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Abstract

We study network coding gaps for the problem of makespan minimization of multiple unicasts.
In this problem distinct packets at different nodes in a network need to be delivered to a destination
specific to each packet, as fast as possible. The network coding gap specifies how much coding
packets together in a network can help compared to the more natural approach of routing.

While makespan minimization using routing has been intensely studied for the multiple unicasts
problem, no bounds on network coding gaps for this problem are known. We develop new techniques
which allow us to upper bound the network coding gap for the makespan of k£ unicasts, proving
this gap is at most polylogarithmic in k. Complementing this result, we show there exist instances
of k unicasts for which this coding gap is polylogarithmic in k. Our results also hold for average
completion time, and more generally any ¢, norm of completion times.
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1 Introduction

In this paper we study the natural mathematical abstraction of what is arguably the most common
network communication problem: multiple unicasts. In this problem, distinct packets of different size
are at different nodes in a network, and each packet needs to be delivered to a specific destination as
fast as possible. That is, minimizing the makespan, or the time until all packets are delivered.

All known multiple-unicast solutions employ (fractional) routing (also known as store-and-forward
protocols), i.e., network nodes potentially subdivide packets and route (sub-)packets to their desti-
nation via store and forward operations, while limited by edge capacities. The problem of makespan
minimization of routing has been widely studied over the years. A long line of work (9, 11, 14, 44,
49, 50, 57, 58, 59, 63, 65, 66, 67|, starting with the seminal work of Leighton, Maggs, and Rao [49],
studies makespan minimization for routing along fixed paths. The study of makespan minimization
for routing (with the freedom to pick paths along which to route) resulted in approximately-optimal
routing, first for asymptotically-large packet sizes [11], and then for all packet sizes [67].

It seems obvious at first that routing packets, as though they were physical commodities, is the only
way to solve network communication problems, such as multiple unicasts. Surprisingly, however, results
discovered in the 2000s [6] suggest that information need not flow through a network like a physical
commodity. For example, nodes might not just forward information, but instead send out XORs of
received packets. Multiple such XORs or linear combinations can then be recombined at destinations
to reconstruct any desired packets. An instructive example is to look at the XOR C & M of two s-bit
packets, C and M. While it is also s bits long, one can use it to reconstruct either all s bits of C or all s
bits of M, as long as the other packet is given. Such network coding operations are tremendously useful
for network communication problems, but they do not have a physical equivalent. Indeed, the C' & M
packet would correspond to some s ounces of a magic “café latte” liquid with the property that one can
extract either s ounces of milk or s ounces of coffee from it, as long as one has enough of the other liquid
already. Over the last two decades, many results demonstrating gaps between the power of network
coding and routing have been published (e.g., [6, 7, 16, 20, 24, 27, 29, 30, 36, 42, 47, 52, 68, 69, 70]).
Attempts to build a comprehensive theory explaining what is or is not achievable by going beyond
routing have given rise to an entire research area called network information theory.

The question asked in this paper is:
“How much faster than routing can network coding be for any multiple-unicast instance?”

In other words, what is the (multiplicative) network coding gap for makespan of multiple unicasts.
Surprisingly, no general makespan coding gap bounds were known prior to this work. This is in spite
of the vast amount of effort invested in understanding routing strategies for this problem, and ample
evidence of the benefits of network coding.

This question was studied in depth for the special case of asymptotically-large packet sizes, otherwise
known as throughput maximization (e.g., [3, 7, 36, 37, 41, 45, 47, 52, 52, 70, 71]). Here, the maximum
throughput of a multiple-unicast instance can be defined as sup,_,., w/C(w), where C(w) is the
makespan of the fastest protocol for the instance after increasing all packet sizes by a factor of w (see
Appendix A). In the throughput setting, no instances are known where coding offers any advantage
over routing, and this is famously conjectured to be the case for all instances |37, 52]. This conjecture,
if true, has been proven to have surprising connections to various lower bounds [3, 4, 23]. Moreover,
by the work Afshani et al. [4], a throughput coding gap of o(log k) for all multiple-unicast instances
with & unicast pairs (k-unicast instances, for short) would imply explicit super-linear circuit lower
bounds—a major breakthrough in complexity theory. Such a result is currently out of reach, as the
best known upper bound on throughput coding gaps is O(log k), which follows easily from the same
bound on multicommodity flow/sparsest cut gaps [10, 54].



In this work we prove makespan coding gaps for the general problem of arbitrary packet sizes.
In particular, we show that this gap is at most O(log2 k) for any k-unicast instance (for the most
interesting case of similar-sized packet sizes). We note that any coding gap upper bound for this
more general setting immediately implies the same bound in the throughput setting (Appendix A),
making our general bound only quadratically larger than the best known bound for the special case
of throughput. Complementing our results, we prove that there exist k-unicast instances where the
network coding gap is Q(log® k) for some constant ¢ > 0.

To achieve our results we develop novel techniques that might be of independent interest. The
need for such new tools is due to makespan minimization for general packet sizes needing to take both
source-sink distances as well as congestion issues into account. This is in contrast with the throughput
setting, where bounds must only account for congestion, since asymptotically-large packet sizes make
distance considerations inconsequential. For our more general problem, we must therefore develop
approaches that are both congestion- and distance-aware. One such approach is given by a novel
combinatorial object we introduce, dubbed the moving cut, which allows us to provide a universally
optimal characterization of the coding makespan. That is, it allows us to obtain tight bounds (up
to polylog terms) on the makespan of any given multiple-unicast instance. This underlies our main
result—a polylogarithmic upper bound on the makespan coding gap for any multiple-unicast instance.

1.1 Preliminaries

In this section we define the completion-time communication model. We defer the, slightly more
general, information-theoretic formalization to Appendix B.

A multiple-unicast instance M = (G, S) is defined over a communication network, represented by
an undirected graph G = (V, E, ¢) with capacity c, € Z>; for each edge e. The k £ |S| sessions of M
are denoted by S = {(s;, t;, di)}le. Each session consists of source node s;, which wants to transmit a
packet to its sink ¢;, consisting of d; € Z>1 sub-packets; we refer to d; as the demand. Without loss of
generality we assume that a uniform sub-packetization is used; i.e., all sub-packets have the same size
(think of sub-packets as the underlying data type, e.g., field elements or bits; our proofs hold for any
particular sub-packet). For brevity, we refer to an instance with k sessions as a k-unicast instance.

A protocol for a multiple-unicast instance is conducted over finitely-many synchronous time steps.
Initially, each source s; knows its packet, consisting of d; sub-packets. At any time step, the protocol
instructs each node v to send a different packet along each of its edges e. The packet contents are
computed with some predetermined function of packets received in prior rounds by v or originating at
v. Network coding protocols are unrestricted protocols, allowing each node to send out any function of
the packets it has received so far. On the other hand, routing protocols are a restricted, only allowing
a node to forward sub-packets which it has received so far or that originate at this node.

We say a protocol for multiple-unicast instance has completion times (Ty,T5,...,T)) if for each
i € [k], after T; time steps of the protocol the sink ¢; can determine the d;-sized packet of its source
s;. The complexity of a protocol is determined by functions C : R’;O — R>( of its completion times.
For example, a protocol with completion times (71,7, ..., T}) has makespan max;e(r) 1; and average
completion time (Zz‘e[k] T;)/k. Minimizing these measures is a special case of minimizing weighted £,
norms of completion time, namely minimizing (Zie[k} w; - Tip)l/P for some @ € R* and p € R>p.

Since coding protocols subsume routing ones, for any function C of completion times, and for any
multiple-unicast instance, the fastest routing protocol is no faster than the fastest coding protocol.
Completion-time coding gaps characterize how much faster the latter is.

Definition 1.1. (Completion-time coding gaps) For any function C : Réo — R>q of completion times,
the network coding gap for C for a k-unicast instance M = (G, S) is the ratio of the smallest C-value
of any routing protocol for M and the smallest C-value of any network coding protocol for M.



We note that the multiple-unicast instance problem can be further generalized, so that each edge
has both capacity and delay, corresponding to the amount of time needed to traverse the edge. This
more general problem can be captured by replacing each edge e with a path with unit delays of
total length proportional to e’s delay. As we show, despite path length being crucially important in
characterizing completion times for multiple-unicast instances, this transformation does not affect the
worst-case coding gaps, which are independent of the network size (including after this transformation).
We therefore consider only unit-time delays in this paper, without loss of generality.

1.2 Owur Contributions

In this work we show that completion-time coding gaps of multiple unicasts are vastly different from
their throughput counterparts, which are conjectured to be trivial (i.e., equal to one). For example,
while the throughput coding gap is always one for instances with k& = 2 sessions [39], for makespan it
is easy to derive instances with k = 2 sessions and coding gap of 4/3 (based on the butterfly network).
Having observed that makespan coding gaps can in fact be nontrivial, we proceed to study the potential
asymptotic growth of such coding gaps as the network parameters grow. We show that the makespan
coding gap of multiple unicasts with k sessions and packet sizes {d;};c(y) is polylogarithmic in the
problem parameters, k and ), d;/ min; d;, but independent of the network size, n. The positive part
of this result is given by the following theorem.

Theorem 1.2. The network coding gap for makespan of any k-unicast instance is at most
(0] <10g(k) -log <Z di/miin dl>> .
(2

For similarly-sized packets, this bound simplifies to O(log2 k). For different-sized packets, our proofs
and ideas in [62] imply a coding gap of O(logk - log(nk)). Moreover, our proofs are constructive,
yielding for any k-unicast instance M a routing protocol which is at most O(log k -log (>, d;/ min; d;))
and O(logk - log(nk)) times slower than the fastest protocol (of any kind) for M. We note that our
upper bounds imply the same upper bounds for throughput (see Appendix A). Our bounds thus also
nearly match the best coding gap of O(log k) known for this special case of makespan minimization.

On the other hand, we prove that a polylogarithmic gap as in Theorem 1.2 is inherent, by providing
an infinite family of multiple-unicast instances with unit-sized packets (d; = 1 for all i € [k]) exhibiting
a polylogarithmic makespan coding gap.

Theorem 1.3. There exists an absolute constant ¢ > 0 and an infinite family of k-unicast instances
whose makespan coding gap is at least Q(log® k).

Building on our results for makespan we obtain similar results to Theorems 1.2 and 1.3 for average
completion time and more generally for any weighted ¢, norm of completion times.

1.3 Techniques

Here we outline the challenges faced and key ideas needed to obtain our results, focusing on makespan.

1.3.1 Upper Bounding the Coding Gap

As we wish to bound the ratio between the best makespan of any routing protocol and any coding pro-
tocol, we need both upper and lower bounds for these best makespans. As it turns out, upper bounding
the best makespan is somewhat easier. The major technical challenge, and our main contribution, is in



deriving lower bounds on the optimal makespan of any given multiple-unicast instance. Most notably,
we formalize a technique we refer to as the moving cut. Essentially the same technique was used
to prove that distributed verification is hard on one particular graph that was designed specifically
with this technique in mind [19, 21, 61]|. Strikingly, we show that the moving cut technique gives an
almost-tight characterization (up to polylog factors) of the coding makespan for every multiple-unicast
instance (i.e., it gives universally optimal bounds).

We start by considering several prospective techniques to prove that no protocol can solve an
instance in fewer than T rounds, and build our way up to the moving cut. For any multiple-unicast
instance, max;e[x dist(s;, t;), the maximum distance between any source-sink pair, clearly lower bounds
the coding makespan. However, this lower bound can be arbitrarily bad since it does not take edge
congestion into account; for example, if all source-sink paths pass through one common edge. Similarly,
any approach that looks at sparsest cuts in a graph is also bound to fail since it does not take the
source-sink distances into account.

Attempting to interpolate between both bounds, one can try to extend this idea by noting that
a graph that is “close” (in the sense of few deleted edges) to another graph with large source-sink
distances must have large makespan for routing protocols. For simplicity, we focus on instances where
all capacities and demands are one, i.e., ¢, = 1 for every edge e and d; = 1 for all ¢, which we refer to
as simple instances. The following simple lemma illustrates such an approach.

Lemma 1.4. Let M = (G,S) be a simple k-unicast instance. Suppose that after deleting some edges
F C E, any sink is at distance at least T' from its source; i.e., Vi € [k] we have distq\p(si,t;) > T
Then any routing protocol for M has makespan at least min {T', k/|F'|}.

Proof. For any sets of flow paths between all sinks and source, either (1) all source-sink flow paths
contain at least one edge from F, incurring a congestion of k/|F| on at least one of these |F'| edges, or
(2) there is a path not containing any edge from F', hence having a hop-length of at least 7. Either
way, any routing protocol must take at least min{T, k/|F|} to route along these paths. O

Perhaps surprisingly, the above bound does not apply to general (i.e., coding) protocols. Consider
the instance in Figure 1. There, removing the single edge {S,T'} increases the distance between any
source-sink pair to 5, implying any routing protocol’s makespan is at least 5 on this instance. However,
there exists a network coding protocol with makespan 3: Each source s; sends its input to its neighbor
S and all sinks ¢; for 7 # j along the direct 3-hop path s; — — —¢;. Node S computes the XOR of all
inputs, passes this XOR to 7" who, in turn, passes this XOR to all sinks ¢;, allowing each sink ¢; to
recover its source s;’s packets by canceling all other terms in the XOR.

Figure 1: A family of instances with k = 5 pairs of terminals and makespan coding gap of 5/3. Each
of the k sources s; has a path of 3 hops (in black and bold) connecting it to every sink ¢; for all j # i.
Moreover, all sources s; neighbor a node S, which also neighbors node 7', which neighbors all sinks ;.

One can still recover a valid general (i.e., coding) lower bound by an appropriate strengthening of
Lemma 1.4: one has to require that all sources be far from all sinks in the edge-deleted graph. This
contrast serves as a good mental model for the differences between coding and routing protocols.
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Lemma 1.5. Let M = (G, S) be a simple k-unicast instance. Suppose that after deleting some edges
F C E, any sink is at distance at least T' from any source; i.e., Vi,j € [k] we have distc\ p(8i,t;) > T
Then any (network coding) protocol for M has makespan at least min {T, k/|F|}.

Proof. We can assume all sources can share information among themselves for free (e.g., via a common
controlling entity) since this makes the multiple-unicast instance strictly easier to solve; similarly,
suppose that the sinks can also share information. Suppose that some coding protocol has makespan
T’ < T. Then all information shared between the sources and the sinks has to pass through some edge
in F' at some point during the protocol. However, these edges can pass a total of |F|-T" packets of
information, which has to be sufficient for the total of k source packets. Therefore, |F|-T' > k, which
can be rewritten as T > k/|F|. The makespan is therefore at least 7" > min{T, k/|F|}. O

Unfortunately, Lemma 1.5 is not always tight and it is instructive to understand when this happens.
One key example is the previously-mentioned instance studied in the influential distributed computing
papers [19, 21, 61] (described in Figure 2), where congestion and dilation both play key roles. Infor-
mally, this network was constructed precisely to give an Q(y/n) makespan lower bound (leading to
the pervasive Q(/n + D) lower bound for many global problems in distributed computing [19]). The
intuitive way to explain the Q(\/ﬁ) lower bound is to say that one either has to communicate along a
path of length \/n or all information needs to shortcut significant distance over the tree, which forces
all information to pass through near the top of the tree, implying congestion of Q(\/ﬁ) Lemma 1.5,
however, can at best certify a lower bound of Q(n'/4) for this instance. That is, this lemma’s (coding)
makespan lower bound can be polynomially far from the optimal coding protocol’s makespan.

ll'o—tle
‘II-I"'O |;',I"'o
[I\e !|I.."'I
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Figure 2: The hard instance for distributed graph problems [19, 21, 61|, as appears in [25]. The
multiple-unicast instance has ©(n) nodes and is composed of y/n disjoint paths of length \/n and a
perfectly balanced binary tree with \/n leaves. The i* node on every path is connected to the it"
leaf in the tree. There are \/n sessions with s;,t; being the first and last node on the i path. All
capacities and demands are one. The graph’s diameter is ©(logn), but its coding makespan is Q(y/n).

A more sophisticated argument is needed to certify the Q(\/ﬁ) lower bound for this specific instance.
The aforementioned papers [19, 21, 61| prove their results by implicitly using the technique we formalize
as our moving cut in the following lemma (proven in Section 2.1) on the instance of Figure 2.

Lemma 1.6 (Moving cut). Let M = (G,S) be a k-unicast instance. Suppose that after increasing
each edge e’s length from one to {. € Z>1, we have

(1) the total length increase, Y g ce(le — 1) is less than Zle d;, and
(2) any sink is at distance at least T from any source; i.e., Vi, j € [k| we have disty(s;,t;) > T.

Then any (coding) protocol for M has makespan at least T'.

5



Lemma 1.6 can be seen as a natural generalization of Lemma 1.5, which can be equivalently restated
in the following way: “Suppose that after increasing each edge e’s length from one to £, € {1,T + 1},
we have that (1) Y cpce(le —1) < Ele d;, and (2) disty(si,tj) > T. Then any (coding) protocol M
has makespan at least T'”. Dropping the restriction on £, recovers Lemma 1.6.

Strikingly, the moving cut technique allows us not only to prove tight bounds (up to polylog factors)
for the instance of Figure 2—it allows us to get such tight bounds for every multiple-unicast instance.
In order to upper bound the makespan coding gap, we therefore relate such a moving cut with the
optimal routing makespan, as follows.

To characterize the optimal routing makespan, we study hop-bounded multicommodity flow, which
is an LP relaxation of routing protocols of makespan T'. First, we show that a fractional LP solution of
high value to this LP implies a routing with makespan O(T"). Conversely, if the optimal value of this
LP is low, then by strong LP duality this LP’s dual has a low-valued solution, which we us to derive a
moving cut and lower bound the coding makespan. Unfortunately, the dual LP only gives us bounds
on (average) distance between source-sink pairs (s;,%;), and not between all sources s; and sinks ¢;
(including j # i), as needed for moving cuts. For this conversion to work, we prove a generalization of
the main theorem of Arora, Rao and Vazirani [8] to general metrics, of possible independent interest.
(See Section 2.3.) This allows us to show that a low-valued dual solution implies a moving cut certifying
that no coding protocol has makespan less than 7'/O(log k-log(}, d;/ min; d;)). As the above rules out
low-valued optimal solutions to the LP for T' =T - O(log k - log(} ", d;/ min; d;)) with T™ the optimal
coding makespan, the LP must have high optimal value, implying a routing protocol with makespan
O(T), and thus our claimed upper bound on the makespan coding gap.

1.3.2 Lower Bounding the Coding Gap

To complement our polylogarithmic upper bound on the makespan gap, we construct a family of
multiple-unicast instances M that exhibit a polylogarithmic makespan coding gap. We achieve this
by amplifying the gap via graph products, a powerful technique that was also used in prior work to
construct extremal throughput network coding examples [12, 13, 55|. Here we outline this approach,
as well as the additional challenges faced when trying to use this approach for makespan.

We use a graph product introduced by Braverman et al. [13] (with some crucial modifications).
Braverman et al. [13]| use their graph product to prove a conditional throughput coding gap similar to
the one of Theorem 1.3, conditioned on the (unknown) existence of a multiple-unicast instance I with
non-trivial throughput coding gap. The graph product of [13] takes instances I1, [2 and intuitively
replaces each edge of I; with a source-sink pair of a different copy of I5. More precisely, multiple copies
of Iy and Iy are created and interconnected. Edges of a copy of I; are replaced by the same session
of different copies of Io; similarly, sessions of a copy of I replace the same edge in different copies of
I;. This product allows for coding protocols in I; and Is to compose in a straightforward way to form
a fast coding protocol in the product instance. The challenge is in proving impossibility results for
routing protocols, which requires more care in the definition of the product graph.

To address this challenge, copies of instances are interconnected along a high-girth bipartite graph
to prevent unexpectedly short paths from forming after the interconnection. For example, to prove a
throughput routing impossibility result, Braverman et al. [13] compute a dual of the multicommodity
flow LP (analogous to our LP, but without any hop restriction) to certify a limit on the routing
performance. In the throughput setting, a direct tensoring of dual LP solutions of I; and Iy gives a
satisfactory dual solution of the product instance. In more detail, a dual LP solution in I assigns a
positive length ¢;(e) to each edge in I; each edge of the product instance corresponds to two edges
e1 € I and ey € Iy, and the direct tensoring ¢ ((e1,e2)) = £, (e1) - £1,(e2) provides a feasible dual
solution with an adequate objective value. To avoid creating edges in the product distance of zero
£ -length, they contract edges assigned length zero in the dual LP of either instance. Unfortunately



for us, such contraction is out of the question when studying makespan gaps, as such contractions
would shorten the hop length of paths, possibly creating short paths with no analogues in the original
instance.

Worse yet, any approach that uses the dual of our T-hop-bounded LP is bound to fail in the
makespan setting. To see why, suppose we are given two instances I, I2, both of which have routing
makespan at least 7' and expect that the product instance I, to have routing makespan at least 72
by some construction of a feasible dual LP solution. Such a claim cannot be directly argued since a
source-sink path in the product instance that traverses, say, T'— 1 different copies of I along a path
of hop-length T'+ 1 in I3 could carry an arbitrary large capacity! This is since the hop-bounded LP
solution on I only takes short paths, of hop-length at most 7', into account. Since there is no direct
way to compose the dual LP solutions, we are forced to use a different style of analysis from the one
of [13], which in turn forces our construction to become considerably more complicated.

To bound the routing makespan in the product instance we rely on Lemma 1.4: We keep a list of
edges F' along with each instance and ensure that (i) all source-sink distances in the F-deleted instance
are large and that (ii) the ratio of the number of sessions k to |F| is large. We achieve property (i) by
interconnecting along a high-girth graph and treating the replacements of edges in F' in a special way
(hence deviating from the construction of [13]). Property (ii) is ensured by making the inner instance
I significantly larger than the outer instance Iy, thus requiring many copies of I; and resulting in a
large number of sessions in the product graph. To allow for this asymmetric graph product, we need
an infinite number of base cases with non-trivial makespan coding gap for our recursive constructions
(rather than a single base instance, as in the work of Braverman et al. [13]). This infinite family is
fortunately obtained by appropriately generalizing the instance of Figure 1.

The main challenge in our approach becomes controlling the size of the product instance. To achieve
this, we affix to each instance a relatively complicated set of parameters (e.g., coding makespan, number
of edges, number of sessions, etc.) and study how these parameters change upon applying the graph
product. Choosing the right set of parameters is key—they allow us to properly quantify the size
escalation. In particular, we show that the coding gap grows doubly-exponentially and the size of the
instances grow triply-exponentially, yielding the desired polylogarithmic coding gap.

1.4 Related Work

This work ties in to many widely-studied questions. We outline some of the most relevant here.

Routing multiple unicasts. Minimizing the makespan of multiple unicasts using routing has been
widely studied. When packets must be routed along fixed paths, two immediate lower bounds on the
makespan emerge: dilation, the maximum length of a path, and congestion, the maximum number of
paths crossing any single edge. A seminal result of Leighton et al. [49] proves one can route along such
fixed paths in O(congestion + dilation) rounds, making the result optimal up to constants. Follow ups
include works improving the constants in the above bound [59, 66|, computing such protocols [50],
simplifying the original proof [65], routing in distributed models [57, 63|, and so on. When one has
the freedom to choose paths, Bertsimas and Gamarnik [11] gave near-optimal routing solutions for
asymptotically-large packet sizes, later extended to all packet sizes by Srinivasan and Teo [67]. The
power of routing for multiple unicasts is therefore by now well understood.

Network coding gains. The utility of network coding became apparent after Ahlswede et al. [6]
proved it can increase the (single multicast) throughput of a communication network. Following their
seminal work, there emerged a vast literature displaying the advantages of network coding over routing
for various measures of efficiency in numerous communication models, including for example energy
usage in wireless networks [24, 27, 69|, delay minimization in repeated single unicast[16, 68|, and



makespan in gossip protocols [20, 29, 30]. The throughput of a single multicast (i.e., one single node
sending to some set of nodes), arguably the simplest non-trivial communication task, was also studied
in great detail (e.g., [5, 6, 38, 40, 51, 53]). In particular, Agarwal and Charikar [5] showed that the
throughput coding gap for a single multicast equals the integrality gap of natural min-weight Steiner
tree relaxations, for which non-trivial bounds were known (see, e.g., [34, 72]). While the throughput
coding gap for a single multicast is now fairly well understood, the case of multiple senders seems to
be beyond the reach of current approaches.

Throughput gaps for multiple unicasts. The routing throughput for multiple unicasts is cap-
tured by multicommodity max-flow, while the coding throughput is clearly upper bounded by the spars-
est cut. Known multicommodity flow-cut gap bounds therefore imply the throughput coding gap for k&
unicasts is at most O(log k) [10, 54|, and less for special families of instances [15, 17, 18, 43, 46, 48, 64].
In 2004 Li and Li [52] and Harvey et al. [37] independently put forward the multiple-unicast conjecture,
which asserts that the throughput coding gap is trivial (i.e., it is one). This conjecture was proven true
for numerous classes of instances [3, 39, 41, 45, 56|. More interestingly, a positive resolution of this
conjecture has been shown to imply unconditional lower bounds in external memory algorithm com-
plexity [3, 23], computation in the cell-probe model [3], and (recently) an Q(nlogn) circuit size lower
bound for multiplication of n-bit integers [4] (matching an even more recent breakthrough algorithmic
result for this fundamental problem [35]). Given this last implication, it is perhaps not surprising
that despite attempts by many prominent researchers |7, 36, 41, 47, 52, 70, 71|, the conjecture re-
mains open and has established itself as a notoriously hard open problem. Indeed, even improving the
O(log k) upper bound on throughput coding gaps seems challenging, and would imply unconditional
super-linear circuit size lower bounds, by the work of Afshani et al. [4]. Improving our upper bound on
makespan coding gaps to o(log k) would directly imply a similar improvement for throughput coding
gaps, together with these far-reaching implications.

2 Upper Bounding the Coding Gap

In this section we prove Theorem 1.2, upper bounding the makespan network coding gap. Given a
multiple-unicast instance M we thus want to upper bound its routing makespan and lower bound
its coding makespan. To characterize these quantities we start with a natural hop-bounded multi-
commodity flow LP, CONCURRENTFLOW \¢(T'), which serves as a “relaxation” of routing protocols of
makespan at most 1. The LP, given in Figure 3, requires to send a flow of magnitude z - d; between
each source-sink pair (s;,t;), with the additional constraints that (1) the combined congestion of any
edge e is at most T - ¢, where ¢, is the capacity of the edge (as only c. packets can use this edge
during any of the T time steps of a routing protocol), and (2) the flow is composed of only short
paths, of at most 7" hops. Specifically, for each i € [k], we only route flow from s; to t; along paths in
Pi(T) 2 {p: si~t; | |p| < T, pis simple}, the set of simple paths of hop-length at most 7' connecting
s; and t; in G.

Primal: CONCURRENTFLOW v((T") Dual: CuTm(T)
maximize z minimize 7T ) ccE cele
subject to: subject to:
Vi € [k‘] ZpET’i(T) fz(p) >z-d; | Vie [k:],p € PZ(T) Zeép le > h;
Ve € E: ZpSe fl(p) <T-c Zze[k] dih; > 1
Vi e [kl,p: filp) >0 Vee E: (.>0
Vielk]l: hi>0

Figure 3: The concurrent flow LP relaxation and its dual.



A routing protocol solving M in T rounds yields a solution to CONCURRENTFLOW v((T) of value
z = 1, almost by definition.! A partial converse is also true; a feasible solution to CONCURRENT-
Frow (7)) of value at least ©(1) implies a routing protocol for M in time O(T'). This can be proven
using standard LP rounding [67] and O(congestion + dilation) path routing [49]. (See Appendix C.)

Lemma 2.1. Let z < 1,{fi(p) | i € [k],p € Pi(T)} be a feasible solution for CONCURRENTEFLOW o (7).
Then there exists an integral routing protocol with makespan O(T/z).

Surprisingly (and more challenging to prove), a low optimal LP value for CONCURRENTFLOW A((T")
implies that no coding protocol can solve the instance in much less than T time.

Lemma 2.2. If the optimal value of CONCURRENTFLOW r((T') is at most z* < 1/10, then the coding
makespan for M is at least T/(C - log(k) - log (>, di/d;)) for some constant C' > 0.

Before outlining our approach for proving Lemma 2.2, we show why this lemma together with
Lemma 2.1 implies our claimed upper bound for the makespan network coding gap.

Theorem 1.2. The network coding gap for makespan of any k-unicast instance is at most

O <log(k:) -log (Z d;/ min d,-)) .

Proof. Fix a multiple-unicast instance M. Let T™ be the minimum makespan for any coding protocol
for M. Let T = (C + 1) -T* - (log(k) - log(>_, d;/ min; d;)) for C' as in Lemma 2.2. Then, the
LP CONCURRENTFLOW 1((T") must have optimal value at least z* > 1/10, else by Lemma 2.2 and
our choice of T, any coding protocol has makespan at least T//O(log(k) - log(>_, d;/ min; d;)) > T*,
contradicting the definition of T™*. But then, by Lemma 2.1, there exists a routing protocol with
makespan O(T'/z*) = O(T™ - log(k) - log(>_, d;/ min; d;). The theorem follows. O

The remainder of the section is dedicated to proving Lemma 2.2. That is, proving that a low
optimal value for the LP CONCURRENTFLOW \((T") implies a lower bound on the makespan of any
coding protocol for M. To this end, we take a low-valued LP solution to the dual LP CuTnm(T)
(implied by strong LP duality) and use it to obtain an information-theoretic certificate of impossibility,
which we refer to as a moving cut. Section 2.1 introduces the framework to prove such certificates of
impossibility and Section 2.2 explains the transformation of a low-value dual LP solution to such a
moving cut. For this transformation, we prove a lemma reminiscent of Arora et al. [8, Theorem 1| for
general metrics (see Section 2.3).

2.1 Moving Cut

In this section we present our makespan lower bound certificates, which we term the moving cut.
Informally, given an underlying multiple-unicast instance, a moving cut is a sequence of nested cuts
(represented as vertex sets) each containing all of the sources, i.e., {s;}; € By C By C By C ..., and
where none of the first T sets contain any of the sinks, i.e., By N {t;}; = 0. A good mental model for
the moving cut is to consider a “wave” propagating in time from the sinks to the sources at a pace of
one cut per time step (i.e., the wave is at B; at time t).

In order to prove that all protocols must use more than T rounds to complete the unicast, we
measure the amount of input information (i.e., originating from {s;};) that can be “ahead” of B; at
time ¢; i.e., the amount of information available to V'\ By. At ¢t = 0 this amount is clearly 0, and we
are clearly done if we can prove that at ¢ = T that amount does not contain all input information.
Formalizing this idea allows us to prove the following lemma.

'Such a protocol must send d; packets along paths of length at most T between each sour-sink pair (s;,t;), and it
can send at most c. packets through each edge e during any of the T" rounds, or at most c. - T' packets overall.



Lemma 1.6 (Moving cut). Let M = (G,S) be a k-unicast instance. Suppose that after increasing
each edge e’s length from one to {. € Z>1, we have

(1) the total length increase, Y g ce(le — 1) is less than Zle d;, and
(2) any sink is at distance at least T from any source; i.e., Vi, j € [k] we have disty(s;, t;) > T.
Then any (coding) protocol for M has makespan at least T.

Proof. We will show via simulation that a protocol solving M in at most T'— 1 rounds would be able to
compress Zle d; random bits to a strictly smaller number of bits, thereby leading to a contradiction.
Our simulation proceeds as follows. We have two players, Alice and Bob, who control different subsets
of nodes. In particular, if we denote by A, = {v € V | min; dist,(s;,v) < 7} the set of nodes at
distance at most r from any source, then during any round r € {0,1,...,7 — 1} all nodes in A, are
“spectated” by Alice. By spectated we mean that Alice gets to see all of these nodes’ private inputs
and received transmissions during the first 7 rounds. Similarly, Bob, at time 7, spectates B, = V' \ A,.
Consequently, if at round r a node u € V spectated by Alice sends a packet to a node v € V', then Bob
will see the contents of that packet if and only if Bob spectates the node v at round r+ 1. That is, this
happens only if u € A, and v € B,y1 =V \ A,41. Put otherwise, Bob can receive a packet from Alice
along edge e during times r € [min; disty(s;, ), min; disty(s;, v) — 1]. Therefore, the number of rounds
transfer can happen along edge e is at most min; dist,(s;,v) — min; disty(s;,u) — 1 < ¢, — 1. Hence,
the maximum number of bits transferred from Alice to Bob via e is c.(fe — 1). Summing up over all
edges, we see that the maximum number of bits Bob can ever receive during the simulation is at most
Yoecp Celle — 1) < S | d;. Now, suppose Alice has some S-%  d; random bits. By simulating this
protocol with each source s; having (a different) d; of these bits, we find that if all sinks receive their
packet in 7" rounds, then Bob (who spectates all ¢; at time T' — 1, as min; diste(s;,t;) > T for all j)
learns all Zle d; random bits while receiving less than Zle d; bits from Alice — a contradiction. [J

2.2 From Dual Solution to Moving Cut

In the previous section we showed that high objective value for the primal LP implies an upper bound
on the routing time for the given instance. In this section we show that low objective value of the primal
LP — implying a feasible dual LP solution of low value — yields a moving cut for some sub-instance,
allowing us to relate the fastest routing protocol to the fastest coding protocol.

By definition, a low-value feasible solution to the dual LP CuT(T') assigns non-negative lengths
{: E — R such that (1) the c-weighted sum of /-lengths is small, i.e., > . pcele = O(1/T), as well as
(2) if h; is the f-length of the T-hop-bounded ¢-shortest path between s; and ¢;, then Zie[k} d;-h; > 1.

Our coding lower bound of Lemma 1.6 needs a common lower bound on all dist(s;, ;) and not a
lower bound on ), d; - dist(s;, ;). In particular, to present a moving cut for an instance induced by
some subset of sessions with indices I C [k] we need to lower bound dist(s;, ¢;) for all ¢ € I. Lemma 2.3,
proven in Appendix C using a “continuous” bucketing argument, does just this.

Lemma 2.3. Given sequences hy,..., hy,di,...,dr € R>o with Zle d; - h; > 1 there exists a non-

ko4
empty subset I C [k] with minger h; > m for agap € [1, (0] (log %)}

i€l

We next show that the sub-instance defined by source-sink pairs indexed by I as in Lemma 2.3
kg

nearly satisfies the conditions of a moving cut. Specifically, letting ogap = O (log H?Z,C:71d’> be as in

in_; d;
Lemma 2.3, we prove the following.

Lemma 2.4. Let M = (G,S) be a k-unicast instance with feasible solution {h;,¢. | i € [k],e € E}
to CUTMm(T') with objective value T'Y . cele = z. Then there exist indices I C [k] and integral edge
lengths  : E — 7>y that satisfy Y ecE ce(le—1) < z- Yicr di and disty(si,t;) > T /agap for all i € I.
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Proof. Let I C [k] be a subset of indices as guaranteed by Lemma 2.3. Define £, £ 14 | £, -T - > ier di
for all e € E and note that £, € Z>1. By definition of ¢ and Ty, cele = 2z, we get the first condition,

Zceﬁ -1) <Zce£ T Zd =z- Zd

ecE i€l i€l

We now show that dist;(s;, ;) > T'/agap for i € I. Consider any simple path p between s;~t;.
Denote by #(p) and ¢(p) the length of p with respect to £ and £, respectively. It is sufficient to show
that Z(p) > T/ogap for all such p. If p & P;(T), i.e., the hop-length of p is at least |p| > 7. Then
U(p) > |p| > T > T/agap since £, > 1 Ve € E and agap > 1. On the other hand, if p € P;(T), then by
our choice of T as in Lemma 2.3 and the definition of h;, we have that £(p) > h; > ——&—— hence

— Qgap Zzeld ’
i(p) T-) di= T " di =T/ agap. O

a
i€l gap ZZGI i€l

Finally, to obtain a moving cut we need to move from a bound on dist;(s;,#;) for all i € I to a
bound on dist;(s;,t;) for all 4,5 € I’ C I. In Lemma 2.5, a formal statement, proof and discussion
of which we defer to Section 2.3, yields precisely such a bound, showing that such I’ must contains a
large subset of indices I” C I', [I"| > [I'|/9 such that for all i,j € I” we have dist(s;, ;).

Lemmas 2.4 and 2.5 now allow us to construct, given a feasible dual solution of low value, a moving
cut for an instance induced by a subset of the sessions. This implies a lower bound on the makespan
of the induced instance — and therefore of the entire instance.

Lemma 2.2. If the optimal value of CONCURRENTFLOW z((T') is at most z* < 1/10, then the coding
makespan for M is at least T/(C - log(k) -log (>, di/d;)) for some constant C' > 0.

Proof. By Lemma 2.4, if CONCURRENTFLOW v((T") has value less than z* < 0 < 9, then there exist
positive integer edge lengths ¢ : E — Z>1 and a subset of indices I C [k] satisfying >, c. - (l,—1) <
Y icr di/9 and dist;(si, t;) > T'/agap for all i € I. By Lemma 2.5 with the graphic metric defined by 1
and each pair (s;,t;) repeated d; times, this implies the existence of a multiset of indices I" in [k] of size
[I'| >3, di/9 such that dist;(s;,t;) > T/O(logk - agap) for all 4,5 € I'. Thus, taking each pair (s;,t;)
indexed by I at least once, we find a subset of sessions I" C [k] such that 3, di > ;e di/9 and
dist;(ss, t;) > T/O(log k- agap) for all 4, j € I”. But then, by Lemma 1.6, we find that the sub-instance
induced by theses sessions has makespan at least T'/O(logk - agap), and therefore so does M. O

Remark. We note that the log k£ term in Lemma 2.2’s bound is due to the log k term in the bound of
Section 2.3. For many topologies, including genus-bounded and minor-free networks, this log k term
can be replaced by a constant (see Section 2.3), implying smaller makespan gaps for such networks.

2.3 From Pairwise to All-Pairs Distances

This section is dedicated to a discussion and proof of the following Lemma that seems potentially
useful beyond the scope of this paper.

Lemma 2.5. Let (X, dist) be a metric space and let T > 0. Given k pairs {(si, t;) }icp) of points in X
with at most n distinct points in | J,{si, t:} and pairwise distances at least dist(si,t;) > T, there exists
a subset of indices I C [k] of size |I| > & such that dist(s;, t;) > O(logk for alli,j € I. Moreover,
such a set can be computed in polynomial time.

We note that the above lemma is similar to the main Theorem of Arora et al. [8]. Our result holds
for general metrics with a factor of O(log k) in the distance loss, while their holds for £3 metrics with a
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factor of O(1/log k). The results are incomparable and both are tight. (The tightness of Lemma 2.5 can
be shown to be tight for graph metrics, for example in graph metrics of constant-degree expanders.)

To prove Lemma 2.5 we rely on padded decompositions [28]. To define these, we introduce some
section-specific notation. Let (X, dist) be a metric space. Let the (weak) diameter of a set of points
U C X be denoted by diam(U) £ max, yep dist(z,y). We say a partition P = {X;, Xa,..., X;} of
X is A-bounded if diam(X;) < A for all i. Next, for U C X and a partition P as above, we denote
by U C P the event that there exists a part X; € P containing U in its entirety; i.e., U C X;. Let
B(z, p) & {y € X | dist(z,y) < p} denote the ball of radius p > 0 around z € X.

Definition 2.6. Let (X, dist) be a metric space. We say that a distribution P over A-bounded partitions
of X is (B,A)-padded if, for some universal constant §, it holds that for every x € X and 0 <y <9,

Lr[B(z,7A) € P] < By.

In words, each part of the partition has diameter at most A and the probability of any point x in
the metric being at distance less than vA from a different part than its own part is at most 8. Such
decompositions were presented, for example, by Gupta et al. [28].

Lemma 2.7 ([28]). Any metric (X, dist) on k points admits a (5, A)-padded decomposition, for any
A > 0 and some B = O(logk). Such a decomposition can be computed in polynomial time.

We are now ready to prove Lemma 2.5.

Proof of Lemma 2.5. First note that we can focus on the metric space induced by the k distinct points.
Let P be a A-bounded 3-padded decomposition with A = T —1 and 8 = O(log k). We first note that
for all ¢ € [k], s; and t; are contained in different parts since the diameter of each part X; is at most
A =T —1 and dist(s;,t;) > T. Furthermore, letting v = %, we have that Pr[B(s;,vA) C P] > 3.
Let I’ C [k] be the subset of indices i with B(s;,7A) C P. Then we have Pr[i € I'] > 1 for all i € [k].

Flip a fair and independent head/tails coin for each part in P. Let U C X be the set of points in
parts whose coin came out heads, and V' C X be the analogous set for tails. Then for each i € I’ we have
that Pr[s; € U and t; € V] = i. Let I C I’ be the subset of indices ¢ with s; € U and t; € V, giving
PrlieI] >Prfie I'|Prlie I |iel'l=1 2 =1Viel Wealso have that dist(s;,t;) > p = 2=

Bgap
for all i,j € I, since B(s;,p) C U for all i € I C I' and {tj}jer N U = 0. Therefore, this random
process yields a subset of indices I C [k] such that dist(s;,t;) > %, of expected size at least

E[I]] > > e Prli € I] > %. As k — E[|I|] is a non-negative random variable, Markov’s inequality

implies that with constant probability k — [I| < 52 (k — E[|I]]) < %. The Lemma follows. O

Remark: The O(logk) term in Lemma 2.5’s bound is precisely the smallest possible S for which
(8, A)-padded decompositions of the metric exist. For many graphic metrics, such as those of minor-
excluded, bounded-genus, and bounded-doubling-dimension networks, padded decompositions with
smaller 5 exist [2, 28, 48]. This improves the bounds of Lemma 2.5 and thus Lemma 2.2 by (log k) /8,
implying the same improvement for our makespan coding gaps for such networks.

3 Polylogarithmic Coding Gap Instances

In this section we construct a family of multiple-unicast instances with polylogarithmic makespan
coding gap. More precisely, we construct instances where the coding gap is at least (5/ 3)?" and the
size (both the number of edges and sessions) is bounded by 92° " Here we give a bird’s eye view
of the construction and leave the details to subsequent subsections. We clarify that all big-O bounds
like f = O(g) mean there exists a universal constant ¢ > 0 s.t. f < ¢- g for all admissible values (in

particular, there is no assumption on f or g being large enough).
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We use the graph product of [13] as our main tool. Given two multiple-unicast instances I, I
(called the outer and inner instance, resp.) we create a new instance I, where the coding gap is
the product of the coding gaps of I; and Is. The product is guided by a colored bipartite graph
B = (V4,V,, E) where each edge is labeled by (x1,x2) = (edge in I, session in I3). Precisely, we
create |V7| copies of Iy, |Va| copies of I and for each edge (a,b) € E(B) with label (x1, x2) we replace
the edge x1 in the at? copy of I; with session x» in the b copy of Is.

To prove a lower bound on the coding gap, one needs to upper bound the coding makespan and
lower bound the coding makespan. The former is easy: the coding protocols nicely compose. The
latter, however, is more involved. Our main tool is Lemma 1.4, which necessitates (i) keeping track of
cut edges F along each instance I such that all source-sink pairs of I are well-separated after edges
in F are deleted, and (ii) keeping the ratio r = %, number of sessions to cut edges, high. We must
ensure that the properties are conserved in the product instance I. For (i), i.e., to disallow any short
paths from forming as an unexpected consequence of the graph product, we choose B to have high
girth. Also, we replace edges F' in the outer instances with paths rather than connecting them to a
session in the inner instance. Issue (ii) is somewhat more algebraically involved but boils down to
ensuring that the ratio of sessions to cut edges (i.e., ) in the inner instance is comparable to the size
(i.e., number of edges) of the outer instance itself. Note that makes the size of the outer instance Iy
insignificant when compared to the size of the inner instance Is.

We recursively define a family of instances by parametrizing them with a “level” ¢ > 0 and a lower
bound on the aforementioned ratio r, denoting them by I(i,r). We start for ¢ = 0 with the 5/3 instance
of Figure 1 where we can control the ratio the aforementioned ratio r by changing the number of
sessions k (at the expense of increasing the size). Subsequently, an instance on level i is defined as a
product two of level ¢ — 1 instances with appropriately chosen parameters 7. One can show that the
coding makespan for a level i instance is at most 52° and routing makespan is at least 32', hence giving
a coding gap of (5/3)2i. Furthermore, we show that the size of I(i,r) is upper bounded by r2o(21),
giving us the full result.

Finally, we note an important optimization to our construction and specify in more detail how
I(i,r) is defined. Specifically, it is defined as the product of I; = I(i — 1,3r) being the outer instance
and Iy £ I(i — 1,m1/f1) being the inner instance, where m; and f; are the number of total and cut
edges of I;. This necessitates the introduction and tracking of another parameter u = m/f to guide
the construction. We remark that this might be necessary since if one uses a looser construction of

Iy = I(i—1,m;) the end result I(i,7) would be of size 200

just shy of a polylogarithm.

" and give a coding gap of exp (%),

3.1 Gap Instances and Their Parameters

In this section we formally define the set of instance parameters we will track when combining the
instances.

A gap instance I = (G, S, F) is a multiple-unicast instance M = (G, S) over a connected graph
G, along with an associated set of cut edges F' C E(G). We only consider gap instances where the
set of terminals is disjoint, i.e., s; # s;,8; # tj,t; # t; for all i # j. Furthermore, edge capacities and
demands are one; i.e., cc = 1 Ve € E(G), and d; = 1 Y(s;,t;,d;) € S. A gap instance [ = (G, S, F) has
parameters (a,b, f, k,m,r, u) when:

e M admits a network coding protocol with makespan at most a.

e Let diste\p(+,) be the hop-distance in G after removing all the cut edges F. Then for all
terminals 4 € [k] we have that distp(si, ) > b.

e The number of cut edges is f = |F|.
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e The number of sessions is k = |S|.

e The graph G has at most m edges; i.e., |E(G)| < m.

e 7 is a lower bound on the ratio between number of sessions and cut edges; i.e., k/f > r.

e u is an upper bound on the ratio between number of total edges and cut edges; i.e., m/f < u.

We note that the parameters of a gap instance immediately imply a lower bound on the optimal
routing makespan via Lemma 1.4. Indeed, all packets transmitted in the first b — 1 rounds must pass
through F', and thus at most f-(b— 1) packets can be sent between any source and its sink in the first
b — 1 rounds, implying that under any routing protocol, most sessions have completion time at least b.

Observation 3.1. Let I be a gap instance with parameters (a,b, f,k,m,r,u) and b < r. Then the
routing makespan for (G,S) is at least b. Moreover, for any routing protocol of I, at least k- (1 — b_Tl)
sessions have completion time at least b.

As an application of the above observation, we obtain another proof of the lower bound of the
routing makespan for the family of instances of Figure 1. More generally, letting the cut edges be the
singleton F' = {(S,T)}, we obtain a family of gap instances with the following parameters.

Fact 3.2. The family of gap instances of Figure 1 have parameters (3,5,1,k,0(k?), k, 0(k?)) for k > 5.

The above family of gap instances will serve as our base gap instances in a recursive construction
which we describe in the following section.

3.2 Graph Product of Two Gap Instances

In this section we present the graph product that combines two instances to obtain one a with higher
coding gap.

Definition 3.3. Colored bipartite graphs are families of bipartite graphs B(ni,na,m, k, g). Graphs
B = (V1,Va,E) € B(ni,na,m,k,g) are bipartite graphs with |Vi| = ny (resp. |Va| = na) nodes on
the left (resp., right), each of degree m (resp., k), and these graphs have girth at least g. In addition,
edges of B are colored using two color functions, edge color x, : E(B) — [m] and session color
X2 : E(B) — [k], which satisfy the following.

o Yv € Vi, the edge colors of incident edges form a complete set {x1(e) | e > v} = [m].

o Vv € Vy, the session colors of incident edges form a complete set {xa(e) | e 2 v} = [k].
e Vv € V1, the session colors of incident edges are unique |{x2(e) | e 3 v}| = 1.

o Vv € Va, the edge colors of incident edges are unique, i.e, [{xi(e) | e > v} = 1.

The size of the colored bipartite graphs will determine the size of the derived gap instance obtained
by performing the product along a colored bipartite graph. The following gives a concrete bound on
the size and, in turn, allows us to control the growth of the gap instances obtained this way.

Lemma 3.4 ([13]). Vr,m,g > 3, there exists a colored bipartite graph B € B(ni,na, m,k,2g) with
n1,ng < (9mk)9T3.
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Performing the product along a colored bipartite graph. Having defined colored bipartite
graphs, we are now ready to define the graph product of I; and Iy along B.

For i € {1,2} let I; = (G}, S;, F;) be a gap instance with parameters (a;, b;, fi, ki, mi, ri,u;) and
let B € B(n1,n2,2(m1 — f1),ka,g) be a colored bipartite graph with girth g = 2b1by. We call I; the
outer instance and IQ the inner instance. Denote the product gap instance I, = T(Iy, I, B) by
the following procedure:

e Replace each non-cut edge e = {u,v} € E(G1)\F; with two anti-parallel arcs € = (u,v),e = (v, u)
and let £(G1) = {€1,€2,...,€m,—f)} be the set of all such arcs.

e Construct n; copies of (V(Gy), E(G1)) and ngy copies of Go. Label the i copy as ng') and Gg).

e Every cut edge e € F} and every i € [n;] replace edge e in Ggi) by a path of length as with the

same endpoints. Let fe(i) be an arbitrary edge on this replacement path.

e For every (i,j) € E(B) where i € [n1],j € [n2] with edge color x; and session color x2 do the

following. Let e_§<1) = (x,y) be the 1" arc in G( 9 and let (s,t) be the o™ terminal pair in G(])

Merge x with s and y with ¢; delete e_§<1) = (z,y) from Gg ),

e For each session in the outer instance (s;,t;,d; = 1) € S; add a new session (sgj),tl(j), 1) in ng)
for j € [n1] to the product instance.

e The cut edges F; in the product instance I consist of the the union of the following: (i)
one arbitrary (for concreteness, first one) edge from all of the as-length paths that replaced
cut edges in G1 , le., {fe | e € F1,i € [n1]}, and (ii) all cut edges in copies of Ga, i.e.,
{eW | e € Fy,i € [no]}.

We now give bounds on how the parameters change after combining two instances. First, we note
that by composing network coding protocols for I; and Is in the natural way yields a network coding
protocol whose makespan is at most the product of these protocols’ respective makespans.

Lemma 3.5. (Coding makespan) The product instance Iy admits a network coding protocol with
makespan at most ajas.

Less obviously, we show that if we choose a large enough girth g for the colored bipartite graph, we
have that the b parameter of the obtained product graph is at least the product of the corresponding
b parameters of the inner and outer instances.

Lemma 3.6 (Routing makespan). Let I, = (G4,S4,Fy) be the product instance using a colored
bipartite graph B of girth g £ 2b1by and let distG+\F+(-, -) be the hop-distance in G with all the edges
of Fy deleted. We have that distg \r, (si,t;) > min(b1bg, 2) = biby for all (si, t;,d;) € Sy

Proof. Let p be a path in G4 \ F} between some terminals s;~t; that has the smallest hop-length
among all (s;,;,d;) € Sy. We want to show that [p| > min(b1bs, §).

First, let ¢ be the path in the colored bipartite graph B that corresponds to p. There are some
technical issues with defining ¢ since merging vertices in the graph product has the consequence that
some v € V(G4) belong to multiple nodes V(B). To formally specify g, we use the following equivalent
rephrasing of the graph product that will generate an “expanded instance” G’,. Instead of “merging”
two vertices u,v as in G4, connect then with an edge e of hop-length h(e) = 0 and add e to G,
Edges from G4 have hop-length h(e) = 1 and are analogously added to G’.. The path p can be
equivalently specified as the path between s;~t; in G’ \ F.y that minimizes the distance disty(s;, ;).
Now, each vertex V(G',) belongs to exactly one vertex V(B), hence the path ¢ in B corresponding to
p is well-defined. Note that p is a closed path in G and q is a closed path in B.
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Suppose that ¢ spans a non-degenerate cycle in B. Then |p| > % > 4,
lg| > g is due to the girth of G. The first inequality |p| > % is due to the fact that when ¢ enters
a node v € Vo(B), a node representing an inner instance, the corresponding path p had to traverse
at least one inner instance edge before its exit since the set of terminals is disjoint and a path can
enter/exit inner instances only in terminals.

Suppose now that ¢ does not span a cycle in B, therefore the set of edges in ¢ span a tree 7 in B
and ¢ is simply the (rotation of the unique) Eulerian cycle of that tree. Notation-wise, let v € Vi(B)
be the node in the colored bipartite graph B that contains the critical terminals s; and ¢; and suppose
that 7 is rooted in v. If the depth of 7 is 1 (i.e., consists only of v € Vi(B) and direct children
wi, ..., w € Vo(B)), then p must correspond to a s;~»t; walk in v, where each (non-cut) edge traversal
is achieved by a non-cut walk in the inner instance w; between a set of inner terminals. Note that
every s;~»t; non-cut walk has hop-length at least b; and each non-cut walk in the inner instance has
hop-length at least bs, for a cumulative by - bs.

Finally, suppose that 7 has depth more than 1, therefore there exists two v,w € V(T) and
v,w € Vi(B). Since T is traversed via an Eulerian cycle, the path p passes through two terminals of
(sj,tj,-) € Sy. Let p’ be the natural part of p going from s;~-t;, e.g., obtained by clipping the path
corresponding to the subtree of ¢ in S. Furthermore, let p” be the part of the p connecting v and w
and is disjoint from p”. From the last paragraph we know that |p”| > 1 since it passes through at least
one u € Vo(B). Also, by minimality of s;~+t; we have that disty(s;,t;) > distp(s;,t;). Now we have a
contradiction since disty (s, ;) = |p| > [p/| + [p"] > 1 + distp(sj, ¢5). O

where the last inequality

Combining Lemmas 3.5 and 3.6 together with some simple calculations (deferred to Appendix D),
we find that the product instance is a gap instance with the following parameters.

Lemma 3.7. Fori € {1,2} let I; = (G, S;, F;) be a gap instance with parameters (a;, bi, fi, ki, mq, i, u;)
with % > 2 and a; > 2; let B € B(ni,n2,2(my — f1), ka,2b1b2) be a colored bipartite graph. Then

I = T(G1,Go,B) is a gap instance with parameters ay £ qia9, by £ Py, f+ L nifi + nofo,
N N N 1 N 1+az/2 mq

ky —2n1k:1, my = agnyifi +namo, T4 = 1 Tou/a’ Ut = Y275 20 Moreover, 7. > 2 and

a4 > 2.

3.3 Iterating the Graph Product

Having bounded the parameters obtained by combining two gap instances, we are now ready to define
a recursive family of gap instances from which we obtain our polylogarithmic makespan network coding

gap.
Definition 3.8. We recursively define a collection of gap instances (I(i,7))i>0,>5, and denote its
parameters by (air,bir, firs Kir, Mir,Tiy, wiy). For the base case, we let 1(0,7) be the gap instance
of Fact 3.2 with parameters (3,5,1,7,0(r?),r,0(r?)). Fori+1 > 0 we define I(i + 1,7) = T(I1, I5).
Here, Iy = I(i,3r) and Iy £ I(i,u;3,), with parameters (a1, ...,u1) and (az,...,us), respectively.

In other words, I; is defined such that r; = 3r4 and I such that ro = u;. In Appendix D we study
the growth of the parameters of our gap instance families. Two parameters that are easy to bound for
this construction are the following.

i

Observation 3.9. For any ¢ > 0 and r > 5, we have a;, = 32" and biy = 52",

A less immediate bound, whose proof is also deferred to Appendix D, is the following bound on
the number of edges of the gap instances..

Lemma 3.10. We have that log m; , < 20(2) logr for alli > 0,7 > 5.
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3.4 Lower Bounding the Coding Gap

We are now ready to prove this section’s main result — a polylog(k) makespan coding gap.

Theorem 1.3. There exists an absolute constant ¢ > 0 and an infinite family of k-unicast instances
whose makespan coding gap is at least Q(log® k).

Proof. For each i > 0 and r £ 521, consider I; , as defined above. By Observation 3.9 this gap instance
has coding makespan at most a; , = 32" Moreover, also by Observation 3.9, this instance has b; , = 52i,
and so by Observation 3.1 its routing makespan is at least 52'. Hence the makespan coding gap of I; ,
is at least (5/3)%". It remains to bound this gap in terms of k £ k;,.

As the terminals of I;, are disjoint, we have that k is upper bounded by the number of nodes of
I; », which is in turn upper bounded by m;,, as I;, is connected and not acyclic. That is, k < m; .

But by Lemma 3.10, we have that logm,, < 20(2) -logr = 20(2) -0(2%) < 20(2") < ZCI'T, for some
universal constant ¢’ > 0. Therefore, stated in terms of k, the makespan coding gap is at least

log5/3
o

(5/3)2i _ 22i log5/3 _ (2c’2i) > (log mi,r)c > log® k,

1
where ¢ £ Ogj/g

> 0 is a universal constant, as claimed. ]

4 Coding Gaps for Other Functions of Completion Times

In this section we extend our coding gap results to other time complexity measures besides the
makespan. For our upper bounds, we show that our coding gaps for {,, minimization of the com-
pletion times (makespan) implies similar bounds for a wide variety of functions, including all weighted
¢, norms; proving in a sense that f, is the “hardest” norm to bound. The following lemma underlies
this connection.

Lemma 4.1. Let o be an upper bound on the coding gap for completion times’ s, norm (makespan).
Then, if multiple-unicast instance M admits a coding protocol with completion times (11, Ts, ..., T),
there exists a routing protocol for M with completion times placewise at most (4o Ty, 4a-To, . .., 4a-Ty).

Proof. Let M be a multiple-unicast instance. Let (73,73, ...,Tx) be the vector of completion times
of some coding protocol. Without loss of generality, assume 77 < 15 < --- < Tj. Next, for any j € Z,
denote by M, the sub-instance of M induced by the unicasts with completion time 7; € [27, 2741,
Then, there exists a network coding protocol for each M; with makespan at most 271 Consequently,
there exists a routing protocol for M; with makespan at most o - 2J+1 Scheduling these protocols in
parallel, in order of increasing j = 0,1,2, ..., we find that a unicast with completion time T} € [27,2/F1)
in the optimal coding protocol has completion time in the obtained routing protocol which is at most

Za-2j/+1§2a-2j+1§4o¢-Ti. O
i'<j

Note that unlike our routing protocols for makespan minimization of Theorem 1.2, the proof here
is non-constructive, as it assumes (approximate) knowledge of the completion times of each unicast
in the optimal coding protocol. Nonetheless, this proof guarantees the existence of a protocol, which
suffices for our needs. In particular, applying Lemma 4.1 to the coding protocol minimizing a given
weighted £, norm, we immediately obtain the following.

Corollary 4.2. Let a be an upper bound on the coding gap for completion times’ {oo norm (makespan).
Then the coding gap for any weighted £, norm of the completion times is at most 4c.
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Plugging in our coding gap upper bound of Theorem 1.2, we therefore obtain a generalization of
Theorem 1.2 to any weighted ¢, norm, as well as average completion time (which corresponds to £;).

Theorem 4.3. The network coding gap for any weighted £, norms of completion times is at most

o) <log(k) -log (Z d;/ min di>> .

Note that similar bounds hold even more generally. In particular, for any sub-homogeneous function
of degree d (i.e., f(c- %) < c?- f(&), Lemma 4.1 implies a coding gap of at most (4a)?, where « is the
best upper bound on the coding gap for makespan minimization.

Lower bounds. As with makespan minimization, a polylogarithmic dependence in the problem
parameters as in Theorem 4.3, as we prove below. Crucially, we rely on our makespan coding gap’s
examples displaying the property that under coding nearly all unicast sessions’ completion time is at
least polylogarithmically larger than under the best coding protocol.

Theorem 4.4. There exists an absolute constant ¢ > 0 and an infinite family of k-unicast instances
whose y-coding gap is at least Q(log®k).

Proof. We follow the proof of Theorem 1.3 and consider I; ,, this time setting r = (52)2 = 52", This
does not change the parameters a;, = 32" and biy = 52", nor the bound a £ (5/3)?" > log®k for some
absolute constant ¢ > 0. This instance has a coding protocol with completion times (a;,,...,ai,),
and so this coding protocol’s completion times’ £, value is a; . On the other hand, by Observation 3.1,
at least k- (1 — bif) > (1 —o0(1)) - k pairs have routing completion time at least b; ,, where o(1) tends
to 0 as i — oo. Consequently, the £,-value of any routing protocol’s completion times is at least

(1 —o0(1)) - bj,. Since b;,/a;, = o > log®k, we obtain the required coding gap. O

5 Conclusions and Open Questions

In this paper we study completion-time coding gaps; i.e., the ratio for a given multiple-unicast instance,
of the fastest routing protocol’s completion time to the fastest coding protocol’s completion time. We
provide a strong characterization of these gaps in the worst case, showing they can be polylogarithmic
in the problem parameters, but no greater.

Better bounds (for networks of interest). We show the coding gap is upper bounded by

O <log(k:) -log (Z d;/ min d,-)) .

The necessity of the log k& term is essentially argued by our lower bounds of Section 3, which, among
other things, exhibit a polylogarithmic lower bound for the structural result of Section 2.2. On the
other hand, we do not know of any compelling reason the log (>, d;/ min; d;) term is necessary. If
removed, it would yield the same coding gap upper bound for completion time and its special case of
throughput maximization. Furthermore, we note that the log k term in our proof stems from trade-
offs of some metric decomposition results. Specifically, logk is precisely the padding parameter of
a padded metric decomposition. The long line of work on padded decomposition implies that this
term can be replaced by a constant, yielding an O (log ), d;/ min; d;) completion-time coding gap
for bounded-minor-free graphs [1, 22, 43|, bounded doubling-dimension graphs Gupta et al. [28] and
genus-bounded graphs (e.g., planar graphs) [48]. Whether lower completion-time coding gaps can be
shown for other graphs of interest, either via better padded decompositions or directly, seems a natural
direction to explore.
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Implications to other fields. As discussed in Section 1 and Section 1.4, the conjectured non-
existence of throughput coding gaps for multiple unicast has been used to prove (conditional) lower
bounds in many seemingly-unrelated problems. It would be interesting to see whether our upper and
lower bounds on the coding gap for various functions of multiple unicasts’ completion time would prove
useful in proving unconditional lower bounds for other models of computation.

An example of a model where our results imply unconditional lower bounds is the popular CON-
GEST model from distributed computing [60]. Minimizing the makespan in our communication model
exactly corresponds to minimizing the time complexity of distributed algorithms in CONGEST. Fur-
thermore, multiple unicast is an exceedingly important problem in CONGEST, since it is the basis of
most of the known approaches for impossibility results [19, 21, 61] and is also used as a subroutine
in distributed algorithms (e.g., [26]). An immediate consequence of our work is that one can lift a
super-polylogarithmic lower bound (impossibility) for routing protocols into an unconditional super-
polylogarithmic lower bound for all protocols. For instance, this can be used to strengthen the lower
bounds of Haeupler et al. [32] for multiple unicasts in restricted topologies.

Extensions to Multiple Multicast and Implications. A prominent future direction is to attain
similar polylogarithmic coding gap results for multiple multicasts. This would lead to a better un-
derstanding of an important subroutine used in distributed optimization, called distributed partwise
aggregation, which is essentially equivalent to multiple multicasts. This subroutine is used in tasks
such as computing the minimum spanning tree [25, 31|, min-cut [25] and shortest paths [33]. In partic-
ular, generalizing our makespan coding gaps to multiple multicast would show that a technique called
low-congestion shortcuts |25] is instance-optimal for partwise aggregation [73].

Acknowledgements The authors would like to thank Mohsen Ghaffari for suggesting an improve-
ment to Theorem 1.2 which resulted in a coding gap independent of n, Anupam Gupta for pointing
out a simplification of Lemma 2.5 and the Lemma’s similarity to [8, Theorem 1|, and Paritosh Garg
for bringing [13] to our attention.

Appendix

A Completion Time vs. Throughput

In this section we argue why network coding upper bounds for makespan imply coding gaps for
throughput maximization. We first introduce the standard definitions of the throughput maximization
model [3, 13]. The differences between the throughput and completion-time model (see Section 1.1)
are highlighted in blue.

Throughput maximization model. A multiple-unicast instance M = (G,S) is defined over a
communication network, represented by an undirected graph G = (V, E, ¢) with capacity c. € Z>1
for each edge e. The k £ |S| sessions of M are denoted by S = {(s;,t;,d;)}¥_;. The (maximum)
throughput of M is the supremum r > 0 such that there exists a sufficiently large b > 0 where the
following problem has a correct protocol. Each session consists of source node s;, which wants to
transmit a packet to its sink ¢;, consisting of [r - b - d;| sub-packets (e.g., an element of an underlying
field). A protocol for a multiple-unicast instance is conducted over finitely-many synchronous time
steps. Initially, each source s; knows its packet, consisting of d; sub-packets. At any time step, the
protocol instructs each node v to send a different packet along each of its edges e. The packet contents
are computed with some predetermined function of packets received in prior rounds by v or originating
at v. The total number of sub-packets sent through an edge e over the duration of the entire protocol
is at most b-c.. We differentiate the maximum throughput achievable by coding and routing protocols
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as 7% and r%, respectively. The throughput coding gap is the largest ratio r¢ /r® that can be achieved

for any instance.

Relating completion times and throughput. The throughput maximization intuitively cor-
responds to the makespan minimization of an instance with asymptotically-large packet sizes. More
formally, we modify a multiple unicast instance M by increasing its demands by a factor of w while
keeping the capacities the same. This causes the makespan to increase. We argue that the slope of
the increase with respect to w is exactly the throughput of M.

Definition A.1. Given a multiple-unicast instance M we define C¢(w) and CT(w) to be the makespan
of the fastest coding and routing protocols when the all demands are multiplied by a common factor w.

Observation A.2. Let M be a multiple-unicast instance. The mazximum throughput r corresponding
to M is equal to sup,,_,., w/C(w) for both coding and routing. Formally, r¢ = sup,,_,. w/C%(w)
and vt = sup,,_, o w/CE(w).

Proof. We drop the R/C superscripts since the proof holds for both without modification. Let L =
SUDy, 00 W/C(w). We first argue that L > r, i.e., we can convert a throughput protocol to a makespan-
bounded one. For simplicity, we will assume that b =1 (b from the throughput definition); when this
is not the case one needs to appropriately re-scale the sub-packets for the completion-time protocol.

Let T be a protocol of throughput at least 7 — o(1) and let T" be the total number of rounds 7 uses
(note that in the throughput setting 7' has no impact on the quality of 7). Let w € Z be a sufficiently
large number. We use pipelining by scheduling v’ £ w/(r — o(1)) independent copies of T the first
one starting at time 1, second at time 2, ..., last one at time w’. Each copy operates on a separate set
of sub-packets, with the pipelined protocol being able to transmit (r —o(1))-d;-w’ = d;-w sub-packets
across the network (in line with Definition A.1) in at most w’ + T rounds. Note that 7 sends at most
ce sub-packets over an edge e over its entire execution, hence the pipelined version of 7 never sends
more than ¢, sub-packets during any one round. In other words, we have that C'(w) < w'+T. Letting
w — oo (which implies w’ — 00), we have that

w w'

= C(w) = w’—i—T:(r_O(l))w’—i-T

=r—o(l).

We now argue the converse r > L, i.e., we can convert a completion-time protocol into a throughput
protocol with the appropriate rate. The result essentially follows by definition. By assumption, for
some sufficiently large w > 0 there exists a protocol with makespan at most C(w) < w/(L—o0(1)). The
protocol sends a total of at most C'(w)c, sub-packets over an edge e. Furthermore, by construction
of C'(w), each source-sink pair successfully transmits w - d; sub-packets. By noting that w - d; =
(L — 0(1))C(w)d;, we conclude that by using b £ C(w) we get a protocol with rate L — o(1). O

Corollary A.3. Suppose that the makespan coding gap is at most « (over all instances). Then the
throughput coding gap is at most a.

Proof. Consider some multiple unicast instance M, with coding throughput r. By Observation A.2,
for sufficiently large w there is a coding protocol P satisfying w/C(w) > r — o(1), i.e., C%(w) <
w/(r —o(1)). By the makespan coding gap assumption, there exists a routing protocol P2 implying
that C®(w) < a - w/(r — o(1)). Furthermore, following the proof of Observation A.2, protocol P,
implies a routing throughput of r’ for the original instance M, satisfying

¥ > w/0%(w) > (r — o(1))/a = r/a —o(1).

In other words, 7/’ > o+ o(1) and we are done. O
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B Network Coding Model for Completion Time

In this section we formalize the k-session unicast communication problem and the notion of completion
time for it. We note that our model is not new—e.g., it is equivalent to the models of Chekuri et al.
[16], Wang and Chen [68] that study delay in communication networks.

The input to a k-session unicast problem (G, S) consists of a graph G = (V, E, ¢), where edges have
capacities ¢ : E — R>g, and a set of k sessions S = {(s;, t;, di)}le. Each triplet (s;,t;,d;) corresponds
to the source s; € V, sink ¢; € V and the demand d; € R>( of session 7. The graph G can be either
directed or undirected, where in the latter case we model an undirected edge e as two directed edges
&,'¢ where both of them have equal capacity c(€) = c(€) = c.”

Each source s; is privy to an input message m; € M; generated by an arbitrary stochastic source
with entropy at least d;, hence the entropy of the random variable m; is d;. The sources corresponding
to different sessions are independent.

A T-round network coding computation consists of a set of |E| x T coding functions {fz, : M —
I'}ecE 1<r<7, where I is some arbitrary alphabet and A = [1; M;. These functions satisfy the following
properties:

e The entropy of any coding function fz, never exceeds the edge capacity c(€), i.e., H(fz,) < c(€)
forallee £, 1 <r<T.

e For each directed edge € = (u,v) € E and round 1 < r < T the function fgz, is computable
from communication history received strictly before round r at node w. In other words, let the
communication history Yy, be defined as {m; | i € [k],s; = u} U {f(z4)» | ¥ =wand r" <r},
then H(f(u,v),r‘YU,T) = 0.

e The completion times of a network coding computation are (T4,7T5,...,T)) € Z@O when the
following holds. For every session i, the message m; of the session (s;, t;,d;) must be computable
from the sink ¢;’s history after 7; rounds are executed, i.e., H(m;|Y;, 1,41) = 0.

Remark: The above “bare-bones” formalization is sufficient for all of our results to hold. However,
such a formalization can be unwieldy since a complete instance description would also need to specify
a stochastic distribution corresponding to each source s;. A standard way of avoiding this issue is to
simply assume the sources generate a uniformly random binary string of length d; (forcing d; to be
an integer). Without going into too much detail, we mention this assumption can be made without
loss of generality if we allow for (1) an arbitrarily small decoding error € > 0, (2) slightly perturbing
the edge capacities ¢, and source entropies d; by ¢, and (3) scaling-up both ¢.’s and d;’s by a common
constant b > 0; this approach is standard in the literature (e.g., see [3, 13]).

C Deferred Proofs of Section 2

In this section we provide proofs deferred from Section 2, starting with the proof of Lemma 2.1, restated
here for ease of reference.

Lemma 2.1. Let z < 1,{fi(p) | i € [k],p € Pi(T)} be a feasible solution for CONCURRENTEFLOW p¢ (7).
Then there exists an integral routing protocol with makespan O(T/z).

To prove the above, we rely on the celebrated O(congestion + dilation) packet scheduling theorem
of Leighton et al. [49]. In particular, we use the solution to CONCURRENTFLOW A((T') to obtain a

2Papers such as Adler et al. [3] often impose an alternative condition ¢(€) + c(€) = c(e), which would make our proofs
slightly heavier on notation. However, their convention can only impact the results up to a factor of 2, which we typically
ignore in this paper.
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collection of short paths with bounded congestion (i.e., bounded maximum number of paths any given
edge belongs to). We then route along these paths in time proportional to these paths’ maximum
length and congestion. The issue is that the feasible LP solution provides fractional paths, hence
requiring us to round the LP solution. Independent rounding would result in paths of length T" and
congestion T'/z + O(logn) (with high probability). To avoid this additive dependence on n, we rely
on the following theorem of Srinivasan and Teo [67].

Lemma C.1 (|67], Theorem 2.4, paraphrased). Let M be a multiple-unicast instance and for each
i € [k] let D; be a distribution over s;~t; paths of hop-length at most L. Suppose that the product
distribution | [ D; has expected congestion for each edge at most L. Then there exists a sample w € [[ D;
(i.e., a choice of a from D; between each s;~t;) with (mazimum) congestion O(L).

Using the above lemma to round the LP and using Leighton et al. [49] path routing to route along
the obtained paths yields Lemma 2.1.

Proof of Lemma 2.1. Consider an optimal solution to this CONCURRENTFLOW (7). Clearly, picking
for each pair (s;,t;) some d; paths in P;(T) with each p € P;(T) picked with probability f;(p) -
di/ > pep,r) Ji(P) < fi(p)/7 yields an expected congestion at most T'- ce/z for each edge e. That is,
thinking of G as a multigraph with ¢, copies per edge, each such parallel edge has congestion T'/z. On
the other hand, each such path has length at most 7' < T'/z (since z < 1). Therefore, by Lemma C.1,
there exist choices of paths for each pair of (maximum) congestion and hop-bound (i.e., dilation) at
most O(T'/z). But then, using O(congestion + dilation) routing [49] this implies an integral routing
protocol with makespan O(T'/z), as claimed. O

Here we prove Lemma 2.3, restated here for ease of reference.

Lemma 2.3. Given sequences hy, ..., hg,dy,...,d; € R>o with Zle d; - h; > 1 there exists a non-
k )
empty subset I C [k] with min;cr h; > m for agap € {17 @) (log H%Iiiildczl)}
2 iel ™ =1 %

Proof. Suppose (without loss of generality) that hy > hy > ... h; and assume for the sake of contradic-
tion that none of the sets [1], [2], ..., [k] satisfy the condition. In other words, if we let d([j]) = g:l dj,
then h; < é : ﬁ for all ¢ € [k]. Multiplying both sides by d; and summing them up, we get that
1< Zle dih; < éZle % Reordering terms, this implies Zle % > .

Define f(z) as 1/dy on [0,dy); 1/(dy + d2) on [di,d1 + d2); ...; 1/d([i]) on [d([i — 1]),d([i])) for
i € [k]. Now we have

d([k]) dy ds ds dy,
/0 f(x)_d71+d1+d2+d1+d2+d3+.“+d([/€]).

However, since f(z) < 1/x

d([k]) d1 d([k])
/ f@) = [ f@)de+ / f(z) da
0

0 d1
d([k]) 1 d(1k
Sl—l—/ fdaﬁzl—i-lnm.
dq xT dl
Hence by setting o £ 1+ In %’f]) we reach a contradiction and finish the proof. O
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D Deferred Proofs of Section 3

Here we provide the deferred proofs of lemmas of Section 3, restated below for ease of reference.

Lemma 3.5. (Coding makespan) The product instance I admits a network coding protocol with
makespan at most aias.

Proof. Suppose there exists a network coding protocol with makespan ¢; < a; that solves (G, S;) for
i € {1,2}. Functionally, each round in the outer instance (G1,S1) consists of transmitting c. bits of
data from u to v for all arcs (u,v) where {u,v} € E(Gp). This is achieved by running the full ¢o
rounds of the inner instance protocol over all copies of the instances which pushes d; bits from s; to ¢;
for all (s;,t;,d;) and all copies of the inner instance. The reason why such inner protocol pushes the
information across each arc (u,v) is because u is merged with some s;, v is merged with ¢;, and with
d; = c. for some (s;,t;,d;) € S and some copy of the inner instance. In conclusion, by running t;
outer rounds, each consisting of ¢5 inner rounds, we get a t1to < ajag round protocol for the product
instance. O

Lemma 3.7. Fori € {1,2} let I; = (G;,S;, F}) be a gap instance with parameters (a;, by, fi, ki, mi, i, u;)
with % > 2 and a; > 2; let B € B(ni,n2,2(my — f1), ke,2b1b2) be a colored bipartite graph. Then

I, 2 T(Gy,G2,B) is a gap instance with parameters ay = ajaz, by = biba, fy 2 nifi + nafo,
A A A 1 A 14+az/2 my

ky —2n1k:1, mqy = agnyifi + name, T4 = 1 Tou/r’ Ut = Y275 (2ur) Moreover, i > 2 and

a4 Z .

Proof of Lemma 3.7. First, the set of terminals in the product instance I, is disjoint, as distinct
terminals of copies of the outer instance I; have their edges associated with distinct terminals source-
sink pairs of the inner instance I>. Consequently, no two terminals of the outer instance are associated
with the same node of the same copy of an inner instance. The capacities and demands of I, are one
by definition. We now turn to bounding the gap instance’s parameters.

Parameters a4 and b4 are directly argued by Lemma 3.5 and Lemma 3.6. Furthermore, fy, ki, m4
are obtained by direct counting, as follows.

Recall that the cut edges of the outer instance get replaced with a path of length as. Since there
are nj copies of outer instances, each having f; cut edges, this contributes asn; fi edges to my. The
non-cut edges of the outer instance get deleted and serve as a merging directive, hence they do not
contribute to m.. Finally, each edge of the inner instance gets copied into I, contributing noms as
there are ns copies of the inner instance.

For r we need to show it is a lower bound on k. /f. We note that |[E(B)| = ny-2(mi— f1) = naks
and proceed by direct calculation:

k.;,. n1k1 kl 1 kl 1
oy iMoo oMo . - M 2
f+ mifit+tnafo  fi 1+Z—f%_f1 1+2(m272_fl)%
>k1 1 kq 1 1
Z T 2 o T =TT = T4
fior4Zml = fio14 20 1424

For u; we need to show it is an upper bound on my/fy. Note that ko < mg since the set of
terminals is disjoint and the graph is connected.

k f
my _ N2ma + asni fi _m2 1 +a2%ﬂ% < uy- 1 +a22(m12*f1)m712
[+ nafa +nifi fo 14mi T 1+72(mlfif1)%

k: 1
_ 1+a272(m1/§c1,1)mf2 < 1+a2.%.1 B
= uze 1 f1 ko S uze 1+lQ = Ut
T 3mi o 2w

23



Here the last inequality relies on mi/f1 > 2 and on ko < mg, which follows from the set of terminals
being disjoint and the graph G2 being connected.
For the final technical conditions, note that a4 > 2 is clear from a4y = ajas > 4 > 2. Finally,

my

7. > 2 follows from the following.

my _ agnyfi +ngmo nifi me_ mafs ., < nifi na f2 ) 90

= = Q e =
[+ n1 f1 +nafo 2n1f1 +naofo  fonifi+nafo nifi +nafs  nifi+nefo

D.1 Upper Bounding m,,

For readability, we sometimes write u(Z,r) instead of w;, and similarly for m(i,r). Also, we note that
the technical conditions a;, > 2 and % > 2, which clearly hold for ¢ = 0, hold for all ¢ > 0, due to
Lemma 3.7. Finally, we note that by Lemma 3.7, since r9 = w1 and ag > 1, we have that uy > ug and
so for all gap instances in the family we have w;; > u;_14(i-13,) = 5

Lemma D.1. The parameter of I(i,r) for any i > 0,r > 5 satisfy the following.

- ki'r
(Z) fz:r Z T’

(i) Uip1, < 3% Ui (i3r) and
(iii) logm(i +1,7) < O(5*"") - log(misr - Miu(izn).
Proof. Claim (i) follows from Lemma 3.7, as follows.

Kit1,r 1 1 1
L =ria. - >3r-———F—— =3r- - =T
= Tit+1,r 1,31 1+ 2Ui,3r/ri,u(i,3r) = 1+ 2Uz’,3r/ui,3r 3

fixir

We now prove claims (ii) and (iii). Fix 4,7 and define I; £ I(i,3r) (with parameters (a1,...,u1))
= uy l+a2/2 < ugy l+a2/2 S
1+7‘2/(2u1) 1+1/2

uz - ag (Lemma 3.7), with a2 = a;4z,3,) = 32" and uy = u(i,u(i,3r)) from the iterated tensoring

and Iy £ I(i,u;,) (with parameters (ag,...,uz2)). We have u(i + 1,7)

process. Therefore, we conclude that u(i + 1,r) < 3% “ U u(i3r), s claimed.

We now prove Claim (iii). The corresponding colored bipartite graph B € B(ni,na,2(m; —
f1), k2,2b1b2) used to produce the product I; , has max(ni,ng) < (2(mq — fl)kzg)o(ble), by Lemma 3.4.
Therefore, as ko < ma, we have that max(ni,n2) < (m -mg)o(ble). This implies the following recur-
rence for m; ;.

Mit1,r = aani fi + namg < ag max(ng, ng)mima.
Taking out logs, we obtain the desired bound.

log m;y1, <logas + logmax(ni,ng) + log mims

= 0(2") + O(b1b) log(m1ms) + log(mims)
= 0(2") + 0(5%") log(mimo)
= 0(5%) - log(mi 3, - M 0 (3,3r))- O

Given Lemma D.1 we obtain the bound on u;, in terms of ¢ and 7.

Lemma D.2. We have that logu;, < 20(2) logr for alli>0,r > 5.
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Proof. By Lemma D.1, we have the recursion u(i + 1,7) < 32" - u(4,u(i,3r)) with initial condition
u(0,7) = O(r?), by Fact 3.2. Taking out logs, we obtain logu(i 4+ 1,7) < O(2%) + log u(i, u(i, 3r)) and
logu(0,7) = O(logr). We prove via induction that logu(i,r) < %(02)21 -log r for some sufficiently large
¢ > 0. In the base case logu(0,7) = O(logr) < 1(c?)logr = clogr. For the inductive step we have:

logu(i + 1,7) < O(2%) 4 logu(i, u(i, 3r))
R
<02+ 2(02)2 log u(i, 3r)
1 221 2
log 3
(e ) ¢ logdr
1 ’
()" log 3r

<02 +

<02 +

c2

—(c )21+1 logr,

IN
QR

where the last inequality holds for ¢ > 1 and r > 5 and a sufficiently large ¢ > 0. O

Plugging in the bound of Lemma D.2 and Lemma D.1 we can prove inductively the upper bound
on the number of edges of I; , in terms of ¢ and r given by Lemma 3.10, restated here.

Lemma 3.10. We have that logm; , < 20(2") logr for alli>0,r > 5.

Proof. By Lemma D.1, we have the recursion logm(i + 1,7) < O(52i+1) - log(mi 30 - My (5 3r)) With
initial condition logm(0,7) = O(logr), by Fact 3.2. We prove via induction that log m; , < 2 log r for
a sufficiently large universal constant ¢ > 0. In the base case log mg, < O(logr) < clogr = s log .
For the inductive step, using Lemma D.2 to bound log u(i, 3r), we have:

logmit1, < O( ) - (log m; 3r + 108 M 4(;,3r))
(5 - (
( (021 log3r + ¢ 2'90(2") log 3r)

= 0(521“) 202 )log 3r
21

 log 3r + ¢* log u(s, 37"))

log 7,

where the last inequality holds for ¢ > 1 and r > 5 and a sufficiently large ¢ > 0. O
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