (1 + ε)-approximate matching in H using a static O(|E(H)|/ε)-time
algorithm. By Observation 3.1, both these steps take O

( log(n/ε)
ε2
·γ ·d ·µ(G)

)
time. If µ(G) = O(1/ε),

(which we can verify using our constant-approximate fractional matching) we simply spend this
O
( log(n/ε)

ε2
· γ · d · µ(G)

)
= O

(
log(n/ε) · γ · d/ε3

)
time for this computation each update and just

use this (1 + ε)-approximate matching in H as our matching. Otherwise, we “spread” the above
computation over periods of O(dε·µ(G)e) updates, incurring a further O

(
log(n/ε) · γ · d/ε3

)
time per

update. As each update can only affect the approximation ratio by a (1+O(ε)) multiplicative factor,
the matching computed at the beginning of the previous period yields an α(1+O(ε)) approximation.
The formal description and analysis of this framework can be found in Appendix B.1.

Remark. We note that a log(n/ε)/ε factor in the above running time is due to the size of H
sampled at the beginning of a period being |E(H)| = Oε(d · γ · log(n/ε) ·µ(G)/ε) and the number of
subgraphs Gi being O(log(n/ε)/ε). For some of the fractional matchings we apply our framework
to, the sparsifier H has a smaller size of |E(H)| = O(γ · d · µ(G)), and we only need to sample
colors from O(γ · d · µ(G)) edge colorings to sample this subgraph. For these fractional matchings
the update time of the above algorithm therefore becomes Tf (n,m) · Tc(n,m) +O(γ · d/ε2).

Theorem 3.7 allows us to obtain essentially the same approximation ratio as that of H computed
by Algorithm 1 in a static setting, but dynamically, and against an adaptive adversary. The crux
of our analysis will therefore be to bound the approximation ratio of H, which we now turn to.
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4 Overview of analysis of Algorithm 1

In order to analyze the approximation ratio of the subgraph H output by Algorithm 1 (i.e., the ratio
µ(G)/µ(H)), we take two approaches, yielding different (incomparable) guarantees. One natural
approach, which we take in Section 4.2, shows that Algorithm 1 run on an α-approximate fractional
matching outputs a subgraph H which itself contains a fractional matching which is α-approximate
in G. For bipartite graphs this implies H contains an α-approximate integral matching. For general
graphs, however, this only implies the existence of a 3α

2 -approximate integral matching in H, due
to the integrality gap of the fractional matching polytope in general graphs. Our second approach
does not suffer this deterioration in the approximation ratio compared to the fractional matching,
for a particular (studied) class of fractional matchings. We start with this second approach.

4.1 Sparsifiers from Approximately-Maximal Fractional Matchings

Here we show how to avoid the multiplicative factor of 3
2 implied by the integrality gap when

sparsifying using (particularly well-structured) fractional matchings ~x. To prove this improved
approximation ratio we generalize the notion of kernels, introduced in [20] and later used by [3, 21].
In particular, we extend this definition to allow for distributions over subgraphs, as follows.

Definition 4.1. (Kernels) A (c, d, ε)-kernel of a graph G is a (random) subgraph H of G satisfying:

1. For each vertex v ∈ V , the degree of v in H is at most dH(v) ≤ d always.

2. For each edge e ∈ E with Pr[e 6∈ H] > ε, it holds that E[maxv∈e dH(v) | e 6∈ H] ≥ d/c.

If H is a deterministic distribution, we say H is a deterministic kernel.

Such a graph is clearly sparse, containing at most O(nd) edges. (Crucially for our needs, the ker-
nels we compute even have size |E(H)| = Õ(µ(G)).) As shown in [3], deterministic (c, d, 0)-kernels
have approximation ratio 2c(1+1/d). (Coincidentally, this proof also relies on edge colorings.) Gen-
eralizing this proof, we show that a randomized (c, d, ε)-kernel has approximation ratio 2c(1 + 1/d)
in expectation. The key difference is that now rather than comparing µ(G) to the value of some
fractional matching in H ∼ H, we compare µ(G) to some fractional matching’s expected value. As
this generalization is rather minor, we defer its proof to Appendix B.2.1.

Lemma 4.2. Let H be a (c, d, ε)-kernel of G for some c ≥ 1
1−ε . Then E[µ(H)] ≥ 1

2c(1+1/d) · µ(G).

As we show, the subgraph H output by Algorithm 1, when run on well-structured fractional
matchings, contains such a kernel. Specifically, we show that H contains a kernel, provided the
input fractional matching is approximately maximal, as in the following definition of Arar et al. [3].

Definition 4.3 (Approximately-Maximal Fractional Matching [3]). A fractional matching ~x is
(c, d)-approximately-maximal if every edge e ∈ E either has fractional value xe > 1/d or it has
one endpoint v with

∑
e3v xe ≥ 1/c with all edges e′ incident on this v having value xe′ ≤ 1/d.

Some syntactic similarity between definitions 4.1 and 4.3 should be apparent. For a start, both
generalize maximal (integral or fractional) matchings, which is just the special case of c = d = 1.
Both require an upper bound on the (weighted) degree of on any vertex, and stipulate that some
edges have an endpoint with high (weighted) degree. Indeed, this similarity does not stop there,
and as shown in [3], sampling each edge e of a (c, d)-approximately-maximal fractional matching
independently with probability pe as in (1) yields a deterministic (c(1 +O(ε), d(1 +O(ε), 0)-kernel
w.h.p. As we show, sampling each edge e with probability roughly pe, such that the edges are NA,
as in Algorithm 1, yields the same kind of kernel, w.h.p.
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Lemma 4.4. Let c ≥ 1, ε > 0 and d ≥ 9c(1+ε)2·logn
ε2

. If ~x is a (c, d)-approximately-maximal
fractional matching, then the subgraph H output by Algorithm 1 when run on ~x with ε and d as
above is a deterministic (c(1 +O(ε), d(1 +O(ε), 0)-kernel, w.h.p.

The proof broadly relies on Chernoff bounds for degrees of vertices, which are sums of NA
variables, by Lemma 3.3, as follows. The first kernel constraint (∆(H) ≤ d(1 + O(ε))) is rather
direct. For the second constraint, we rely on the approximate-maximality of ~x, noting that any edge
not sampled in H must have xe ≤ 1/d by Lemma 3.2, and so one of this edge’s endpoints, v ∈ e,
must satisfy

∑
e′3v xe′ ≥ 1/c and xe′ ≤ 1/d for all e′ 3 v. This implies that min{1, xe′ · d} = xe′ · d.

Therefore, by Lemma 3.2, the expected degree of v is at least
∑

e′3v xe′ · d/(1 + ε)2, and this is
sharply concentrated, by Lemma 2.2. (See Appendix B.2.2 for a full proof.)

In light of Lemma 4.4, we now turn to discussing further implications of Theorem 3.7.
As shown in [3], the output fractional matching of [22] is (1 + ε, d)-approximately-fractional,

for some d = poly(log n, 1/ε) large enough to satisfy the conditions of Lemma 4.4. Therefore,
plugging in this poly(log n, 1/ε) worst-case update time deterministic algorithm into Theorem 3.7
in conjunction with the deterministic O(log n)-time 2∆-edge-coloring algorithm of [20], we only
obtain a Monte Carlo algorithm with guarantees similar to that of Theorem 1.1. However, since
we can efficiently verify the high-probability events implying that H is a kernel, we can re-sample
H if ever it is not a kernel. From this we recover the guarantees of Theorem 1.1 — a Las Vegas
randomized dynamic (2 + ε)-approximate matching algorithm with poly log n update time w.h.p,
which works against adaptive adversaries.

To obtain the constant-time algorithm of Theorem 1.2, we rely on the constant-time frac-
tional matching algorithm of Bhattacharya and Kulkarni [23], which we show outputs a (1 + ε, d)-
approximately-maximal matching for any d > 1 + ε (see Appendix B.2.3). We show that these
fractional matchings also only define O(µ(G)) subgraphs Gi, as they only assign one of O(µ(G)) x-
values to all edges. This implies in particular that Algorithm 1 can sample H from such ~x using only
O(γ · d ·µ(G)) random choices, yielding a subgraph of size O(γ · d ·µ(G)). Using a simple constant-
expected-time 3∆-edge-coloring algorithm, this improves the update time to poly(1/ε) +O(γ · d/ε).
Taking d = O(log n), this yields the first (2+ε)-approximate algorithms with amortized logarithmic
update time against adaptive adaptive adversaries. Pleasingly, we can improve this bound further,
and obtain a constant-time such algorithm. To this end, we show that sampling H using a (c, d)-
approximately-maximal fractional matching with d ≥ poly(1/ε) and removing high-degree vertices
yields a (randomized) (c(1 + O(ε)), d(1 + O(ε)), ε)-kernel. (See Appendix B.2.3.) From the above
we thus obtain the first constant-time (2 + ε)-approximate algorithm, as stated in Theorem 1.2.

4.2 Fractional Matching Sparsifiers

The approach we apply in this section to analyze Algorithm 1 consists of showing that the subgraph
H obtained by running Algorithm 1 on any fractional matching ~x with appropriate choices of d
and ε supports a fractional matching ~y with E[

∑
e ye] ≥

∑
e xe(1−O(ε)). That is, we prove H is a

near-lossless fractional matching sparsifier.

Lemma 4.5. (Algorithm 1 Yields Fractional Matching Sparsifiers) Let ε ∈ (0, 1/2) and d ≥ 3 log(2/ε)
8ε .

If H is a subgraph of G output by Algorithm 1 when run on a fractional matching ~x with parameters
ε and d as above, then H supports a fractional matching ~y of expected value at least

E

[∑
e

ye

]
≥
∑
e

xe(1− 4ε).

11



The full proof of this lemma is deferred to Appendix B.2.4. We briefly sketch it here. We first
define a fractional matching in H with each edge e assigned value ze = (1− ε)xe/min{1, xe · d}. By
Lemma 3.2 this immediately implies that E[

∑
e ze] ≥ (1−O(ε))

∑
e xe. Next, we define a fractional

matching ~y, letting ye = ze, or ye = 0 if xe ≤ 1/d and some endpoint v ∈ e has it fractional matching
constraint violated by ~z, i.e.,

∑
e′3v ze′ > 1. The only delicate point of the analysis is showing that

for edge e, conditioning on e being sampled into H, with probability 1 − ε both endpoints v ∈ e
have their fractional matching constraint satisfied by ~z. For this, we note that the fractional degree
of v conditioned on e ∈ H, is the sum of variables ze′ · [Xe′ | Xe], which by closure of NA under
scaling by positive constants and Lemma 3.6 these variable are NA. Therefore, applying Bernstein’s
Inequality (Lemma 2.3) to these low-variance NA variables, we find that with probability 1 − ε, if
e = (u, v) is sampled, then both endpoints of e have

∑
e′3v ze′ ≤ 1, in which case ye = ze, and so

we have E[ye] ≥ (1− ε) · E[ze] ≥ (1−O(ε)) · xe, as claimed.
For bipartite graphs, whose fractional matching polytopes are integral, Lemma 4.5 implies that

running Algorithm 1 on an α-approximate fractional matching ~x yields an α(1 +O(ε))-approximate
subgraph H. For example, plugging the better-than-two approximate fractional matching algorithm
of Bhattacharya et al. [21] into our dynamic matching framework, we obtain the first (2 − δ)-
approximate algorithms with arbitrarily-small polynomial update time against adaptive adversaries
in bipartite graphs, as stated in Theorem 1.3.

5 Conclusions and Open Questions

This paper provides the first randomized dynamic matching algorithms which work against adaptive
adversaries and outperform deterministic algorithms for this problem. It obtains a number of such
algorithmic results, based on a new framework for rounding fractional matchings dynamically against
an adaptive adversary. Our results suggest a few follow up questions, of which we state a few below.

Maximum Weight Matching (MWM). The current best approximation for dynamic MWM
with polylog worst-case update time against adaptive adversaries is (4 + ε), obtained by applying
the reduction of [68] to our algorithm of Theorem 1.1. This is far from the more familiar ratios
of 2 or (2 + ε) known to be achievable efficiently for this problem in other models of computation,
such as streaming [38, 62] and the CONGEST model of distributed computation [37, 55]. Attaining
such bounds in a dynamic setting in polylog update time (even amortized and against an oblivious
adversary) remains a tantalizing open problem.

Better Approximation. To date, no efficient (i.e., polylog update time) dynamic matching
algorithm with approximation better than two is known. As pointed out by Assadi et al. [4],
efficiently improving on this ratio of two for maximum matching has been a longstanding open
problem in many models, and has recently been proven impossible to do in an online setting [35].
Is the dynamic setting “easier” than the online setting, or is an approximation ratio of 2 the best
approximation achievable in polylog update time?
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Appendix

A Warm Up: Deterministic Algorithms

Here we discuss our deterministic matching algorithms obtained by generalizing the discussion in
Section 1.1. First, we note that the (2∆− 1)-edge-coloring algorithm of [18] works for multigraphs.

Lemma A.1 ([18]). For any dynamic multigraph G with maximum degree ∆, there exists a deter-
ministic (2∆− 1)-edge-coloring algorithm with worst-case update time O(log ∆).

Broadly, the algorithm of [18] relies on binary search, relying on the following simple observation.
For (2∆ − 1) colors, if we add an edge (u, v), then the total number of colors used by u and v for
all their (at most ∆ − 1) edges other than (u, v), even counting repetitions, is at most 2∆ − 2.
That is, fewer than the number of colors in the entire palette, [2∆ − 1]. Consequently, either the
range {1, 2, . . . ,∆} or {∆ + 1,∆ + 2, . . . , 2∆ − 1} has a smaller number of colors used by u and v
(again, counting repetitions). This argument continues to hold recursively in this range in which u
and v have used fewer colors than available. With the appropriate data structures, this observation
is easily implemented to support O(log ∆) worst-case update time for both edge insertions and
deletions (see [18] for details). As the underlying binary-search argument above did not rely on
simplicity of the graph, this algorithm also works for multigraphs.

We now show how to use this simple edge-coloring algorithm in conjunction with dynamic
fractional matching algorithms to obtain a family of deterministic algorithms allowing to trade off
approximation ratio for worst-case update time.

Theorem 1.4. For any K > 1, there exists a deterministic O(K)-approximate matching algorithm
with worst-case Õ(n1/K) update time.

Proof. Wemaintain in the background a 2.5-approximate fractional matching ~x using a deterministic
algorithm with worst-case polylogarithmic update time, such as that of [22] run with ε = 0.5.
Letting R := n1/K , we define O(K) multigraphs whose union contains all edges in G. Specifically,
for each i = 1, 2, . . . , 2 logR(2n) we let Gi be a multigraph whose edges are the edges of G of
x-value xe ∈ [R−i,R−i+1], with each such edge e having dxe/R−ie parallel copies in Gi. So, for
example, an edge with x-value of R−i will have a single parallel copy in Gi, and an edge wit x-value
of R−i+1 will have dRe ≤ n1/K + 1 parallel copies in Gi. By the fractional matching constraint
(
∑

e3v xe ≤ 1 ∀v ∈ V ), the maximum degree in each graph Gi is at most ∆(Gi) ≤ Ri. Therefore,
using the edge coloring algorithm of [18] we can maintain a 2∆(Gi)−1 ≤ 2 ·Ri edge coloring in each
Gi deterministically in worst-case O(log n) time per edge update in Gi. Since for any edge e a change
to xe causes at most dRe parallel copies of e to be added to or removed from multigraphs Gi, we
find that each x-value changes performed by the fractional matching algorithm require O(R · log n)
worst-case time. As the fractional algorithm has polylogarithmic update time (and therefore at most
that many x-value changes per update), the overall update time of these subroutines is therefore at
most Õ(R) = Õ(n1/K). Our algorithm simply maintains as its matching the largest color class in
any of these multigraphs. It remains to bound the approximation ratio of this approach.

First, we note that all edges not in any Gi, i.e., of x-value at most R− logR(2n) = 1/(4n2),
contribute at most

∑
e:xe≤ε2/n2 xe ≤ 1/4 to

∑
e xe. So, as ~x is a 2.5-approximate fractional matching,

we have that ∑
e∈

⋃
Gi

xe ≥
1

2.5
· µ(G)− 1

4
≥ 1

O(1)
· µ(G),
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where as before, µ(G) ≥ 1 is the maximum matching size in G. (Note that if µ(G) = 0 any algorithm
is trivially 1-approximate.) Therefore, as R = n1/K at least one of these 2 logR(2n) = O(K)
multigraphs Gi must have total x-value at least∑

e∈Gi

xe ≥
1

O(K)
· 1

O(1)
· µ(G) =

1

O(K)
· µ(G).

But, as this multigraph Gi has at least |E(Gi)| =
∑

e∈Gi
dxe/R−i+1e ≥

∑
e∈Gi

xe · Ri−1 edges, one
of the 2∆(Gi)− 1 ≤ 2Ri+1 colors (matchings) in Gi must have size at least

|E(Gi)|
2∆(Gi)− 1

≥
∑

e∈Gi
xe · Ri−1

2Ri
≥
∑

e∈Gi
xe

4
≥ 1

4
· 1

O(K)
· µ(G) =

1

O(K)
· µ(G).

As this algorithm’s matching is the largest color class in all the edge colorings of all the different
Gi, it is O(K) approximate, as claimed.

Corollary A.2. There exists a deterministic O
( logn
log logn

)
-approximate matching algorithm with

worst-case poly log n update time.

Remark 1: We note that the algorithm of Theorem 1.4 requires O(m · n1/K) space to store the
multigraphs Gi and their relevant data structures maintained by the algorithm, since each edge
e in a graph Gi may have x-value precisely R−i+1, which means we represent this edge using
O(R) = O(n1/K) parallel edges in Gi. It would be interesting to see if its approximation to worst-
case update time tradeoff can be matched by a deterministic algorithm requiring Õ(m) space.

Remark 2: We note that the matching maintained by our deterministic algorithms can change
completely between updates. For applications where this is undesirable, combining this algorithm
with a recent framework of Solomon and Solomon [65] yields a dynamic matching M ′ of roughly
the same size while only changing O(1/ε) edges of M ′ per update.

B Deferred proofs of Section 3

Here we provide complete proofs of lemmas deferred from the main paper body, restated below for
convenience.

First, we show that Algorithm 1 samples each edge into H with the probability given by (1)
with logn

ε2
replaced by d, up to multiplicative (1 + ε) terms.

Lemma 3.2. If d ≥ 1
ε and γ ≥ 1, then for every edge e ∈ E, we have

min{1, xe · d}/(1 + ε)2 ≤ Pr[e ∈ H] ≤ min{1, xe · d} · (1 + ε). (3)

Moreover, if xe > 1
d , then Pr[e ∈ H] = 1.

Proof. Let i be the integer for which xe ∈ ((1+ε)−i, (1+ε)−i+1]. That is, the i for which e ∈ E(Gi).
If (1 + ε)i−1 < d, implying that (1 + ε)i < d(1 + ε), then Algorithm 1 samples all of the

γd(1 + ε)ie = min{γdd(1 + ε)e, γd(1 + ε)ie} colors in the edge coloring of Gi. Consequently, the edge
e is sampled with probability one. On the other hand, (1+ε)i−1 < d also implies that (1+ε)−i+1 > 1

d
and therefore that xe > (1 + ε)−i ≥ 1

d(1+ε) . Thus, the edge e is sampled with probability at most

Pr[e ∈ H] = 1 ≤ min{1, xe · d} · (1 + ε),
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and trivially sampled with probability at least

Pr[e ∈ H] = 1 ≥ min{1, xe · d}/(1 + ε)2.

Moreover, if xe > 1
d , then (1 + ε)−i+1 ≥ xe > 1

d , or put otherwise (1 + ε)i−1 < d, and so we find that
every edge e with xe > 1

d is sampled with probability Pr[e ∈ H] = 1(= min{1, xe · d}). It remains
t consider edges e with xe ≤ 1

d , for which min{1, xe · d} = xe · d, and which in particular belong to
subgraphs Gi with i satisfying (1 + ε)i−1 > d.

Now, if i satisfies (1 + ε)i−1 ≥ d, then we sample some γdde = min{γdde, dγ · (1 + ε)ie} colors in
the edge coloring of Gi. As such, the probability of e appearing in H is precisely the probability that
the color M containing e is one of the γdde sampled colors in Gi, which by linearity of expectation
happens with probability precisely

Pr[e ∈ H] =
γdde

γd(1 + ε)ie
=

dde
d(1 + ε)ie

.

Now, since d ≥ ε
ε implies that d + 1 ≤ d(1 + ε), the probability of e (which has xe ≥ (1 + ε)−i)

appearing in H is at most

Pr[e ∈ H] =
dde

d(1 + ε)ie
≤ d+ 1

(1 + ε)i
≤ d(1 + ε)

(1 + ε)i
= d(1 + ε)−i+1 ≤ xe · d · (1 + ε).

On the other hand, since (1 + ε)i−1 > d, and d ≥ 1
ε , we have that (1 + ε)i > d ≥ 1

ε , which implies
that (1 + ε)i + 1 ≤ (1 + ε)i+1. Consequently, the probability of e (which has xe ≤ (1 + ε)−i+1)
appearing in H is at least

Pr[e ∈ H] =
dde

d(1 + ε)ie
≥ d

(1 + ε)i + 1
≥ d

(1 + ε)i+1
= d(1 + ε)−i−1 ≥ xe · d/(1 + ε)2.

This completes the proof for edge e in Gi for i satisfying (1 + ε)i−1 ≥ d, as such edges e satisfy
(1 + ε)−i+1 ≤ 1

d and consequently min{1, xe · d} = xe · d.

B.1 The Dynamic Matching Framework

Here we give all details of our framework for obtaining dynamic matching algorithms against adap-
tive adversaries whose approximation ratio matches that of the subgraph H output by Algorithm 1.

Theorem 3.7. Let γ ≥ 1, d ≥ 1 and ε > 0. Let Af be a constant-approximate dynamic fractional
matching algorithm with update time Tf (n,m). Let α = α(d, ε, γ,Af ) be the approximation ratio
of the subgraph H output by Algorithm 1 with parameters d, ε and γ when run on the fractional
matching of Af . Let Ac be a dynamic γ∆-edge-coloring algorithm with update time Tc(n,m). If
the guarantees of Af and Ac hold against an adaptive adversary, then there exists an α(1 +O(ε))-
approximate dynamic matching algorithm A against an adaptive adversary, with update time

O
(
Tf (n,m) · Tc(n,m) + log(n/ε) · γ · d/ε3

)
.

Moreover, if Af and Ac have worst-case update times, so does A, and if the approximation ratio
given by H is w.h.p., then so is the approximation ratio of A.

Before proving this lemma, we first prove a simple intermediate lemma.
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Lemma B.1. Let ~x be a fractional matching in some graph G. Let H be the distribution over
subgraph H of G obtained by running Algorithm 1 on ~x with parameters d, ε and γ. Then, if the
edge colorings of Algorithm 1 based on ~x and the above parameters are given, we can sample a graph
H sampled from H, and compute a (1 + ε)-approximate matching in H, in time

O

(
log(n/ε)

ε2
· γ · d · µ(G)

)
.

Proof. Running Algorithm 1 on x with parameters d, ε, γ yields a subgraph H of G. By Observa-
tion 3.1, for any edge colorings as computed by Algorithm 1, this subgraph H has size at most

|E(H)| = O

(
log(n/ε)

ε
· γ · d · µ(G(t))

)
. (4)

As determining which d colors to sample in each of the O(log(n/ε)) subgraphs take O(log(n/ε) · d)

time, sampling this graph H takes at most O
( log(n/ε)

ε ·γ ·d ·µ(G)
)
time (including the time to make

these random choices). Furthermore, computing a (1 + ε)-approximate matching in this H, using
an O(m/ε)-time static algorithm [48, 56], takes time

O(|E(H)|/ε) = O

(
log(n/ε)

ε2
· γ · d · µ(G)

)
Our algorithm of Theorem 3.7 will periodically appeal to Lemma B.1, whose work it will “spread”

across epochs of length O(dε · µ(G)e), as follow.

Proof of Theorem 3.7. Algorithm A runs Algorithm Af to maintain a fractional matching ~x. In
addition, it maintains dγ(1 + ε)ie-edge-colorings in each subgraph Gi := G[{e | xe ∈ (1 + ε)−i, (1 +

ε)−i+1}], for all i = 1, 2, . . . , 2 log1+ε(n/ε) = O
( log(n/ε)

ε

)
. Maintaining this fractional matching and

the different subgraphs’ edge colorings appropriately require at most O(Tf (n,m) · Tc(n,m)) time
per update: Tc(n,m) time for each of the at most O(Tf (n,m)) edge value changes Af makes to the
fractional matching ~x per update, as well as Tf (n,m) time to update ~x and for maintaining

∑
e xe.

By Lemma B.1, the above edge colorings allow us to sample a subgraph H from the distribution
H of subgraphs obtained when running Algorithm 1 on G(t), in time O

(
log(n/ε)

ε2
· γ · d · µ(G)

)
. We

perform such computations periodically. In particular, we divide time into epochs, where during
each epoch we spread the work of computing such a matching, as follows.

The first epoch begins after the first edge insertion. We denote by G(t) the graph G at the
beginning of epoch t. Likewise, we denote by ~x(t) the fractional matching at the beginning of epoch
t. As ~x(t) is a β-approximate fractional matching for some constant β = O(1) by our hypothesis, we
have that |x(t)|1 ≥ 1

β ·µ(G(t)). On the other hand, by the integrality gap of the fractional matching
polytope, we also have that |x(t)|1 ≤ 3

2 · µ(G(t)). We will let epoch t have length dε · |x(t)|1e, which
by the above is O(ε · µ(G(t))).

If the fractional matching at the beginning of epoch t has value at most |x(t)|1 ≤ 1
ε , the

epoch has length one. We compute our matching with which to answer queries in this epoch
by sampling H(t) and computing a (1 + ε)-approximate matching in H(t). By Lemma B.1 takes
O
(
log(n/ε)

ε2
· γ · d · µ(G(t))

)
= O

(
log(n/ε)

ε3
· γ · d

)
time, which falls within our claimed time bounds.

Moreover, our matching at this point is an α(1 + ε)-approximate matching in G(t), as desired.
For an epoch with |x(t)| > 1

ε , which we will term long, we will compute H(t) and a (1 + ε)-
approximate matching in H, but spread this work over the length of the epoch. We let the non-
deleted edges of the previous matching (which are computed by the beginning of this long period)
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be the matching used for queries during this epoch. One observation we will rely on for the analysis
of long epochs is that if epoch t or t + 1 is long, then since epochs t has length O(ε · µ(G)), the
maximum matching’s cardinalities in G(t) and G(t+1) are similar. In particular, since we have that
µ(G(t+1))− µ(G(t)) ≤ O(ε · µ(G(t))), we have

µ(G(t)) · (1−O(ε)) ≤ µ(G(t+1)) ≤ µ(G(t)) · (1 +O(ε)). (5)

We now describe the steps taken during a long epoch.
During a long epoch, we sample a subgraph H(t) in G(t) and spread the time of computation

of H(t) and this (1 + ε)-approximate matching in H(t) over the epoch. Ignoring some additional
information we need to maintain to do this, this increases the update time by

O
(
log(n/ε)

ε2
· γ · d · µ(G(t))

)
dε|x(t)|1e

≤
O
(
log(n/ε)

ε2
· γ · d · µ(G(t))

)
ε · 1β · µ(G(t))

= O

(
log(n/ε)

ε3
· γ · d

)
,

where the first inequality relied on |x(t)|1 ≥ 1
β · µ(G(t)) and the last inequality relied on β = O(1).

Now, in order to perform these operations efficiently during the epoch, we need to maintain the
edge colorings at the beginning of the epoch. This, however, is easily done by maintaining a mapping
(using arrays and lists) from colors in each subgraph to a list of edges added/removed from this
color during the epoch. This allows us to maintain ~x and the colorings induced by it, as well as
maintain the colorings at the beginning of the epoch, at a constant overhead in the time to update
~x and the colorings, as well as the time to sample H(t). Finally, if space is a concern,6 the list of
updates from epoch t can be removed during the subsequent epoch in the same asymptotic time
per step as required by the following epoch, as subsequent epochs have the same asymptotic length.
We conclude that our algorithm runs within the claimed time bounds. It remains to analyze its
approximation ratio for long epochs.

Recall that for any long epoch t, we use the non-deleted edges of some (1 + ε)-approximate
matching M (t−1) in H(t−1) as our matching during epoch t. (Note that we have finished computing
M (t−1) by the beginning of epoch t.) We now bound this algorithm’s approximation ratio. By
assumption we have that µ(H(t−1)) ≥ 1

α · µ(G(t−1)) at the beginning of the phase. Denote by
M ⊆M (t−1) the matching used to answer queries during some time point in epoch t. AsM contains
all edges of M (t−1) (which is a (1 + ε)-approximate matching in H(t−1)), not including the edges of
M (t−1) removed during epochs t− 1 and t (of which there are at most dε · |x(t−1)|1e+ dε · |x(t)|1e),
we find that the size of M during any point in epoch t is at least

|M | ≥ |M (t−1)| − dε · |x(t−1)|1e − dε · |x(t)|1e

≥ 1

1 + ε
· µ(H(t−1))− dε · |x(t−1)|1e − dε · |x(t)|1e

≥ 1

α(1 + ε)
· µ(G(t−1))−

⌈
ε · 3

2
· µ(G(t−1))

⌉
−
⌈
ε · 3

2
· µ(G(t))

⌉
≤ 1

α(1 +O(ε))
· µ(G(t))

where the second inequality follows from |x(t)|1 ≤ 3
2 · µ(G(t)) for all t, and the ultimate inequal-

ity follows from subsequent epochs’ maximum matchings’ cardinalities being similar, as stated in
Equation (5). Consequently, our algorithm is α(1 +O(ε)) approximate, as claimed.

6And why wouldn’t it be?
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B.2 Analysis of Algorithm 1

In this section we analyze the approximation ratio of the subgraph H sampled by Algorithm 1.
Combined with Theorem 3.7, this will imply our randomized algorithms against adaptive adver-
saries.

In Appendix B.2.1 we prove that kernels contain large integral matchings. In Sections B.2.2 and
B.2.3 we show that our sparsification applied to approximately-maximal fractional matchings with
appropriate choices of d yield such a kernel. Specifically, we show that it yields either a deterministic
kernel w.h.p., or a randomized kernel. Combined with Theorem 3.7 (and some other ideas), we use
these sections to prove Theorems 1.1 and 1.2, respectively. Finally, in Appendix B.2.4, we prove
that the subgraph output by our sparsification method is a good fractional matching algorithm,
from which we derive Theorem 1.3.

B.2.1 The Kernel Lemma

Recall that one notion of matching sparsifiers we rely on is (randomized) (c, d) kernels, restated
below for ease of reference.

Definition 4.1. (Kernels) A (c, d, ε)-kernel of a graph G is a (random) subgraph H of G satisfying:

1. For each vertex v ∈ V , the degree of v in H is at most dH(v) ≤ d always.

2. For each edge e ∈ E with Pr[e 6∈ H] > ε, it holds that E[maxv∈e dH(v) | e 6∈ H] ≥ d/c.
If H is a deterministic distribution, we say H is a deterministic kernel.

Here we bound the expected maximum matching size of such a kernel in terms of µ(G).

Lemma 4.2. Let H be a (c, d, ε)-kernel of G for some c ≥ 1
1−ε . Then E[µ(H)] ≥ 1

2c(1+1/d) · µ(G).

Proof. Let M∗ be some maximum matching in G (i.e., |M∗| = µ(G)). For any realization H of H,
consider the following fractional matching:

fHu,v ,

{
1
d (u, v) ∈ H \M∗

max{1− dh(u)+dH(v)−2
d , 0} (u, v) ∈ H ∩M∗.

This is a feasible fractional matching due to the degree bound ofH and the fractional values assigned
to edges of a vertex v incident on an edge e ∈ H ∩M∗ being at most dH(v)−1

d + d−dH(v)+1
d = 1. We

start by showing this fractional matching has high expected value, EH∼H[
∑

e f
H
e ].

To lower bound the above expected value, we consider the following variables, yHv ,
∑

e3v f
H
e .

By the handshake lemma,
∑

u,v f
H
u,v = 1

2

∑
v y

H
v . Now, consider some edge e = (u, v) ∈ M∗. For

any realization H of H with e ∈ M∗ ∩H, we have yHu + yHv ≥ 1(≥ 1
c ) by construction. Therefore

if Pr[e 6∈ H] ≤ ε, we have E[yHu + yHv ] ≥ 1 − ε ≥ 1
c (by our choice of c ≥ 1

1−ε). On the other
hand, if e ∈ M∗ \H, then we have yHu + yHv ≥ maxv∈e y

H
v ≥ maxv∈e dH(v)/d. But by the second

property of (c, d, ε)-kernels we have that if Pr[e 6∈ H] > ε, then EH∼H[maxv∈e dH(v) | e 6∈ H] ≥ d/c.
Consequently, we find that for each edge e = (u, v) ∈M∗ with Pr[e 6∈ H] > ε we have

EH∼H
[
yHu + yHv

]
= EH∼H

[
yHu + yHv | e ∈ H

]
· Pr[e ∈ H] + EH∼H

[
yHu + yHv | e 6∈ H

]
· Pr[e 6∈ H]

≥ 1

c
· Pr[e ∈ H] + EH∼H

[
max
v∈e

dH(v)/d | e 6∈ H
]
· Pr[e 6∈ H]

≥ 1

c
· Pr[e ∈ H] +

d

c
· 1

d
· Pr[e 6∈ H]

=
1

c
.

18



Now, as each vertex v neighbors at most one edge of the (optimal) matching M∗, we obtain

EH∼H

[∑
e

fHe

]
=

1

2
· EH∼H

[∑
v

yHv

]
≥ 1

2c
· |M∗| = 1

2c
· µ(G). (6)

Therefore, H contains a large (2c-approximate) fractional matching in expectation.
Next, to show that H contains a large integral matching in expectation, we rely on Vizing’s

Theorem [70], which asserts that every multigraph of maximum degree ∆ and maximum edge
multiplicity µ has a proper ∆ + µ edge-coloring; i.e., a partition of the edge multiset into ∆ + µ
edge-disjoint matchings. To use this theorem, we again consider a realization H of H, and now
construct a multigraph on the same vertex set V with each edge e replaced by fHe · d parallel copies
(note that fHe ·d is integral). By construction, the number of edges in this multigraph is

∑
e f

H
e ·d. By

feasibility of fH , we have that this multigraph has maximum degree at most maxv
∑

e3v f
H
v · d ≤ d.

By Vizing’s Theorem, the simple subgraph obtained by ignoring parallel edges corresponding to
edges in H ∩M∗ can be edge colored using d + 1 colors. But for each edge e = (u, v) ∈ H ∩M∗,
such a coloring uses at most dH(u)− 1 + dH(v)− 1 distinct colors on edges other than (u, v) which
are incident on u or v. To extend this d+ 1 edge coloring to a proper coloring of the multigraph, we
color the max{d− (dH(u)− 1 + dH(v)− 1), 0} multiple edges (u, v) in this multigraph using some
max{d− (dH(u)− 1 + dH(v)− 1), 0} colors of the palette of size d+ 1 which were not used on the
other edges incident on u and v. We conclude that this multigraph, which is contained in H and
has

∑
e fe · d edges, is d + 1 edge colorable and therefore one of these d + 1 colors (matchings) in

this edge coloring is an integral matching in H of size at least

µ(H) ≥ 1

d+ 1
·
∑
e

fHe · d =
1

1 + 1/d
·
∑
e

fHe . (7)

Taking expectation over H ∼ H and combining (7) with (6), we obtain the desired result, namely

E[µ(H)] ≥ 1

1 + 1/d
· EH∼H

[∑
e

fHe

]
≥ 1

2c(1 + 1/d)
· µ(G).

B.2.2 Kernels - w.h.p.

In this section we show that running Algorithm 1 on an approximately-maximal fractional matching
~x with sufficiently large d = Ω(log n) yields a deterministic kernel, w.h.p. We then use this property
and Theorem 3.7 to prove our main result, Theorem 1.1.

Lemma 4.4. Let c ≥ 1, ε > 0 and d ≥ 9c(1+ε)2·logn
ε2

. If ~x is a (c, d)-approximately-maximal
fractional matching, then the subgraph H output by Algorithm 1 when run on ~x with ε and d as
above is a deterministic (c(1 +O(ε), d(1 +O(ε), 0)-kernel, w.h.p.

Proof. Consider some vertex v. By Lemma 3.2, we have that each edge e 3 v is sampled with
probability at most Pr[Xe = 1] ≤ min{1, xe · d} · (1 + ε). Combined with the fractional matching
constraint

∑
e3v xe ≤ 1, this implies that the expected degree of v in H is at most

E[dH(v)] =
∑
e3v

E[Xe] ≤
∑
e

xe · d · (1 + ε) ≤ d(1 + ε).

By Lemma 3.3, we have that the indicators {Xe | e 3 v} are NA. Therefore, appealing to the upper
tail bound of Lemma 2.2 for NA variables with δ = ε > 0, we have that

Pr[dH(v) ≥ d(1 + 3ε)] ≤ Pr[dH(v) ≥ d(1 + ε)2] ≤ exp

(
−ε2d(1 + ε)

3

)
≤ 1

n3
,

19



where the last inequality relied on d ≥ 9 logn
ε2

.
Now, to prove the second property of kernels, consider some edge e ∈ E such that Pr[e 6∈ H] > 0.

By Lemma 3.2, we have that xe ≤ 1/d. Therefore, as ~x is (c, d)-approximately-maximal, this implies
that there exists some v ∈ e with

∑
e′3v xe′ ≥

1
c and xe′ ≤ 1

d for all e′ 3 v. Therefore, by Lemma 3.2
each edge e′ 3 v is sampled with probability at least xe ·d/(1+ε), and so by linearity of expectation,
the expected degree of v in H is at least

E[dH(v)] =
∑
e3v

E[Xe] ≥
∑
e

xe · d/(1 + ε) ≥ d/(c(1 + ε)2).

Recalling that the indicators {Xe | e 3 v} are NA, we appeal to the lower tail bound of Lemma 2.2
with δ = ε > 0, from which we obtain that

Pr[dH(v) ≤ d(1− ε)/(c(1 + ε)2)] ≤ exp

(
−ε2d/(c(1 + ε))

2

)
≤ 1

n3
,

where the last inequality follows from d ≥ 9c(1+ε)2 logn
ε2

.
Taking union bound over the O(n2) bad events which would make H not be kernel as desired,

we find that H is a (c(1 +O(ε)), d(1 +O(ε), 0)-kernel with high probability, as claimed.

As show in [3], the output fractional matching of [22] is precisely such a fractional matching
(also satisfying d = poly(log n, 1/ε) ≥ 9c(1+ε)2 logn

ε2
). Therefore, by Lemma 4.4, plugging in this

poly(log n, 1/ε) worst-case update time deterministic algorithm into Theorem 3.7, we obtain a Monte
Carlo algorithm which is (2+ε) approximate w.h.p. and has worst-case update time poly(log n, 1/ε).
We now show how we can even obtain a Las Vegas algorithm from this approach which is always
(2 + ε) approximate and has polylog update time in expectation and w.h.p.

To get Las Vegas algorithms from our framework, we note that the bad events which can make
H not be a kernel, analyzed in the proof of Lemma 4.4, can be tested in the same asymptotic
time required to compute H. Inspecting the proof of Theorem 3.7, we see that spreading this work
over epochs, too, this extra testing of whether H is a kernel only increases our update time by a
multiplicative constant. We now address how to verify that H is a kernel.

First, we verify that the degrees of non-isolated vertices in H are at most d(1+3ε), in O(|E(H)|)
time. Next, for vertices v with

∑
e3v xe ≥ 1/c and xe ≤ 1/d for all e 3 v, we test if their degree in

H is at least roughly d/c. Since there are at most O(c · µ(G)) such vertices, since
∑

e xe ≤
3
2µ(G),

this takes O(µ(G)) time for constant c. (This also requires maintaining a list of such vertices, easily
done in constant worst-case time per update of some xe.) By the proof of Lemma 4.4, w.h.p., none
of these events which imply H is not be a kernel will occur. We can therefore obtain Las Vegas
guarantees for our dynamic algorithms, by simply re-sampling H if ever it is not a kernel. This
yields our main result, restated below.

Theorem 1.1. For every ε ∈ (0, 1/2), there exists a (Las Vegas) randomized (2 + ε)-approximate
algorithm with update time poly(log n, 1/ε) w.h.p. against an adaptive adversary.

B.2.3 Constant-Time Integral matching sparsifiers

In this section we show how to apply our framework to the recent fractional matching algorithm of
[23] to obtain a constant-approximate algorithm with constant (amortized) update time. To this end,
we start by showing that running Algorithm 1 with d = Ω(log(1/ε)/ε2) on a (c, d)-approximately-
maximal fractional matching, and removing all edges of high-degree vertices in the output graph,
yields a randomized kernel.
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Lemma B.2. Let ε ∈ (0, 1/2), c ≥ 1
1−ε and d ≥ 3·log(2/ε)

ε2
. Let H be the distribution of subgraphs

output by Algorithm 1 when run on a (c, d)-approximately maximal fractional matching ~x with ε and
d as above. For any realization H of H, we let H ′ be a graph obtained by removing all edges of vertices
v of degree dH(v) > d(1+3ε). Then the distribution H′ over H ′ is a (c(1+O(ε), d(1+3ε), ε)-kernel.

Proof. The fact that H′ satisfies the first property of such a kernel is immediate, as we remove all
edges of vertices of degree above d(1 + 3ε) in H to obtain H ′.

First, we characterize edges e with Pr[e 6∈ H′] > ε. By Lemma 3.2 we have that the expected
degree of any vertex v in H is at most

E[dH(v)] =
∑
e3v

E[Xe] ≤
∑
e

xe · d(1 + ε) ≤ d(1 + ε).

We apply the upper tail bound of Lemma 2.2 with δ = ε to dH(v) =
∑

e3vXe, which is the sum of
NA variables, by Lemma 3.3. Relying on d ≥ 3 log(2/ε)

ε2
and ε ≤ 1

2 ≤ 1, this bound yields

Pr[dH(v) > d(1 + 3ε)] ≤ Pr
[
dH(v) ≥ d(1 + ε)2

]
≤ exp

(
−ε2 · d(1 + ε)

2

)
≤ ε/2.

Therefore, by union bound, since e ∈ H \H ′ only if one (or both) of its two endpoints have degree
above d(1 + 3ε) in H, we find that

Pr[(u, v) ∈ H \H ′] ≤ Pr[dH(u) > d(1 + 3ε)] + Pr[dH(v) > d(1 + 3ε)] ≤ ε. (8)

From (8) we find that if Pr[e 6∈ H′] > ε, then Pr[e 6∈ H] > 0. From this we deduce that xe < 1/d,
by Lemma 3.2. By the (c, d)-approximate-maximality of ~x, this implies that e is incident on some
vertex v such that for each edge e′ 3 v we have xe′ ≤ 1/d and

∑
e′3v xe′ ≥ 1/c. Consider this vertex

v. In order to bound the expected degree of v in H ′, we first now consider the event that some edge
(u, v) of v sampled in H does not appear in H ′.

Consider an edge (u, v). By Lemma 3.2 and Corollary 3.5, together with
∑

e3v xe ≤ 1, we find
that conditioned on the edge (u, v) appearing in H, the vertex u has expected degree in H at most

E[dH(u) | (u, v) ∈ H] ≤
∑
e3u

E[Xe | (u, v) ∈ H] ≤ 1 +
∑

e3u,e 6=(u,v)

xe · d · (1 + ε) ≤ 1 + d(1 + ε).

We now recall that the variables {Ye , [Xe | X(u,v) = 1] | e 3 v} are NA. Therefore, appealing to
the upper tail bound of Lemma 2.2 for these NA variables Ye with δ = ε > 0, we have that

Pr[dH(v) > d(1 + 3ε) | X(u,v) = 1] ≤ Pr[dH(v) ≥ (1 + d(1 + ε)) · (1 + ε) | X(u,v) = 1]

≤ exp

(
−ε2(1 + d(1 + ε))

3

)
≤ ε/2,

where the last inequality relied on d ≥ 3 log(2/ε)
ε2

. Denoting by Bu the bad event that u has more
than d(1 + 3ε) edges in H, we have that Pr[Bu | X(u,v) = 1] ≤ ε/2.

Since each edge (u, v) in H is also in H ′ only if both Bu and Bv do not happen, we have that
the degree of v in H ′ is at least dH′(v) ≥

∑
(u,v)X(u,v) · (1 − 1[Bu] − 1[Bv]). But by Lemma 3.2,

all edges e = (u, v) containing v (which have xe ≤ 1
d) are sampled with probability Pr[Xe = 1] ≥

min{1, xe · d}/(1 + ε)2 = xe · d/(1 + ε)2, and so the expected degree of v in H ′ is at least

E[dH′(v)] ≥
∑
(u,v)

E[X(u,v)] · (1− Pr[Bu | X(u,v) = 1]− Pr[Bv | X(u,v) = 1])

≥
∑
e

(
xe · d/(1 + ε)2

)
· (1− ε) ≥ 1

c
· (d/(1 + ε)2) · (1− ε).

Thus, for every e with Pr[e 6∈ H′] > ε we have E[maxv∈e dH′ ] ≥ d(1+3ε)/c(1+O(ε)), as required.
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In order to obtain a constant-time algorithm using Lemma B.2, we need in particular some
approximately-maximal fractional matching algorithm with constant update time. As it so happens,
the algorithm of Bhattacharya and Kulkarni [23] is precisely such an algorithm. As the structure of
the fractional matching output by this algorithm will prove useful in several ways for our analysis,
we take a moment to outline this fractional matching’s structure.

We say a dynamic fractional matching algorithm maintains a (β, c)-hierarchical partition if it
assigns each vertex v a level `v, and each edge e an x−value xe = β−`e , where `e = maxv∈e{`v} ±
O(1), for some constant β. The second property this fractional matching must guarantee is that
each vertex v with `v > 0 has

∑
e3v xe ≥ 1/c. Most prior dynamic fractional matching algorithms

[17, 22, 23, 40], including that of [23], follow this approach, originally introduced by [19].
We first use the above structure of the fractional matching of [23] to show that it is approximately-

maximal.

Lemma B.3. There exists a deterministic (1 + ε, d)-approximately-maximal fractional matching
algorithm, for any d > 1 + ε, with amortized update time O(1/ε2).

Proof. The algorithm we consider is precisely that of [23]. As the update time of this algorithm
was proven in [23], it remains only to prove that it outputs an approximately-maximal fractional
matchings as stated.

The algorithm of Bhattacharya and Kulkarni [23] maintains a ((1 + ε), (1 + ε))-hierarchical
partition with xe = (1 + ε)−maxv∈e{`v}−1. (This -1 term in the exponent is due to scaling down of
the fractional matching to ensure it does not violate the fractional matching constraints.) For such
a partition, we have that for any value d ≥ 1 + ε, we have that any edge e with xe ≤ 1

d must have
an endpoint v ∈ e of level `v ≥ log1+ε(d)− 1. But then all other incident edges e′ 3 v have x-value
at most xe′ ≤ (1 + ε)−`v−1 ≤ 1

d . Moreover, since the level of v is at least `v ≥ log1+ε(d)− 1 > 0 (by
our choice of d > 1 + ε), we also have that

∑
e′3v xe′ ≥

1
c . In other words, the fractional matching

~x output by the algorithm of [23] is (1 + ε, d)-approximately-maximal.

Lemmas B.2 and B.3 together with Theorem 3.7 imply a (2+ε)-approximate dynamic algorithm
with logarithmic update time against adaptive adversaries. We now explain how to obtain such an
approximation in constant update time.

We note that any (β, c)-hierarchical partition must has at most O(c · µ(G)) vertices v of level
`v > 0. To see this, recall that all such vertices have

∑
e3v xe ≥ 1/c. Therefore,∑

e∈E
xe ≥

1

2

∑
v: `v>0

∑
e3v

xe ≥
1

2c
· |{v | `v > 0}.

But since the integrality gap of the fractional matching polytope is at most 3
2 , we also have that

3

2
· µ(G) ≥

∑
e∈E

xe ≥
1

2c
· |{v | `v > 0}|.

That is, for constant c as we consider, the number of vertices of level `v > 0 is at most O(µ(G)).
This implies in particular that there are only O(µ(G)) distinct levels assigned to vertices. But
an edge’s value is determined (possibly up to a constant additive term in the exponent) by the
level of its highest-level endpoint. Therefore, there are only O(µ(G)) many values maxv∈e{`v} can
take. Consequently, there are thus only O(µ(G)) values any xe can take. Hence, when running
Algorithm 1 on ~x we only sample edges from O(µ(G)) edge colorings of subgraphs Gi (which are
induced by edges of similar xe value). Thus, if we sample d = poly(1/ε) colors per (non-empty)
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subgraph Gi, the choice of colors to sample can be done in O(µ(G)/poly(ε)) time, yielding a graph of
size |E(H)| = O(µ(G)/poly(ε)). Extending the argument of Theorem 3.7 appropriately, using a 3∆-
edge-coloring algorithm with constant expected update time and the fractional matching algorithm
of [23], together with Lemma 4.5 we obtain a (2 + ε)-approximate dynamic algorithm with constant
update time.

Theorem 1.2. For every ε ∈ (0, 1/2), there exists a randomized (2 + ε)-approximate dynamic
matching algorithm with poly(1/ε) amortized update time whose approximation and update time
guarantees hold in expectation against an adaptive adversary.

B.2.4 Fractional matching sparsifiers

In this section we show that the subgraph H is a good fractional matching sparsifier, in the sense
that it contains a high-valued fractional matching in terms of the input fractional matching ~x. As
the fractional matching polytope is integral (i.e., has integrality gap of one) in bipartite graphs, this
will allow us to obtain integral matching sparsifiers for bipartite graphs.

Lemma 4.5. (Algorithm 1 Yields Fractional Matching Sparsifiers) Let ε ∈ (0, 1/2) and d ≥ 3 log(2/ε)
8ε .

If H is a subgraph of G output by Algorithm 1 when run on a fractional matching ~x with parameters
ε and d as above, then H supports a fractional matching ~y of expected value at least

E

[∑
e

ye

]
≥
∑
e

xe(1− 4ε).

Proof. Consider first the following intermediate assignment z of values to edges in H:

ze =

{
(1− 2ε) · xe xe >

1
d

(1− 2ε) · 1d xe ≤ 1
d .

This can be written more succinctly as ze = xe(1− 2ε)/min{1, xe · d}. Therefore, by our choice of
~z and by Lemma 3.2, we find that each edge e has expected z-value at least

E[ze] = E[ze | e ∈ H] · Pr[e ∈ H] ≥ xe(1− 2ε)/(1 + ε) ≥ xe(1− 3ε).

Our goal will be to define some fractional matching such that E[ye] ≥ E[ze]·(1−O(ε)) ≥ xe(1−O(ε)),
which would imply our lemma by linearity of expectation.

Consider the following trivially-feasible fractional matching ~y, given below

ye =

{
0 xe < 1/d and maxv∈e(

∑
e′3v ze′) > 1

ze else.

For edges e with xe ≥ 1
d , we always have ye = ze, and so trivially E[ye] = E[ze]. Now, fix some edge

e′ = (u, v) with xe′ ≤ 1
d (which consequently has ze ≤ 1

d ≤ ε.) By Corollary 3.5 and Lemma 3.2 we
have that Pr[Xe | Xe′ ] ≤ Pr[Xe] ≤ min{1, xe · d} · (1 + ε). Consequently, we have that

E

[∑
e3v

ze ·Xe

∣∣∣∣Xe′

]
≤ ze′ +

∑
e

xe · (1 + ε)

≤ max

(1− 2ε) ·
∑
e3v

xe · (1 + ε), ε+
∑

e3v:e6=e′
xe(1 + ε)


≤ 1− ε.
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We now upper bound the probability that this expression deviates so far above its expectation that
~z violates the fractional matching constraint of v.

By Lemma 3.6, we know that the variables {Xe | Xe′} are NA. By closure of NA variables under
scaling by positive constants, we have that the random variables [ze · Xe | Xe′ ] are similarly NA.
In order to effectively apply Bernstein’s Inequality (Lemma 2.3) to these NA variables, we analyze
their individual variances. By Lemma 3.2, we know that any edge e with xe > 1/d has Pr[Xe] = 1,
and so Pr[Xe | Xe′ ] = 1. Consequently, the variance of [ze ·Xe | Xe′ ] is zero. On the other hand, for
an edge e with xe ≤ 1/d we have that ze · [Xe | Xe′ ] is a binomial scaled by ze = 1−2ε

d with success
probability at most Pr[Xe | Xe′ ] ≤ min{1, xe · d} · (1 + ε) = xe · (1 + ε). Therefore, the variance of
this variable is at most

Var(ze · [Xe | Xe′ ]) ≤
(

1− 2ε

d

)2

· xe · d · (1 + ε)

≤ xe
d
.

Therefore, all edges e 3 v have that the conditional variance of their z-value is at most Var(ze · [Xe |
Xe′ ]) ≤ xe

d . Summing over all edges e 3 v other than e′, we have that

Var

 ∑
e3v: e 6=e′ xe≤ 1

d

[ze ·Xe | Xe′ ]

 ≤∑
e3v

xe
d
≤ 1

d
.

Now, recall from above that E
[∑

e3v ze ·Xe

∣∣∣∣Xe′

]
. Therefore

Pr

[∑
e3v

ze ≥ 1

∣∣∣∣Xe′

]
≤ Pr

[∑
e3v

ze · [Xe | Xe′ ] ≥
∑
e3v

ze · [Xe | Xe′ ] + ε

]

Denote by F = {e 3 v | e 6= e′, xe ≤ 1
d} the set of edges which contribute to

∑
e3v, e6=e′ ze and for

which Var(ze · [Xe | Xe′) 6= 0. Applying Bernstein’s Inequality (Lemma 2.3) to the NA variables
with non-zero variance {ze · [Xe | Xe′ ] | e ∈ F}, each of which has absolute value at most 1−2ε

d ≤ 1
d

by definition, we find that

Pr

[∑
e3v

ze ≥ 1

∣∣∣∣Xe′

]
≤ Pr

[∑
e∈F

ze · [Xe | Xe′ ] ≥
∑
e∈F

ze · [Xe | Xe′ ] + ε

]

≤ exp

(
− ε2

2 · (1/d+ ε/3d)

)
≤ exp

(
− ε2

8ε/3d

)
≤ ε/2,

where the last inequality follows from our choice of d = 3 log(2/ε)
8ε .

Therefore, applying union bound to both endpoints of e′, we find that conditioned on e′ = (u, v)
being sampled, the probability that ye 6= ze (and in particular ye = ze), which happens due to ~z
not satisfying the fractional matching constraint of u or v, is

Pr[ye 6= ze | Xe] ≥ 1− ε,
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from which we conclude that

E[ye] = E[ye = ze | Xe] · E[ze] ≥ E[ze] · (1− ε) ≥ xe(1− 3ε)(1− ε) ≥ xe(1− 4ε).

We conclude that the random subgraph H contains a fractional matching of expected value at least
1− 4ε times the fractional matching f in G.

Remark. We note that we proved a stronger guarantee, namely that each edge e is assigned in
expectation a y-value of at least E[ye] ≥ xe(1− 4ε). It is also immediate that each edge is assigned
a y-value of at most E[ye] ≤ E[ze] ≤ xe(1 + ε). This implies that Lemma 4.5 extends to rounding
fractional weighted matchings.

It is well known that the integrality gap of the fractional matching polytope is one in bipartite
graphs and 3

2 in general graphs. Therefore, if H admits a fractional matching of value at least
α ·µ(G), then H contains an integral matching of value at least 1

α ·µ(G) or 2
3α ·µ(G) if G is bipartite

or general, respectively. Consequently, Lemma 4.5 implies the following.

Lemma B.4. For any ε ∈ (0, 1/2), Algorithm 1 run with an α-approximate dynamic fractional
matching is α

1−4ε - and
3α

2(1−4ε) -approximate on bipartite and general graphs, respectively.
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