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Abstract

Motivated by Internet targeted advertising, we address several ad allocation problems.
Prior work has established these problems admit no randomized online algorithm better
than (1− 1

e )-competitive (Karp et al. [14], Mehta et al. [19]), yet simple heuristics have been
observed to perform much better in practice. We explain this phenomenon by studying
a generalization of the bounded-degree inputs considered by Buchbinder et al. [4], graphs
which we call (k, d)− bounded. In such graphs the maximal degree on the online side is at
most d and the minimal degree on the offline side is at least k. We prove that for such graphs,
these problems’ natural greedy algorithms attain competitive ratio 1 − d−1

k+d−1 , tending to
one as d/k tends to zero. We prove this bound is tight for these algorithms.

Next, we develop deterministic primal-dual algorithms for the above problems achieving
competitive ratio 1−(1− 1

d )k > 1− 1
ek/d , or exponentially better loss as a function of k/d, and

strictly better than 1− 1
e whenever k ≥ d. We complement our lower bounds with matching

upper bounds for the vertex-weighted problem. Finally, we use our deterministic algorithms
to prove by dual-fitting that simple randomized algorithms achieve the same bounds in
expectation. Our algorithms and analysis differ from previous ad allocation algorithms,
which largely scale bids based on the spent fraction of their bidder’s budget, whereas we
scale bids according to the number of times the bidder could have spent as much as her
current bid. Our algorithms differ from previous online primal-dual algorithms, as they do
not maintain dual feasibility, but only primal-to-dual ratio, and only attain dual feasibility
upon termination. We believe our techniques could find applications to other well-behaved
online packing problems.

Categories and Subject Descriptors: F.2.2 Nonnumerical Algorithms and Problems.
Keywords: Online Matching, Online Ad Allocation, Targeted Advertising, Sponsored search.

1 Introduction

Internet advertising is ubiquitous. Forecast to surpass the 50 billion dollar/year mark in 2015
in the United States alone, it has become, to a large extent, the driving economic force behind
much of the content of the world wide web. How is this advertising space sold and bought? Most
ads fall either under sponsored search or targeted advertising, both of which are sold in what
constitute instances of the online ad allocation problem.

In online ad allocation, we are faced with the following problem: advertisers announce to
an advertising platform (e.g. Yahoo, Google, Microsoft) what their advertising budgets are, and
their bids for an ad to be displayed to every kind of user. The user “type” is determined, for
example, by search terms searched, in the case of sponsored search, or user-demographics, in the
case of targeted advertising. When a user visits a web-page with an ad slot managed by the ad
platform, the latter needs to decide immediately and irrevocably which (if any) of the advertisers’
ads to display to the user. The advertising platform’s goal is to maximize its revenues, despite
∗Supported in part by United States-Israel BSF Grant No. 2010-246 and ISF Grant No. 954/11.
†Part of this research conducted while the author was working for Yahoo! Labs, Israel.
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uncertainty concerning future page-views. This problem can be formulated as a generalization of
online bipartite matching, with advertisers as the offline vertices and ad slots as online vertices.1

See Section 2 for a formal definition of this and other problems we consider.
The theoretical interest in online allocations can be traced back to 1990, when Karp et al.

[14] considered the fundamental problem of bipartite maximum matching in an online setting.
In their seminal paper, Karp et al. proved that randomized online algorithms cannot in general
achieve competitive ratio above 1 − 1

e ≈ 0.632, and presented the ranking algorithm, which
matches this upper bound and is thus optimal.2

The online maximum matching problem was generalized, first by Kalyanasundaram and
Pruhs [12], and later by Aggarwal et al. [1], who presented algorithms achieving optimal 1− 1

e
competitive ratio for the b-matching and vertex-weighted matching problems, respectively. The
AdWords problem, first proposed by Mehta et al. [19], is the more general ad allocation problem,
but subject to the realistic small bid assumption, i.e. assuming every advertiser i has budget
Bi much larger than its bids bij . (This assumption is necessary to achieve non-trivial results.
See 6.4). For this problem too the natural greedy algorithm has competitive ratio 1

2 . Mehta
et al. gave an algorithm for this problem with competitive ratio 1 − 1

e . Buchbinder et al. [4]
achieved the same results using an online primal-dual approach. See Mehta [18] for an in-depth
survey of prior art and techniques used to tackle these problems.

We will address the problems discussed above, but first, we start with motivation.

1.1 Motivation

As is to be expected of a problem for which a loss of 1/e ≈ 36.7% can translate itself to bil-
lions of dollars in potential revenue lost yearly, researchers have studied weaker models than
the adversarial model for the ad allocation problem, in the hope that these may permit better
guarantees. (See 1.4.) In this paper we revisit the stronger adversarial model, for graphs with
structural characteristics met by many ad allocation instances arising from targeted advertising.
Specifically, we assume advertisers are interested in a large number of ad slots (at least k), and
that every ad slot is of interest to a relatively small number of advertisers (at most d). As with
the small bid assumption Bi � bij for the AdWords problem, assumption of the above structure
is not only useful in order to obtain better bounds (as we will show), but also constitutes a
reasonable assumption for targeted advertising, for the following twin reasons:

online side: advertisers typically target their advertising campaigns at specific segments of
the population (e.g. young Californians who ski often); while these segments may be large in
absolute terms, they are mostly small in relative terms (e.g., less than four percent of Californi-
ans ski often). Consequently, users tend to belong to relatively few segments. Coupled with the
fact that the number of active campaigns at any given time is limited, this implies a restricted
pool of ads that might be displayed to any particular user, justifying the small degree assump-
tion for ad slots.

offline side: advertisers typically target large segments of the population (as in the exam-
ple above), while not allocating a budget high enough to display ads to all users in a segment.
Coupled with the fact that every page-view of a particular targeted user corresponds to a vertex
in the graph, this implies the high degree assumption on the offline side, and more generally for
the ad allocation problem, the assumption that

∑
i,j bij ≥ k ·Bi for some large k.

We call the graphs displaying these characteristics (k, d)-bounded graphs.
1In this paper, without loss of generality, we assume advertisers only pay for impressions, and not e.g. clicks.
2The original proof of ranking’s competitive ratio was found to contain a mistake nearly twenty years later

by Krohn and Varadarajan, but the algorithm’s performance has since been re-proven by Birnbaum and Mathieu
[3], Goel and Mehta [9], and recently by Devanur et al. [6].
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Definition 1.1 ((k, d)-bounded graphs). We say a bipartite graph G = (L,R,E) is (k, d)-
bounded if every left vertex i ∈ L has degree d(i) ≥ k and every right vertex j ∈ R has degree
d(j) ≤ d. For ad allocations, we replace d(i) ≥ k with the property

∑
j bij ≥ k ·Bi.

We concern ourselves with such graphs with k large and d small. For brevity’s sake, as all
graphs in this paper will be bipartite, we refrain from stating the fact explicitly, and refer to
(k, d)-bounded graphs as (k, d)-graphs henceforth. As the problems studied in this paper are all
maximization problems, we adopt the convention that a lower bound indicates a positive result
and an upper bound indicates a negative result.

1.2 Our Results

By focusing on (k, d)-graphs, we justify the observed success of greedy algorithms “in the wild”,
and propose algorithms that are exponentially better, and provably optimal under these struc-
tural assumptions. Finally, we leverage our deterministic algorithms to prove simple randomized
algorithms achieve the same bounds in expectation. Our results hold for the maximum matching,
vertex-weighted matching and AdWords problems (with the exception of the matching upper
bound for the latter). Table 1 delineates our results for these problems on (k, d)−graphs. We
obtain similar results for the general ad allocation problem, even with large-ish bids (see 1.5.)

Table 1: Best results for general and (k, d)-graphs

Algorithms General Graphs (k, d)−Graphs

Greedy
1
2 (Tight) 1− d−1

k+d−1 (Tight)
Folklore This work

Deterministic
1
2 (Tight) 1− (1− 1

d)k (Tight)
Folklore This work

Randomized 1− 1
e (Tight)? 1− (1− 1

d)k

[14, 3, 9, 1, 19, 4, 6] This work
? can be achieved deterministically for AdWords.

We begin by explaining the empirical success of greedy algorithms for the above problems,
proving their loss is proportional to the ratio of the maximal degree in the online side to the
minimal degree in the offline side; i.e., their competitive ratio tends to one as this ratio tends
to zero. We complement this lower bound with a family of examples for which these algorithms
do no better.

Theorem 1.2. Greedy algorithms achieve a competitive ratio of k
k+d−1 on (k, d)-bounded graphs.

This analysis is tight for all k ≥ d− 1.

We improve on the above, designing deterministic algorithms with exponentially smaller
loss. We prove this is optimal for deterministic algorithms.

Theorem 1.3. There exist deterministic online algorithms for the unweighted and vertex-weighted
matching problems with competitive ratio 1 − (1 − 1

d)k > 1 −
(
1
e

)k/d on (k, d)-bounded graphs.
Moreover, these algorithms gain at least a 1− (1− 1

d)k fraction of the total sum of weights. This
is optimal whenever k ≥ d.

Corollary 1.4. (Structural Corollary) For every bipartite graph G with the minimal degree of
its left side at least ln c times larger than the maximal degree of its right side, G has a matching
with at least a (1− 1

c )-fraction of G’s left side matched.
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In stating our bounds for general ad allocation, we follow the notation of Buchbinder et al.
[4] and denote the maximum bid-to-budget ratio by Rmax = max(i,j)∈E

{ bij
Bi

}
.

Theorem 1.5. There exists a deterministic algorithm which gains total revenue at least(∑
i∈L

Bi

)
·
(

(1−Rmax) ·
(

1−
(

1− 1

d

)k
))

for ad allocation on (k, d)-graphs with k ≥ d − 1, and is thus
(
(1 − Rmax) ·

(
1 −

(
1 − 1

d

)k))-
competitive. This is optimal – no deterministic algorithm can do better for k ≥ d.

To contrast our results with the state-of-the-art, we note that the algorithms of Mehta et al.
[19], Buchbinder et al. [4], Devanur et al. [6] achieve competitive ratio (1−Rmax) ·

(
1− 1/

(
1 +

Rmax

)1/Rmax
)
. This bound tends to 1− 1

e from below as Rmax tends to zero, but is far from this
value for larger Rmax. Our algorithms fare better whenever k ≥ d even for large-ish Rmax. As
stated in 1.1, we expect k to be significantly larger than d, but in order to emphasize the strength
of our bound, let us assume only that d/k = Rmax. Table 2 displays the resulting competitive
ratios in this case. Note that in this regime our algorithm is already better at Rmax = 1

3 than
prior algorithms are at the limit (i.e. when Rmax → 0).

Table 2: Results for Ad Allocation with large-ish bids in (k, d)-graphs with d/k = Rmax

Rmax
1
2

1
3

1
4

1
5

1
6

1
8

1
16

1
32

1
100 → 0

State-of-the-art 0.278 0.385 0.443 0.478 0.503 0.534 0.582 0.607 0.624 0.632
Our Work 0.432 0.633 0.736 0.795 0.831 0.875 0.938 0.969 0.99 1

Better still, our algorithms are robust to a few outlying advertisers increasing Rmax, as the
(
∑

iBi) · (1−Rmax) term in the above bound is rather
(∑

iBi −maxj∈N(i) bij
)
. This is the

first such result in the adversarial setting. To the best of our knowledge only the algorithm of
Devanur et al. [7] for the iid model holds this desired property. Likewise, our algorithms are
robust to few outlying advertisers making the input not (k, d)-bounded (alternatively, increasing
k), as the following theorem asserts.

Theorem 1.6 (Outliers). If every advertiser i satisfies
∑

j bij ≥ k ·Bi, except for a subset S ⊂ L
with total budget at most an α-fraction of the total sum of budgets,

∑
i∈S Bi ≤ α ·∑i∈LBi,

then the algorithms of Theorems 1.3 and 1.5 gain revenue at least (1 − α) times the bounds
guaranteed by the above theorems. In particular, these algorithms achieve competitive ratio at
least (1− α) ·

(
1−

(
1− 1

d

)k) and (1− α) ·
(
(1−Rmax) ·

(
1−

(
1− 1

d

)k)).
Finally, we prove that several easy-to-implement randomized algorithms match the bounds

of our optimal deterministic algorithms in expectation, despite making no use of the input’s
structure.

Theorem 1.7. Several simple randomized algorithms achieve expected competitive ratio match-
ing those of Theorems 1.3, 1.5, and 1.6.

1.3 Techniques

As many previous ad allocation algorithms, our algorithms can be seen as bid-scaling algorithms.
That is, matches are chosen greedily based on the bids bij of each advertiser i, times a scaling
factor. However, contrary to previous algorithms Mehta et al. [19], Buchbinder et al. [4], Devanur
et al. [6] that scale bids according to the function 1 − ef(i)−1, where f(i) is the fraction of i’s
budget spent so far, our algorithms essentially scale bids according to an exponential in u, the
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number of unused opportunities for spending the current bid bij , specifically,
(

d
d−1
)u. Other

differences can be seen in our algorithms’ primal-dual interpretation: we make no use of the ad
slots’ dual variables, and only update the dual variables of each arriving ad slot’s neighbors.
Interestingly, our online primal-dual algorithms do not guarantee dual feasibility throughout
their execution, but only upon termination. To the best of our knowledge, ours are the first
online primal-dual algorithms with this behavior.

The above approach works directly for vertex-weighted matching. To generalize our ap-
proach to ad allocations, we first consider an intermediary problem – equal-bids ad allocation –
where every advertiser i bids the same bid bi for all neighbors j ∈ N(i). We reduce this prob-
lem in (k, d)-graphs to the vertex-weighted problem in (k, d)-graphs in an online manner. We
then rewrite this reduction along with our vertex-weighted online algorithm as a single online
primal-dual algorithm for the equal-bids problem. Guided by this algorithm we devise a primal-
dual algorithm for general-bids ad allocation on (k, d)-graphs, using a bounded fraction of the
advertisers’ dual variables to guide our choice of matches and dual updates. This allows us to
simulate the bid-scaling described above also in the case where each advertiser has different bids.

Finally, our randomized results stem from our deterministic primal-dual algorithms, whose
dual updates we use in our dual-fitting analysis of the randomized algorithms. Dual feasibility
follows as it does for our algorithms. The dual costs are bounded in expectation by the primal cost
times the required constant, conditioned over the random algorithm’s previous choices. Taking
total expectation over the possible previous choices yields the expected competitive ratio.

1.4 Related Work

Several stochastic models have been studied for the problems we address. Most prominent among
these are the random arrival order and i.i.d model with known/unknown distribution. Our algo-
rithms beat all of these bounds in the worst case for sufficiently small d/k and Rmax, replacing
stochastic assumptions by structural ones.

For the random order model a line of work beginning with Goel and Mehta [9] has shown the
optimal competitive ratio for maximum matching lies in the range (0.696, 0.823) Feldman et al.
[8], Karande et al. [13], Mahdian and Yan [16], Manshadi et al. [17]. For the known distribution
model Feldman et al. [8] were the first to show the optimal competitive ratio is strictly greater
than 1 − 1

e and bounded away from 1. Subsequent work Bahmani and Kapralov [2], Haeupler
et al. [10], Jaillet and Lu [11] showed the optimal competitive ratio for bipartite matching in this
setting lies in the range (0.706, 0.823), and (0.729, 0.823) if the expected number of arrivals of
each ad slot type is integral. For the vertex-weighted problem under the previously-mentioned
integrality assumptions Haeupler et al. [10] and Jaillet and Lu [11] showed a lower bound of 0.667
and 0.725, respectively. For the AdWords problem under the random order model, Devanur and
Hayes [5] give a (1−ε)-competitive algorithm, assuming the online side’s size is known in advance
and no bid is higher than roughly ε3/|L|2 times the optimum value. Devanur et al. [7] gave an
algorithm in the unknown distribution model achieving asymptotically optimal competitive ratio
of 1−O(

√
Rmax).

In a different vein, Mahdian et al. [15] considered the AdWords problem given black-box
estimates of the input. They show how to obtain performance trading-off between the worst-
case optimal and the black-box’s performance on the given input. We require no such algorithm
be available, but rather rely on domain-specific structure.

Closer to our work, Buchbinder et al. [4] considered (1, d)-graphs for equal-bids ad allocation.
We obtain more general results, and strictly better bounds for all k > d.
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1.5 Paper Outline

In Section 2 we formally define the problems considered throughout the paper. In Section 3
we give a tight analysis of algorithm greedy in (k, d)-graphs. In Section 4 we build on the
hard examples of Section 3 and present optimal algorithms for the online maximum matching
and vertex-weighted matching problems in (k, d)-graphs. In Section 5 we extend these results
to the general ad allocation problem. In Section 6 we present hardness results for the problems
considered. In Section 7 we extend our analysis to prove competitiveness of several simple
randomized algorithms. We conclude with a discussion of future work and open questions in
Section 8.

2 Problem Definitions

An instance of the ad allocation problem consists of a bipartite graph G = (L,R,E). The left-
hand L side corresponds to advertisers, and the right-hand side R to ad slots. Each advertiser
i ∈ L has some budget Bi and is willing to bid some value bij ≤ Bi for every neighboring ad slot
j ∈ N(i) (the bids of advertiser i need not be equal for all j ∈ N(i)). Each ad slot j ∈ R can
be allocated to (up to) one advertiser i, yielding a profit of bij . The bids for ad slots allocated
to an advertiser i may not exceed i’s budget, Bi. Figure 1 presents the ad allocation problem’s
LP relaxation and its dual.

Primal (Packing) Dual (Covering)
maximize

∑
(i,j)∈E bij · xij minimize

∑
i∈LBi · zi +

∑
j∈R yj

subject to: subject to:
∀j ∈ R: ∑

(i,j)∈E xij ≤ 1 ∀(i, j) ∈ E: bij · zi + yj ≥ bij
∀i ∈ L: ∑

(i,j)∈E bij · xij ≤ Bi ∀i ∈ L: zi ≥ 0

∀(i, j) ∈ E: xij ≥ 0 ∀j ∈ R: yj ≥ 0

Figure 1: The fractional ad allocation LP and the corresponding dual

An instance of the online ad allocation problem consists of an ad allocation instance; the ad-
vertisers given up-front, along with their budgets, and the ad slots arriving one-by-one, together
with their edges and bids. An online ad allocation algorithm must, upon arrival of an ad slot j,
determine to which advertiser (if any) to allocate the ad slot. Allocations are irrevocable, and
so must be made to feasible advertisers, whose residual budget is sufficient to pay their actual
bid.

We will consider several interesting special cases of the above problem throughout this paper.
These problems are both interesting in their own right (theoretically as well as practically), in
addition to providing some insight towards achieving a solution to the general problem.

The equal-bids online ad allocation problem is the above problem with each advertiser i
bidding the same value for all neighboring ad slots; i.e., bij = bi for all j ∈ N(i).

The online vertex-weighted matching problem is the above problem with every advertiser i
bidding all its budget for every neighboring ad slot; i.e., bij = Bi for all j ∈ N(i).

The online maximum matching problem is the above problem with all budgets and bids equal
to 1; i.e., bij = Bi = 1 for all j ∈ N(i).

3 Warm-up: Greediness in (k, d)-Graphs

In this section we show that the natural greedy algorithms for the problems considered, which in
general graphs are only 1/2-competitive, achieve on (k, d)-graphs a competitive ratio tending to
one as d/k tends to zero. We prove this result by applying dual-fitting, and prove our analysis
is tight.
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Algorithm greedy for the online ad allocation problem matches an ad slot j ∈ R to a
feasible neighbor i with highest bid bij . For the vertex-weighted case, where bij = Bi for all
j ∈ N(i), this reduces to picking an unmatched neighbor of highest weight. Our analysis relies
on a dual-fitting formulation, given in Algorithm 1 below.

Algorithm 1 ad allocation greedy (Dual-Fitting Formulation)

1: Init: set zi ← 0 for all i ∈ L
2: for all j ∈ R do
3: if j has a feasible neighbor then
4: match j to a feasible neighbor maximizing bij
5: set xij ← 1

6: set zi ← min{1, zi +
bij
Bi
}

7: set zi′ ← min{1, zi′ +
bi′j
k·Bi
} for every feasible neighbor of j, i′ 6= i

8: for all i ∈ L do
9: if i’s residual budget is less than Rmax ·Bi then

10: set zi ← 1

Theorem 3.1. Algorithm greedy is
(

k
k+d−1

)
-competitive for the unweighted, vertex-weighted

maximum matching and equal-bids ad allocation problems on (k, d)-graphs.

Theorem 3.2. Algorithm greedy is (1−Rmax)·k
k+(d−1)·(1−Rmax)

> (1 − Rmax) · k
k+d−1 competitive for

online ad allocation on (k, d)-graphs with k ≥ 1 and Rmax = max(i,j)∈E{bij/Bi} < 1.

Proof. We prove the following claims: (a) z, y form a feasible dual solution (b) for every j ∈ R
the changes to the primal and dual solutions’ values, ∆P and ∆D, satisfy ∆D/∆P ≤ k+d−1

k .
(c) for the vertex-weighted and unweighed matching problems and equal-bids problem Lines
8-10 incur no dual cost, and (c’) for the general ad allocation problem Lines 8-10 cost the dual
solution no more than Rmax/(1−Rmax) times the primal profit. As x forms an integral feasible
primal solution, claims (a,b,c) combined entail Theorem 3.1. Similarly, claims (a,b,c’) entail
Theorem 3.2, as claims (b) and (c’) imply the ratio of the programs’ overall values is at least

P

D
≥ P

k+d−1
k · P + Rmax

1−Rmax
· P

=
(1−Rmax) · k

k + (d− 1) · (1−Rmax)

Claim (a): For every advertiser i ∈ L, if over a (1 − Rmax)-fraction of i’s budget is spent
then zi is set to one in Line 10. Otherwise, i is a feasible match of all of its neighbors j, each
such j causing zi to increase by at least bij

k·Bi
. As

∑
j bij ≥ k ·Bi then zi = 1 by the algorithm’s

termination. Consequently, all dual inequalities are satisfied.
Claim (b): For each ad slot j ∈ R, by the choice of j’s match i, and the fact that j has

degree d(j) at most d, the primal value increases by ∆P = bij and the dual cost increases by at
most ∆D = bij +

∑
i′∈Fj\{i} bi′j/k ≤ bij · (1 + d−1

k ).
Claim (c): For an advertiser i ∈ L to have spent over (1−Rmax)Bi for all but the general

problem, it must and have zi set to one. Thus Lines 8-10 incur no dual cost.
Claim (c’): For an advertiser i ∈ L to be affected by Lines 8–10, it must spend up to a

(1 − Rmax)-fraction of its budget. However, whenever i spends an f -fraction of its budget, the
dual variable zi increases by f in Line 6, and so the cost of increasing zi in line 10 is at most
Rmax · Bi, while i garnered a primal profit of at least (1 − Rmax) · Bi. The total dual cost of
Lines 8–10 is thus at most Rmax

1−Rmax
· P , for P the primal profit.
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3.1 Tight Examples for Algorithm greedy

We show that our analysis of algorithm greedy for the unweighted and vertex-weighted match-
ing is tight whenever k ≥ d− 1 .3

Theorem 3.3. For all k ≥ d − 1 there exist (k, d)−graphs G with maximal matchings that
achieve a competitive ratio no better than k

k+d−1 on G.

ML ⊆ L R

UL ⊆ L

i1

i2

i3

i4

i5

i6

i7

j1

j2

j3

j4

j5

j6

j7

i8

i9

i10

Figure 2: The graph and
matching after the arrival of
the first k ad slots, for k = 7
and d = 4. Matching edges
are marked in bold.

Proof. The tight example, along with a poor choice of matching, is
defined as follows: The offline side contains k+ d− 1 advertisers.
The first k ad slots by order of arrival j1, j2, . . . , jk each have
degree exactly d, with the t-th ad slot jt having as neighbors the
t-th advertiser it (to which it is matched), as well as the last
d− 1 advertisers, ik+1, ik+2, . . . , ik+d−1. After the first k ad slots
arrive all d−1 unmatched advertisers have degree exactly k. (By
this stage the ad slots and the last d− 1 advertisers form a copy
of Kk,d−1. See Figure 2.) The following ad slots are used to
increase the degree of the first k advertisers to at least k, while
guaranteeing that the first k advertisers can be simultaneously
matched to the last ad slots (for example, by having all the latter
ad slots have degree one). The resulting graph is a (k, d)−graph
with k of its advertisers matched for which all k+d−1 advertisers
can be matched simultaneously.

For any Rmax a unit fraction, gluing 1/Rmax copies of the above tight example at the advertis-
ers, with each advertiser having a budget of 1/Rmax, yields an equal-bid ad allocation instance
and greedy allocation for which the same k

k+d−1 performance holds, proving tightness of our
analysis for equal-bid allocations. We now state a theorem implying our analysis’ tightness for
greedy in general ad allocations. For a proof of this theorem, see Appendix A.

Theorem 3.4. For all k ≥ d−1 and Rmax ≤ 1
2 there exist (k, d)−graphs G and greedy allocations

achieving a competitive ratio at most (1−Rmax)·k
k+(d−1)·(1−Rmax)

on G.

4 Optimal Vertex-Weighted Matching on (k, d)-graphs

The previous section shows our analysis of greedy is tight, though for a particular(ly bad)
instantiation of the input, and more importantly of the algorithm. The family of tight exam-
ples suggests the following improved algorithm: match every arriving ad slot to an unmatched
neighbor of highest degree. This algorithm, which we call high-degree, is given below. The
intuition behind it, substantiated by the above examples, is that unmatched advertisers with
higher degree may have fewer chances to be matched later. This approach fares better on the
above examples (actually yielding an optimal solution), but can it do better than greedy for
all (k, d)−graphs? We answer this question in the affirmative, proving a lower bound with expo-
nentially smaller loss. In Section 6 we prove a matching lower bound, implying the algorithm’s
optimality.

Algorithm 2 high-degree

1: for all j ∈ R do
2: if j has an unmatched neighbor then
3: match j to unmatched neighbor of highest degree.

3For k < d− 1 the k
k+d−1

bound is strictly less than the 1
2
bound obtained by all maximal matchings, and so

the bound cannot be tight for k < d− 1. We therefore turn our attention to the case k ≥ d− 1.
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4.1 Analysis of high-degree

Theorem 4.1. Algorithm high-degree is 1− (1− 1
d)k competitive for all (k, d)−graphs.

Corollary 4.2. On d-regular graphs algorithm high-degree is 1− (1− 1
d)d competitive.

This is the first result for maximum online matching in regular graphs in the adversarial
setting, beating the 1− 1

e “barrier" deterministically.
Theorem 4.1 can be proven directly (see 4.2), but in order to set the groundwork for proofs of

our more general results, we generalize this algorithm and rewrite it as a primal-dual algorithm,
below (3). The constant C will be chosen during the analysis.

Algorithm 3 Vertex-Weighted high-degree (Primal-Dual Formulation)

1: Init: set zi ← 0 for all i ∈ L.
2: for all j ∈ R do
3: if j has an unmatched neighbor i then
4: match j to an unmatched neighbor i maximizing (zi + C) · bij .
5: set xij ← 1.
6: set zi ← 1.
7: set zi′ ← min{1, zi′ ·

(
d

d−1
)

+ 1
d−1 · C} for every feasible neighbor of j, i′ 6= i.

Theorem 4.3. Algorithm 3 generalizes high-degree and is 1−
(
1− 1

d

)k competitive. Moreover,
it gains revenue at least (1−

(
1− 1

d

)k
) ·
(∑

iBi

)
.

Proof. We rely on the following observation, verifiable by induction: All unmatched advertisers
i satisfy zi = C · (

(
d

d−1
)d(i) − 1). Hence Algorithm 3 matches each ad slot j to an unmatched

neighbor i maximizing bij · C · (
(

d
d−1
)d(i) − 1). For the unweighted problem, bij = 1. By

monotonicity of exponentiation, picking such i is tantamount to picking an advertiser of highest
degree. We proceed to bound the algorithm’s gain.

Let j ∈ R be some ad slot matched to i. The incurred change to the primal profit equals
∆P = bij . By our choice of j’s match, the change to the dual cost satisfies

∆D = (1− zi) · bij +
∑

i′∈N(j)\{i}

((
1

d−1

)
· (zi′ + C) · bi′j

)
≤ (1− zi) · bij + (d− 1) ·

(
1

d−1

)
· (zi + C) · bij

= (1 + C) · bij .

Given dual feasibility, the above would imply a competitive ratio of 1/(1 + C). Hence, we
choose the minimal C ensuring zi = 1 by the algorithm’s end for all advertisers i (matched and
unmatched alike). Recall all unmatched advertisers i satisfy zi = C · (( d

d−1)d(i) − 1). As such i
have degree at least k by the algorithm’s end (but possibly no higher), the minimal C ensuring
zi = 1 is C = 1/(( d

d−1)k − 1). As the dual solution has zi = 1 for all i by the algorithm’s
termination, the dual cost is exactly D =

∑
i∈LBi. Consequently, the primal gain satisfies

P ≥ 1
1+C ·

(∑
iBi

)
. The theorem follows.

The above algorithm implies structural Corollary 1.4 and the following corollary.

Corollary 4.4. For (k, d)-graphs with k ≥ d · ln |L|, by integrality of number of vertices matched,
high-degree successfully matches all of L, obtaining a maximum matching.

We can extend our analysis to handle the possible existence of outlying advertisers i, that
do not satisfy

∑
j bij ≥ k ·Bi, and so may not satisfy zi = 1, ruining dual feasibility. Let S ⊆ L

be the set of outlying advertisers, and assume
∑

i∈S Bi ≤ α ·∑i∈LBi. As zi = 1 for all i 6∈ S,
we have D ≥ (1− α) ·∑i∈LBi, implying the following theorem.
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Theorem 4.5 (Outliers). Let S ⊆ L be the set of outlying advertisers, and α be such that∑
i∈S Bi ≤ α ·

∑
i∈L. Then Algorithm 3 gains at least (1− α) · (1−

(
1− 1

d

)k
) · (∑iBi), and in

particular is (1− α) · (1−
(
1− 1

d

)k
)-competitive.

4.2 Potential-based Analysis of high-degree

In this subsection we present a potential-based proof of Theorem 4.1. We note that this proof
can easily be extended to provide alternative proofs of Theorems 4.3 and 4.5.

Theorem 4.6. Algorithm high-degree achieves value at least
(
1 − (1 − 1

d)k
)
· |L| for all

(k, d)−graphs G = (L,R,E), and it is therefore
(
1− (1− 1

d)k
)
-competitive.

Proof. Let UL ⊆ L denote the set of unmatched advertisers. Consider the following potential:

φ =
∑

i∈UL

(
d

d−1

)d(i)
.

Algorithm high-degree outputs a matching that effectively strives to greedily minimize φ.4

The initial and final values of the potential function hold φstart = |L| and φfinal ≥ (d/(d− 1))k ·
|UL|, respectively. Denote by ∆φj the change to φ incurred by the arrival of ad slot j ∈ R.
Clearly, if j is unmatched we have ∆φj = 0. On the other hand, if j is matched to a neighbor
i, previously of degree d(i), we find that i’s matching results in φ decreasing by (d/(d− 1))d(i),
and the degree of j’s remaining unmatched neighbors increase each cause φ to increase by at
most (d/(d− 1))d(i)+1 − (d/(d− 1))d(i). Therefore, if j is matched to i we have

∆φj ≤ −
(

d
d−1

)d(i)
+ (d− 1) ·

((
d

d−1

)d(i)
· ( d

d−1 − 1)

)
= −

(
d

d−1

)d(i)
+
(

d
d−1

)d(i)
= 0.

In other words ∆φj ≤ 0, irrespective of whether or not j is matched. By this fact and our
bounds on the initial and final potential, we find that(

d

d− 1

)k

· |UL| ≤ φfinal ≤ φstart = |L|.

The theorem follows.

5 Online Ad Allocation

In this section we solve the ad allocation problem. We consider first the equal-bids case, where
each advertiser i offers the same bid for all its neighbors; i.e., bij = bi ∀j ∈ N(i). This will prove
to be a useful stepping-stone towards a solution for general bids, in 5.1.

One way to solve equal-bids ad allocation is via an online reduction to vertex-weighted
matching in (k, d)-graphs. As each advertiser i bids

∑
j∈N(i) bi ≥ k · Bi in total, we have

d(i) ≥ k · Bi/bi. Without loss of generality, Bi/bi is integral. The reduction splits each i into
Bi/bi copies, each of value bi and receiving up to k distinct edges of i, stopping if the copy
is matched. The obtained graph G is (k, d)-bounded (perhaps after adding inconsequential
neighbors to matched advertisers), and matchings in G induce allocations of same value for the
ad allocation instance. As Algorithm 3 gains 1 − (1 − 1

d)k of the sum of vertex weights, or

4The sum of unmatched advertisers’ degrees may seem like a more natural potential function to consider, but
it turns out that it cannot be used to derive tight bounds. E.g., it does not yield a bound significantly better
than 5

8
= 0.625 for k = d.

10



equivalently the sum of budgets, applying it yields a 1 − (1 − 1
d)k competitive solution to the

original ad allocation instance.
We restate the above as a primal-dual algorithm for equal-bids ad allocation. (See Algorithm

4 below). In this algorithm, zci serves the role of zi in Algorithm 3 for i’s “current copy” (hence
the c in the notation), weighted to reflect the copy contributes bi/Bi of i’s budget. Intuitively,
when i is matched we imagine its current copy is matched, and set zci to bi/Bi. Conversely, we
ensure that once the copy has k edges zci = bi/Bi. Either way, once zci = bi/Bi, we add zci to
zi and nullify zci (moving to i’s next copy, whose dual variable would be zero in Algorithm 3.)
The number of copies of i guarantees dual feasibility and the choice of match and dual updates
guarantee the desired bound.

Algorithm 4 Equal-Bid Ad Allocation in (k, d)-graphs

1: Init: set zi ← 0 , zci ← 0 for all i ∈ L
2: for all j ∈ R do
3: if j has a feasible neighbor i then
4: match j to feasible neighbor i maximizing zci ·Bi + C · bi.
5: set xi,j ← 1.
6: set zci ← bi/Bi.
7: for all feasible neighbor of j, i′ 6= i do
8: set zci′ ← min{bi′/Bi′ , z

c
i′ ·
(

d
d−1
)

+ 1
d−1 · C · bi′/Bi′}

9: for all i′ ∈ N(j) with zci′ = bi′/Bi′ do
10: set zi′ ← zi′ + zci′ .
11: set zci′ ← 0.

Theorem 5.1. Algorithm 4 with C = 1/
((

d
d−1
)k− 1

)
gains revenue

(
1− (1− 1

d)k
)
·∑iBi, and

is thus
(
1− (1− 1

d)k
)
-competitive for the equal-bid problem on (k, d)-graphs.

Proof. To bound the primal-dual ratio, we bound increases of zci · Bi, as all dual costs can be
traced back to past increases of zci . Consider some ad slot j matched to i. The primal gain is
∆P = bi, whereas the dual cost satisfies

∆D ≤ (bi/Bi − zci ) ·Bi +
∑

i′∈N(j)\{i}

(
1

d−1

)
· (zci′ + C · bi′/Bi′) ·Bi′

≤ bi − zci ·Bi + (d− 1) ·
(

1
d−1

)
· (zci ·Bi + C · bi) ≤ (1 + C) · bi

As in Theorem 4.3’s proof, zci = C · bi
Bi

((
d

d−1
)dc(i) − 1

)
, where dc(i) is the degree of i’s current

copy, or equivalently, the number of i’s edges since zci was last nullified. Hence, by our choice of
C, after at most k i-edges, zci = bi

Bi
(whether or not i is matched), and zi is increased by bi

Bi
. As

d(i) ≥ k · Bi
bi

by the end, zi ≥ 1 for all i. The theorem follows.

5.1 General Bids

A natural way to extend Algorithm 4 to general bids would be to replace for every ad slot j
and every neighbor i (or i′) all appearances of bi (or bi′) by bij (resp., bi′j) in the choice of j’s
match and updates to zci , z

c
i′ and zi. Such dual updates would guarantee, similarly to our prior

algorithms, that an advertiser i with budget Bi and rejected bids bi0, bi1, . . . , bit since its last
match (ordered chronologically) would have dual variable

zci =
1

d− 1
· C ·

t∑
r=0

bir
Bi
·
(

d

d− 1

)t−r
(1)

Unfortunately, replacing bi by bij in the updates for matched i could result in zi arbitrarily small.
Worse still, since previously-rejected bids may be greater than the current bid, setting zci to bij

Bi

11



could even decrease zci , complicating the task of bounding the primal-dual ratio. Algorithm
5 below sidesteps these issues by considering bounded fractions of zci , and using the following
notation, motivated by Equation 1, to represent variables zci , and zfi (the f in the notation
refers to a bounded fraction of zci “used”). This notation’s use will become apparent during the
algorithm’s analysis.

Definition 5.2. Let z = 1
d−1 · C ·

∑t
r=0 br ·

(
d

d−1
)r. We think of z as a number in base d

d−1 ,
denoting it by z = [bt, . . . , b1, b0], disregarding the 1

d−1 · C term for simplicity. Addition and
subtraction of numbers in this notation is done place-wise, disallowing carries/borrows. In par-
ticular, if z = [bt, . . . , b1, b0], then z · d

d−1 + 1
d−1 ·C · b = [bt, . . . , b1, b0, b]. Comparisons involving

numbers in this notation refer to their numerical value.

Algorithm 5 Online Ad Allocation in (k, d)-graphs with general bids.

1: Init: set zi ← 0 , zci ← 0 for all i ∈ L
2: for all j ∈ R do
3: if j has a feasible neighbor i then
4: for all feasible neighbors i do
5: let zci = [bk−1, . . . , b1, b0].
6: set zfi ← [min{bk−1, bij/Bi}, . . . ,min{b1, bij/Bi},min{b0, bij/Bi}].
7: set zci ← zci − zfi .
8: match j to feasible neighbor i maximizing zfi ·Bi + C · bij .
9: set xi,j ← 1.

10: set zfi ← 0.
11: set zi ← zi + bij/Bi.
12: for all feasible neighbor of j, i′ 6= i do
13: set zfi′ ← zfi′ ·

(
d

d−1
)

+ 1
d−1 · C · bi′j/Bi′

14: zci′ ← zci′ + zfi′ .
15: if zci′ = [bk, bk−1, . . . , b1, b0] with bk 6= 0 then
16: set zi′ ← zi′ + bk · 1k .
17: set zci′ ← [bk−1, . . . , b1, b0].
18: if zci′ = [bk−1, . . . , b1, b0] with all digits br 6= 0 then
19: let b = min{br}k−1r=0 .
20: set zi′ ← zi′ + b.
21: set zci′ ← [bk−1 − b, . . . , b1 − b, b0 − b].
22: for all i ∈ L do
23: set zi ← max{1, zi}.

The algorithm for the general bids setting is Algorithm 5, below. The algorithm’s primal
feasibility is trivial, as is its dual feasibility, due to Lines 22-23. It remains to bound the ratio
of the cost of the dual solution to the value of the primal solution.

High-Level intuition: The algorithm asserts three invariants. The first guarantees increases
in zi are “paid for” by increases in zci , allowing us to focus on bounding changes to zci . A second
invariant guarantees every increase of zi by some value b/Bi can be accredited to previous bids
(or fractions thereof) of total value at most k · b/Bi. As the graph is (k, d), if every bid of i of
value b were to cause zi to increase (by at least b/(k ·Bi), by the above), then eventually zi ≥ 1.
However, some bids may not incur an increase in zi. The third and last invariant guarantees
the total value of fractions of bids that do not cause zi to increase is at most k · Rmax, and so
zi ≥ (1−Rmax) before Lines 22-23. Thus, the cost of rounding each zi to one in these lines is at
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most Rmax/(1 − Rmax) of the previously-paid dual cost. The bound will follow. The following
four lemmas formalize the above, allowing us to derive our sought-after bound.

Lemma 5.3. Before every ad slot’s arrival and before Line 22, every zci is a number in the
above numeral system satisfying the following three properties:

(i) zci is a k-digit number; i.e., zci = [bk−1, . . . , b1, b0].

(ii) zci has at most k − 1 non-null digits.

(iii) Each digit of zci is no greater than maxj{ bijBi
}.

Proof. Properties i and ii are enforced explicitly by Lines 15-17 and 18-21, respectively. Property
iii follows by induction: When zfi is subtracted from zci , every digit of zci is either nullified, if
it was smaller than bij/Bi, or decreased by bij/Bi. After zfi is updated and added to zci , each
digit of zci is increased by at most bij/Bi. Thus each digit is no greater than its previous value
and bij/Bi, both of which are at most maxj{ bijBi

}.

Lemma 5.4. If k ≥ d − 1 and C = 1/
((

d
d−1
)k − 1

)
, every increase in zi by some b in Lines

15-17 and 18-21 goes hand-in-hand with both

(i) a decrease of the same value or higher in zci , and

(ii) a decrease of k times this value or less in the sum of digits of zci .

Proof. In Lines 15-17, zi is increased by bk/k. On the other hand, we remove bk, the k-th digit
of zci in this numeral system, resulting in a decrease of zci by

1

d− 1
· C · bk ·

(
d

d− 1

)k

≥ 1

k
· bk.

Thus, Properties i and ii both hold for Lines 15-17. In Lines 18-21, the value of zci is decreased
by 1

d−1 · C ·
∑k−1

r=0 b ·
(

d
d−1
)r

= C ·
((

d
d−1
)k − 1

)
· b, which is exactly b, by our choice of C. The

decrease in the sum of digits of zci on the other hand is exactly k · b.

Lemma 5.5. Taking C = 1/
((

d
d−1
)k − 1

)
guarantees every increase in zi by bij/Bi in Line 11

coincides with a decrease of at most bij/Bi in zci . Moreover, ∆digit, the decrease in sum of
digits of zci , satisfies ∆digit+ bij/Bi ≤ k · bij/Bi.

Proof. In Line 11, zfi , which was subtracted from zci , is nullified. Both bounds follow similarly to
our proof of Lemma 5.4 relying on zfi being a k-digit number with at most k− 1 non-null digits,
by Lemma 5.3, and each digit of zfi being no greater than bij/Bi, by initialization of zfi .

Lemma 5.6. By Line 22 each i satisfies zi ≥
∑

j bij−k·maxj{bij}
k·Bi

≥ 1− maxj bij
Bi

≥ 1−Rmax.

Proof. Throughout the algorithm, every edge (i, j) causes the sum of digits of zci to increase by
bij/Bi (again ignoring the 1

d−1 · C term), unless (i, j) are matched. Moreover, the sum of digits
does not decrease due to carries. On the other hand, every increase in zi by b coincides with
a decrease in the sum of digits of zci plus

∑
(i,j) matched bij/Bi, of at most k · b, by Lemmas 5.4

and 5.5. Put otherwise, the increase in zi is at least 1/k times the total sum of i’s bids so far,
minus the sum of digits of zci . By Lemma 5.3, the sum of digits of zci by Line 22 cannot exceed
k ·maxj{bij/Bi}. The lemma follows.

Given the above we can now prove our main result.

Theorem 5.7. On general-bid ad allocations on (k, d)-graphs with k ≥ d− 1 Algorithm 5 gains∑
i

(
Bi −maxj bij

)
·
(
1−

(
1− 1

d

)k), and is thus
(
1−Rmax

)
·
(
1−

(
1− 1

d

)k)-competitive.
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Proof. Lemmas 5.4 and 5.5 imply increases in zi can be traced back to a previous increase in
zci of the same value or higher. We therefore bound increases of zci · Bi in order to bound the
total dual cost. For each online j ∈ R, by our choice of match i, the change to the dual cost is
at most (1 + C) times the change to the primal value, as in Algorithm 4. However, by Lemma
5.6, by Line 22 each i satisfies zi ≥ (1 −maxj bij/Bi). Consequently, we have that before Line
22 the primal value P and dual cost D satisfy

P ≥ 1

1 + C
·D ≥

∑
i

(
Bi − max

j∈N(i)
bij
)
·
(

1−
(

1− 1

d

)k
)

As the primal value is unaffected by Lines 22-23, P above is our algorithm’s gain. The compet-
itive ratio follows from OPT ≤∑iBi and the definition of Rmax.

Finally, we note that Lemmas 5.3,5.4,5.5 and 5.6 hold for all advertisers i satisfying
∑

j bij ≥
k ·Bi, irrespective of outliers who don’t hold this property, implying the following.

Theorem 5.8 (Outliers). Let S ⊆ L be the set of outlying advertisers (advertisers i with∑
j bij < k ·Bi), and α be such that

∑
i∈S Bi ≤ α ·

∑
i∈L. Then Algorithm 3 gains at least

(1− α) ·
((

1−Rmax

)
· (1−

(
1− 1

d

)k

)

)
·
(∑

i

Bi

)
,

and in particular is (1− α) ·
((

1−Rmax

)
· (1−

(
1− 1

d

)k
)
)
-competitive.

6 Upper Bounds

6.1 Maximum Matching and Vertex-Weighted Matching

In order to construct hard examples, we start by showing that the optimal matching in (k, d)−graphs
matches all the advertisers whenever k ≥ d.

Lemma 6.1. Every (k, d)−graph G = (L,R,E) with k ≥ d has a matching matching all of L.

Proof. By Hall’s Theorem G has a matching with all of L matched if and only if every subset
A ⊆ L satisfies |Γ(A)| ≥ |A|. But, as G is a (k, d)−graph we have

k · |A| ≤ |E[G[A]]| ≤ d · |Γ(A)|

Consequently, we find that |Γ(A)| ≥ k
d · |A| ≥ |A|, and the lemma follows.

Equipped with Lemma 6.1 we may now prove this section’s main result – an upper bound
matching the lower bounds of Section 4, implying algorithm high-degree’s optimality. To this
end we cause high-degree to be effectively indistinguishable from any other algorithm.

Theorem 6.2. For all k ≥ d no deterministic online algorithm for bipartite matching can
achieve competitive ratio better than 1− (1− 1

d)k on (k, d)−graphs.

Proof. Let A be some online matching algorithm. The adversarial input consists of dk+1 adver-
tisers, with the ad slots arriving in k phases, numbered 0 to k− 1. During the i-th phase, which
begins with dk+1 ·(1− 1

d)i unmatched advertisers each of degree i, the arriving ad slots each have
exactly d neighbors, all unmatched; every unmatched advertiser neighbors exactly one new ad
slot per phase. Every phase causes unmatched advertisers to have their degree increase by one,
and exactly a (1− 1

d)-fraction of the advertisers unmatched at the phase’s beginning remain un-
matched. (If algorithm A does not match some ad slot to one of its d unmatched neighbors, we

14



consider it matched to an arbitrary neighbor; this can only serve to improve A’s performance.)
After the k phases additional ad slots of degree exactly d arrive in order to increase the degree
of the matched advertisers to k. The resulting graph is k-regular and d-regular on the offline
and online sides respectively, and is thus a (k, d)−graph. Moreover, exactly dk+1 · (1− 1

d)k of the
dk+1 advertisers are unmatched. However, by Lemma 6.1 all dk+1 advertisers can be matched
simultaneously. The theorem follows.

Corollary 6.3. The bound of Theorem 6.2 holds for d-regular graphs with dd+1 ≤ n, where
n = |L| = |R|. In particular, Algorithm high-degree is optimal for d-regular graphs with
d = O

(
logn

log logn

)
.

6.2 Upper Bound for Ad Allocation

In this subsection we prove an upper bound on the possible competitive ratio of deterministic
algorithms in (k, d)-graphs. We start by showing a simple weaker bound, useful in proving this
section’s main result.

Lemma 6.4. For all ratio Rmax no deterministic algorithm can achieve competitive ratio better
than (1 − Rmax) for the ad allocation problem under the adversarial model. This bound holds
even for (k, d)-graphs for all k and d.

Proof. The hard input consists of disjoint stars with advertisers for internal vertices and ad slots
for leaves. Every advertiser i has budget Bi = 1, with i’s bids given by

bij =

{
Rmax if i’s remaining budget is less than Rmax

ε else

Given enough ad slots, an optimal allocation exhausts all advertisers’ budgets, but every adver-
tiser i gains at most 1−Rmax + ε, whether or not i has neighbors j with bij = Rmax. Summing
over all advertisers, the lemma follows.

Using the above and extending Theorem 6.2’s proof, we can now prove the following.

Theorem 6.5. For all k ≥ d no deterministic online algorithm for ad allocation is better than
(1−Rmax) ·

(
1−

(
1− 1

d

)k/Rmax
)
-competitive on (k, d)-graphs with Rmax ≤ 1

2 a unit fraction.

Proof. The offline side consists of dk/Rmax advertisers, each with a budget Bi = 1. For the first
phase, all edges have bids Rmax. During k/Rmax rounds ad slots arrive, each neighboring d
distinct advertisers, and a 1

d -fraction of the advertisers are matched. The next round is as the
last, but restricted to the previously unmatched advertisers. There are (1− 1

d)k/Rmax unmatched
advertisers by this phase’s termination; these advertisers now satisfy the offline side’s constraints
for (k, d)-graphs, and receive no more neighbors. All of these advertisers’ potential profit is lost.
For the matched advertisers we now apply the construction of Lemma 6.4 to guarantee that at
most a (1− Rmax)-fraction of their potential profit in an optimal solution is gained, for a total
gain of (1 − Rmax) ·

(
1−

(
1− 1

d

)k/Rmax
)
· |L|. Applying Lemma 6.1 repeatedly we find that

there exists an allocation with all advertisers unmatched by algorithm A matched 1/Rmax times
(to neighbors for which they bid Rmax), and all advertisers matched by A also exhausting their
budgets simultaneously. The theorem follows.
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7 Randomized Algorithms

By relying on the dual updates of Algorithm 3, we prove competitiveness of algorithm random,
which matches every arriving ad slot to some feasible neighbor.

Theorem 7.1. Algorithm random achieves expected competitive ratio of 1−
(
1− 1

d

)k for both
unweighted and vertex-weighted matching problems.

Proof. Consider some maximally-matching algorithm A.5 We maintain and update a dual solu-
tion as in our deterministic Algorithm 3 while choosing matches according to Algorithm A. As
observed in the proof of Theorem 4.3, such dual updates guarantee all unmatched advertisers
i ∈ L with current degree d(i) satisfy

zi = C ·
((

d

d− 1

)d(i)

− 1

)

Consequently, these dual update rules guarantee dual feasibility for any maximally-matching
algorithm, including random, provided C = 1/(( d

d−1)k − 1). We need only bound the expected
ratio between the dual and primal solutions’ values.

Consider some ad slot j matched to some i. We recall that in the vertex-weighted matching
problem the bid bij is exactly bij = Bi. Therefore, given the current state (determined by the
previous random choices), including the set NF (j) of j’s unmatched (feasible) neighbors, j’s
match is chosen uniformly among NF (j) by random, and consequently

E[∆P |state] =
1

|NF (j)| ·
∑

i∈NF (j)

Bi.

On the other hand, by the same argument

E[∆D|state] = 1
|NF (j)| ·

∑
i∈NF (j)

(
(1− zi) ·Bi +

∑
i′∈NF (j)\{i}

(
1

d−1 · (zi′ + C) ·Bi′

))
= 1
|NF (j)| ·

∑
i∈NF (j)

((1− zi) ·Bi) + 1
|NF (j)| ·

∑
i′∈NF (j)

(
|NF (j)|−1

d−1 · (zi′ + C) ·Bi′

)
≤ 1
|NF (j)| ·

∑
i∈NF (j)

Bi · (1 + C).

With the last inequality following from |NF (j)| ≤ |N(j)| ≤ d. Taking total expectation over the
possible states, we obtain E[∆D] ≤ (1 + C) · E[∆P ]. The theorem follows.

We note that Theorem 7.1 can also be proved using the potential-based proof of Subsection
4.2, observing that the expected potential change incurred by the processing of every online
arrival is non-negative. In addition, in the same way that Theorem 4.3 is extended in Theorem
4.5, we can show that random is also robust to outliers. We omit the details for brevity. Finally,
we show that random also performs well for the general online ad allocation problem.

Theorem 7.2. Algorithm random achieves expected competitive ratios of 1 −
(
1− 1

d

)k and
(1−Rmax) ·

(
1−

(
1− 1

d

)k) for the equal-bids and general-bids ad allocation problems.

Proof (sketch). The proof resembles that of Theorem 7.1, relying on Algorithms 4 and 5 respec-
tively for the dual-fitting analysis. Dual feasibility is guaranteed by the dual updates. On the
other hand, linearity of expectation implies the expected primal-dual ratio matches that of Al-
gorithms 4 and 5 (for the latter, this requires showing Lemmas 5.3–5.6 all hold in expectation).
The claimed bounds follow.

5By “maximally-matching” we mean algorithm A always matches an arriving ad slot, if at all possible.
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8 Future Work and Open Questions

This paper attempts to give a theoretical explanation of the empirical success of simple heuristic
algorithms for online ad allocation in practice and further proposes better algorithms under
assumptions that could explain above-mentioned success. The paper further poses several inter-
esting follow-up questions.

Optimality for Adwords. We proved optimality of our algorithms for online maximum
and vertex-weighted matching. However, for the general ad allocation problem our lower and
upper bounds differ by a factor of

(
1 −

(
1 − 1

d

)k)
/
(
1 −

(
1 − 1

d

)k/Rmax
)
. For small Rmax (i.e.,

the AdWords problem), this discrepancy is large. Can better algorithms be obtained for this
problem, or can the upper bounds be tightened (or both)?

Randomization. We are able to prove that a multitude of randomized algorithms, which we
do not discuss for the sake of brevity, match our deterministic algorithms’ expected competitive
on (k, d)-graphs. However, we have no upper bounds on randomized algorithms’ performance.
We believe that randomization does allow for better results, and have some preliminary results
that indicate this is indeed the case.

Stochastic Models. An interesting direction would be to extend our analysis of (k, d)-
graphs to stochastic models, in which it seems plausible that even better competitiveness guar-
antees should be achievable.
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A Bad Instance for Algorithm greedy for General Ad Allocation

We now prove our analysis of Algorithm greedy for the ad allocation problem is tight.

Theorem A.1. For all k ≥ d− 1 and Rmax ≤ 1
2 a unit fraction, there exist (k, d) ad allocation

instances for which algorithm greedy can achieve competitive ratio exactly (1−Rmax)·k
k+(d−1)·(1−Rmax)

.

Proof. Let 1 − Rmax = a
b for 0 < a < b and a and b integers. The hard instance will consist of

k · b+ (d− 1) · a = b · (k + (d− 1) · (1−Rmax)) advertisers. Each advertiser has budget exactly
one. We designate k · b advertisers to be the “lucky” advertisers, from which we will achieve
revenue of (1− Rmax) and the remaining (d− 1) · a “unlucky” advertisers will garner no profit.
The theorem will follow by constructing the instance such that all budgets can be exhausted
simultaneously.

All edges have bids either Rmax or some arbitrarily small positive ε. At first, each arriving
ad slot will have d edges with bids Rmax, one to some lucky advertiser of lowest degree (to whom
the ad slot is matched), and (d − 1) edges to some unlucky advertisers of lowest degree. After
a·k·b
b−a ad slots arrive (this value is integral, as is 1

Rmax
= b

b−a), the following holds

(i) each of the unlucky advertisers are unmatched and have degree exactly k · b
b−a = k · 1

Rmax
.

(ii) each of the lucky ad slots are matched to all of their neighbors, and have degree exactly
a

b−a = 1
Rmax

− 1.

The remaining ad slots recreate the construction of Lemma 6.4, thus guaranteeing each of the
lucky advertisers gain no more than 1−Rmax+ε. On the other hand all the lucky advertisers can
exhaust their budgets without using any of the Rmax-bid edges of ad slots neighboring unlucky
advertisers, which, as can be readily verified (using, e.g. Lemma 6.1 repeatedly), allows both
lucky and unlucky advertisers to exhaust their budgets simultaneously whenever k ≥ d−1. The
described instance is (k, d) and the theorem follows.

The above bound holds for any Rmax ≤ 1
2 , as the following theorem asserts.

Theorem A.2. For all k ≥ d − 1 and Rmax ≤ 1
2 there exist (k, d) ad allocation instances for

which algorithm greedy can achieve competitive ratio exactly (1−Rmax)·k
k+(d−1)·(1−Rmax)

.

Proof (sketch). In order to generalize the above, we rely on the fact that every number Rmax in
the range (0, 12 ] can be written as a convex combination of two unit fractions 1

a ≤ Rmax ≤ 1
b .

That is, wa · 1a + wb · 1b = Rmax and wa + wb = 1. We glue 2n copies of the above construction
at the advertisers, n of the copies with budget wa/n (wb/n) for each advertiser, and highest
bid-to-budget ratio in the copy being 1/a (resp. 1/b). In this case the overall budget from
all copies is n · (wa/n + wb/n) = wa + wb = 1, and for large enough n each bid is at most
wb/(b · n) < Rmax. On the other hand, all unlucky advertisers are completely unmatched and
garner no profit, and all lucky advertisers gain a total of n·(wa/n+wb/n−wa/(a·n)+wb/(b·n)) =
1 − (wa/a + wb/b) = 1 − Rmax. As in Lemma 6.4 we can guarantee each such lucky advertiser
yields at most ε additional revenue.
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