
A Faster Distributed Radio Broadcast Primitive
(Extended Abstract)

Bernhard Haeupler
Carnegie Mellon University
haeupler@cs.cmu.edu

David Wajc
Carnegie Mellon University

wajc@cs.cmu.edu

ABSTRACT
We present a faster distributed broadcasting primitive for
the classical radio network model.

The most basic distributed radio network broadcasting
primitive - called Decay - dates back to a PODC’87 re-
sult of Bar-Yehuda, Goldreich, and Itai. In any radio net-
work with some informed source nodes, running Decay for
O(d logn+ log2 n) rounds informs all nodes at most d hops
away from a source with high probability. Since 1987 this
primitive has been the most important building block for
implementing many other functionalities in radio networks.
The only improvements to this decades-old algorithm are
slight variations due to [Czumaj, Rytter; FOCS’03] and
[Kowalski and Pelc, PODC’03] which achieve the same func-
tionality in O(d log n

d
+ log2 n) rounds. To obtain a speedup

from this, d and thus also the network diameter need to be
near linear, i.e., larger than n1−ε.

Our new distributed primitive spreads messages for d hops
in O(d logn log logn

log d
+ logO(1) n) rounds with high probability.

This improves over Decay for any super-polylogarithmic d =
logω(1) n and achieves near-optimal O(d log log n) running
time for d = nε. This also makes progress on an open ques-
tion of Peleg.

CCS Concepts
•Theory of computation → Distributed algorithms;
Graph algorithms analysis;

Keywords
radio networks; broadcast; d-hop broadcast problem; decay

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC’16, July 25–28, 2016, Chicago, IL, USA.
c© 2016 ACM. ISBN 978-1-4503-3964-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2933057.2933121

1. INTRODUCTION
This paper presents a faster distributed broadcasting rou-

tine for the classical radio network setting.

The Radio Network Setting.
In the classical radio network setting [3] a multi-hop wire-

less network is modeled by an undirected graph G. Com-
munication operates in synchronous rounds in which each
node can either listen or broadcast some message to all of
its neighbors, typically consisting of O(logn) bits. This mes-
sage can be received by all listening neighboring nodes, un-
less multiple transmissions interfere at a receiver. This is
modeled by stipulating that a listening node will receive a
message sent by a neighboring node if and only if no other
neighbor sends at the same time.

The radio network model thus captures both the inherent
broadcast nature of wireless transmissions as well as the ad-
ditional intricacies caused by half-duplex media access and
interference. The question of how to coordinate and schedule
transmissions in radio networks to most efficiently dissem-
inate information is an interesting and important one. Of
particular interest are distributed solutions in which nodes
do not need to know the network topology. The 2007 sur-
vey of Peleg, “Time-Efficient Broadcasting in Radio Net-
works”[16], gives an excellent summary and overview of the
intense study of this question over the last decades.

The fundamental broadcast problem we study in this pa-
per is the following.

Definition 1.1 (d-hop broadcast). The d-hop broadcast prob-
lem consists of a network G = (V,E) and a subset of nodes
S ⊆ V which are informed about a message M . The goal is
to transmit M to all nodes in the d-hop neighborhood of S.

Decay: A Basic Broadcasting Routine.
The first and most basic distributed broadcasting primi-

tive for the radio network setting is a simple algorithm of
Bar-Yehuda, Goldreich and Itai published in 1987 called De-
cay [2]. In a network with some informed nodes, Decay
uses a simple exponential backoff strategy to neighbors of in-
formed nodes. In particular, in round i = 0, 1, . . . , log2 n−1
every informed node broadcasts independently with proba-
bility 2−i. A simple two-line proof shows that after logn
such rounds any node neighboring an informed node will be
informed with constant probability. Repeating the above
O(d+ logn) times gives the following guarantee:

Lemma 1.1 (Decay [2]). Decay solves the d-hop broadcast
problem in the radio network model in O(d logn + log2 n)
rounds with high probability.

1

http://dx.doi.org/10.1145/2933057.2933121

Table 1: d-hop broadcast problem
Algorithm Rounds Reference

Decay O(d logn+ log2 n) [2]

Modified Decay O(d log n
d

+ log2 n) [5, 11]

Divide and Chatter O(d logn log logn
log d

+ logO(1) n) This work

Table 2: One-to-all broadcast problem
Bound Notes Reference

Ω(D + log2 n) holds even for offline schedule computation [1]

Ω(D log n
D

) assuming conditional wake-up [13]

O(D logn+ log2 n) [2]

O(D log n
D

+ log2 n) [5, 11]

O(D + log2 n) assuming known topology [12, 10]

O(D + log6 n) assuming collision detection [10]

O(D logn log logn
logD

+ logO(1) n) This work

Over the last 29 years, work on multi-hop radio network
settings has extensively used this basic primitive. Many al-
gorithms implementing higher functionalities, for example,
leader election [2, 9] repeatedly run Decay as the most ba-
sic communication subroutine for various values of d. One
important property of the Decay algorithm is its distributed
nature. In particular, nodes do not need to know anything
about the topology to be able to execute it.

Related Work: Upper and Lower Bounds.
Subsequent work by Alon et al.[1] showed that Decay’s

additive polylogarithmic overhead of Θ(log2 n) is necessary
and thus optimal even if d is constant and the network topol-
ogy is known and nodes know which other nodes are already
informed. On the positive side, both [5] and [11] showed in
2003 that one can achieve a small improvement over the
d logn term. In particular, by choosing slightly different
broadcast probabilities a running time of O(d log n

d
+log2 n)

rounds suffices to solve the d-hop broadcast problem. For
d ≤ n1−ε this results in the same O(d logn) running time
as Decay but for near-linear diameters and values of d =
n1−ω(1) this improves over Decay all the way to a linear O(d)
running time for linear diameter networks and d = Θ(n). A
lower bound by Kushilevitz and Mansour [13] for the wake-
up problem shows this to be tight if one makes the extra
assumption that uninformed nodes are not allowed to com-
municate (until they are informed). Without this assump-
tion only the trivial Ω(d) lower bound exists and there is
nothing that precludes an O(d + log2 n) distributed algo-
rithm for the d-hop broadcast problem. On the other hand,
except for near-linear d, no improvement on the classical
Decay procedure has been put forward over the last three
decades. In fact, no better solution than Decay is known
for the d-hop broadcast problem, even if one just asks about
the existence of a centralized schedule which can utilize the
full knowledge of the topology.

Our Result: A Faster d-hop Broadcasting Routine.
In this work we give a new distributed broadcasting rou-

tine which solves the d-hop broadcast problem faster than
Decay:

Theorem 1.2. There is a randomized algorithm which solves
the d-hop broadcast problem in the radio network model in
O(d · logn log logn

log d
) + logO(1) n rounds with high probability.

This improves over Decay for any d which is only super-
polylogarithmic, i.e., d = logω(1) n. It also achieves a near
optimal O(d log log n) running time for any d ≥ nε. As the
Decay protocol, our algorithm is a randomized distributed
routine succeeding with high probability and operating with
logn bit messages and without collision detection. That is,
a node which is broadcast to by several neighbors receives
no message, nor does it receive indication of having been
broadcast to by multiple neighbors.

The one-to-all broadcast problem.
Beyond providing a faster solution for the (distributed)

d-hop broadcast problem, which can be used to replace the
Decay type protocols [2, 5, 11] as a communication primitive,
our result also makes progress on an open question asked in
the survey of Peleg [16]. Peleg asked about the round com-
plexity of informing all nodes of a network about a message
which initially starts in a single node. This can be seen as
a simple special case of the d-hop broadcast problem where
d is set to equal the diameter D of the network and where
a single source node is initially informed. A long line of
work [7, 6, 8, 12, 4] resulted in a tight bound of Θ(D+log2 n)
for the complexity of this problem (and efficient determinis-
tic algorithms for constructing these schedules) for the case
that the topology is known. A similar O(D+ log6 n) bound
was proven more recently [10] for distributed algorithms in
which nodes can detect collisions. If one disallows collision
detection and adds the requirement that nodes need to be
woken up first (by receiving a message) before they can take
part in the communications, then the Θ(D log n

D
+ log2 n)

bound of the modified Decay protocol is tight. This line
of research leaves the standard distributed setting without
collision detection and without wake-up requirement as the
only as-of-yet unresolved setting. Our solution is the first
to show that the O(D log n

D
+ log2 n) complexity of Decay

is not tight for this setting and can be improved. The exact
complexity however remains open. Tables 1 and 2 outline
our results and prior work.

2

Our Approach and Technical Contributions.
Our algorithm differs significantly from Decay.
From the wake-up lower bound of [13] we know nodes

cannot efficiently coordinate if they only start acting after
receiving a message. On the other hand, the results of [10]
and [4] suggest that significantly better schedules can be
constructed around a node if it knows a bit more about its
neighborhood.

Our high-level idea is thus very simple. We first com-
pute a suitable clustering of the network which can be done
locally and thus in sub-diameter many rounds (more gener-
ally, O(d) time). Within each cluster we then compute the
fast schedules of [10], which can be done in sub-diameter
time if cluster diameters are small. The final schedule is
then a fully-oblivious schedule which simply interleaves the
fast intra-cluster schedules with the Decay routine to allow
for crossing between clusters. Low-diameter decompositions
are particularly attractive clusterings in this context because
they guarantee that: as their name suggest, the clusters they
output have small diameter, and each shortest path does not
pass through too many clusters, leading to a negligible over-
head for the Decay cost of crossing between clusters.

While this approach sounds nice and easy there are several
technical difficulties in making it work:

1) The low-diameter decomposition algorithm needs to
work in the radio network model, which is much more restric-
tive than the usual CONGEST setting. The low-diameter
decomposition furthermore needs to produce connected clus-
ters with strong diameter guarantees.

2) When using and constructing intra-cluster schedules in
all clusters simultaneously, neighboring transmissions from
other clusters can cause interference. One thus needs to
obtain clusters with few neighboring clusters and somehow
coordinate between clusters to avoid these collisions.

3) For low-diameter decompositions which cut an edge
with probability β, the cluster diameter can be as high as
logn
β

. As we demonstrate in Section 2.2 this leads to an over-

all logarithmic slowdown and thus an O(d logn+ logO(1) n)
running time - crushing the attempt to break this barrier.
This logarithmic term in the cluster diameters is further-
more known to be necessary in certain settings.

Nonetheless, we overcome these difficulties! Our
main technical contributions are:
•We adapt a new low-diameter decomposition of Miller et

al. [15] to the radio network model, providing good bounds
on the number of neighboring clusters which can interfere
with transmissions from an entry point to the cluster center
and back. Random backoff together with these properties
allow us to solve problems 1 and 2 above.
• We present a refined analysis of distance properties of

this low-diameter decomposition. Most importantly, for de-
compositions cutting edges with probability β, we prove a
bound on the expected distance of a node v to its cluster
center of roughly log k

β
, where k is the ratio of the size of

balls of radius logn
β

and 1
β

around v. This is the first such

guarantee for a low-diameter decomposition with strong di-
ameter. This bound then implies that for a randomly-chosen
scale a better clustering can be obtained on average, lead-
ing to logn log logn

log d
type bounds reflected in our result. We

expect these properties of this low-width decomposition to
be of further independent interest.

2. THE Divide and Chatter FRAMEWORK
In this section we outline our algorithm’s framework, start-

ing with the main radio network broadcast subroutines it
relies on. We then give a simplified variant of our algorithm
and discuss some of its shortcomings. Finally, we present our
algorithm. As our obtained bounds improve prior bounds
only when d = logω(1) n, we assume throughout our analysis
that d is some sufficiently large logΩ(1) n.

2.1 Radio Network Primitives
In addition to Decay, we rely on two other algorithms as

primitives for our d-hop broadcast algorithm. We will rely
on these algorithms in a black-box manner. The following
two lemmas state our assumptions of these subroutines.

For our first primitive, we rely on the algorithm of [10],

which on a network of diameter D and n, in O(D · logO(1) n)
rounds, computes efficient, collision-free schedules for future
transmissions. The algorithm of [10] assumes collision detec-
tion for its preprocessing stage, but we can simulate collision
detection at an extra multiplicative O(log2 n) blowup, by
having each node which transmits during this stage trans-
mit the same message for O(log2 n) Decay rounds. A node
transmit to by several neighbors will detect such a collision
with high probability, since with high probability it will re-
ceive Ω(logn) messages, and each of these transmitted mes-
sage is equally likely to originate at any of its transmitting
neighbors. This observation allows us to use the algorithm
of [10] in a black box manner, given below.

Lemma 2.1 (Broadcast with Preprocessing, [10]). A
network of diameter D and n nodes can be preprocessed in
O(D · logO(1) n) rounds, yielding a schedule which allows for
one-to-all broadcast of k messages in O(D+k logn+log6 n)
rounds with high probability. This schedule satisfies the fol-
lowing properties:

• For some prescribed node r, the schedule transmits
messages to and from nodes at distance ` from r in
O(`+ log6 n) rounds w.h.p.

• The schedule is periodic of period O(logn): it can be
thought of as restarting every O(logn) steps.

A further primitive we will need is low-diameter graph de-
compositions. In Section 3.1, we show how to implement the
algorithm of Miller et al. [15] in a distributed setting, giving
us the following lemma. In Section 3.2 we will prove some
additional useful properties of this partitioning subroutine
which will prove crucial for our algorithm and might be of
independent interest.

Lemma 2.2. For any 0 < β ≤ 1, a graph on n nodes can be
partitioned into clusters each with strong diameter O

(
logn
β

)
with high probability, and every edge cut by this partition
with probability O(β). This algorithm can be implemented

in the radio network setting in O
(

log3 n
β

)
rounds.

2.2 The Algorithm - General Approach
Given the above subroutines, we can outline a simplified

variant of our algorithm which solves the d-hop broadcast
problem in O(d · logn + logO(1) n) rounds in expectation.
This variant is presented below. For simplicity, we describe
the algorithm as though d attempting to inform nodes at
distance Θ(d). Doubling d, running the algorithm for d = 2i

with i = 1, 2, . . . , log2 n, yields the same guarantees as a
function of d for all possible d simultaneously.

3

Our Algorithm – Take One.
(1) Compute the partition implied by Lemma 2.2
with parameter β = 1

logΩ(1) n
.

(2) In each part of the decomposition, in tandem,
run the preprocessing stage implied by Lemma 2.1.
(3) Alternate between steps of the precomputed
schedules of step (2) and Decay.

An important point to note is the possibility of different
clusters’ schedules interfering with each other in steps (2)
and (3). We ignore this issue for now and address it in
Section 4.

Proposition 2.3. Assuming no collision between different
clusters’ broadcasts, the above algorithm solves the d-hop
broadcast problem in O(d · logn + logO(1) n) rounds in ex-
pectation (though not with high probability).

Proof. First, as each part has diameter O(logn
β

) with high

probability, by Lemmas 2.1 and 2.2 the preprocessing of
steps (1) and (2) can be done in logO(1) n rounds. Now, con-
sider a path p of length d from an informed source to some
other node. By Lemma 2.2 the partitioning subroutine cuts
an expected O(dβ) of the edges of this path. In addition

each of the parts of the partition has diameter O(logn
β

) with

high probability. Thus, the algorithm of Lemma 2.1 allows
us to transmit a message within each part of the partition in
O(logn

β
+log6 n) rounds. Upon reaching the farthest node of

p in some part, within O(log2 n) Decay steps, this message
will proceed to the next part which p traverses. Overall, the
message will reach t after O((dβ + 2) · (logn

β
+ log6 n)) =

O(d · logn+ logO(1) n) rounds in expectation.

As stated above the obtained bounds are weaker (and the
algorithm more involved) than Decay. In the next section
we present our full algorithm, together with intuition driving
its design.

2.3 The Divide and Chatter Algorithm
In order to improve upon the bound given in the previ-

ous section, for our final algorithm we will effectively rely
on a new useful property of partition(β). Informally, this
property states that picking β ∈ [d0.001, d0.01] at random,
the expected distance of a node to its “cluster center” is
O(logn

β
· log logn

log d
). In each cluster, we take the cluster center

to be the prescribed node r which the algorithm of Lemma
2.1 allows transmission to and from in time proportional to
the distance to r. Consequently, following the above anal-
ysis of our algorithm’s simplified variant, we would expect
that the time to transmit a message to the end of a path of
length d be

O

(
(dβ + 2) ·

(
logn

β
· log log n

log d
+ logO(1) n

))

= O

(
d · logn log logn

log d
+ logO(1) n

)
Of course, we cannot simply näıvely multiply the expected
number of cut edges by the distance to the cluster center,
and we are sweeping a lot of technical detail under the rug
in this description, including the aforementioned issue of
potential collisions, but this high-level idea will guide us in
the design and analysis of our algorithm.

The above approach entails a few technical difficulties –
most prominently how to decide in a centralized manner
on a/several random choice(s) of β, as reaching consensus
among the nodes of the graph seems tantamount to the
all to one broadcast problem. The solution we suggest to
this problem involves a two-tiered approach – we first par-
tition the graph into coarse-grained clusters within which
the multi-message properties of the algorithm of Lemma 2.1
allow us to transmit the random choices of β for later, finer-
grained partitions, with these messages transmitted at a log-
arithmic rate which will prove to be a lower-order term for
the overall algorithm. Our final algorithm is given below.

Algorithm Divide and Chatter.
(1) Compute a coarse-grained clustering by running
partition(β) with β = d−0.5.
(2) Compute a schedule in each cluster of step (1).
(3) Using these schedules, transmit within each clus-
ter d0.3 randomly-chosen values I = {ij | j ∈ [d0.3]}
with (2 logn)i ∈ [d0.001, d0.01] for all i ∈ I.
(4) Obtain d0.3 finer clusterings with β = (2 logn)−i

for each i ∈ I within the coarse clusterings.
(5) For each of the d0.3 clusters in each finer-grained
clustering of step (4), compute schedules.
(6) Repeat Θ(d0.9) times - use schedules of fine clus-
terings of the different i in round-robin order, run-
ning for O(d0.1 logn log logn

logn
) rounds with each i.

Our main result, which we prove in Section 5, is this.

Theorem 2.4. Running Divide and Chatter on an n-node
radio network for O(d · logn log logn

log d
+logO(1) n) rounds solves

the d-hop broadcast problem with high probability.

A corollary of Lemmas 2.1 and 2.2 is that steps (1)-(5) can
be implemented in O(d) rounds. (We elaborate on this in
Section 4). Given the running time of step (6), the running
time follows. The remainder of the paper will be dedicated
to providing implementations of steps (1)-(6) overcoming
collisions and allowing this algorithm to succeed with high
probability. In Section 3 we discuss our radio network im-
plementation of the low-diameter graph decomposition sub-
routine and prove some useful properties its output satisfies.
In Section 4 we discuss the issue of possible collisions and
how to overcome them. Finally, in Section 5 we prove our
main result.

3. PARTITIONING THE GRAPH
In [15] Miller et al. gave a parallel algorithm for partition-

ing a graph’s node set, such that for a chosen β each edge
is cut (has its endpoints in distinct parts) with probabil-

ity at most β and each cluster has strong diameter O(logn
β

)

with high probability. This algorithm picks for each node v
a random shift value δv distributed exponentially with pa-
rameter β, and every node u belongs to a cluster Cv of a
node v (which we term the cluster center of the cluster Cv)
which minimizes the shifted distance to u. That is, u be-
longs to Cv for v = arg minv{d(u, v)−δv}. This is algorithm
partition(β), implied by Lemma 2.2 and presented below.
An equivalent way to think of partition(β) is as follows:
each node v starts growing a cluster at “time”−δv (one hop
per step), and every node joins the first cluster to reach it.
The algorithm as stated is sequential, but can be readily
parallelized, as we discuss in the next subsection.

4

Algorithm partition(β) [[15]]
For every node v, pick a value δv ∼ Exp(β). Assign
every node u to the cluster of the node v minimizing
d(u, v)− δv.

3.1 Radio Network Model Implementation
In order to parallelize the above algorithm, Miller et al. [15]

presented an equivalent algorithm, wherein each node v is
assigned a starting time maxu δu−δv, followed by ball grow-
ing around nodes unclustered at their start time. However,
this implementation requires reaching consensus among the
nodes regarding the maximum shift value, which we cannot
afford in our model. Nonetheless, as the maximum possible
shift value is bounded by maxu δu ≤ 2 logn

β
with high prob-

ability, the following is an implementation of partition(β)
in the radio network model, as we shall see in Lemma 3.1.

Algorithm partition(β)
(radio network implementation).
For every node v, pick δv ∼ Exp(β). Let v’s start

time be startv ← 2 logn
β
− bδvc. For 2 logn

β
epochs of

length O(log2 n) each, do the following: Upon start
of epoch number t, for every node v not yet in any
cluster with starting time startv = t, assign v to
its own cluster, with v its cluster center. During an
epoch, all nodes not in any cluster at epoch start, lis-
ten. All nodes in a cluster at epoch start broadcast-
ing their cluster center name using algorithm Decay.
Any listening node receiving a cluster center name
joins the first such cluster center’s cluster.

Lemma 3.1. The above radio network implementation of
partition(β) outputs a partition of the nodes, with every

cluster having strong diameter O
(

logn
β

)
with high probability.

It terminates in O
(

log3 n
β

)
rounds.

Proof. First, as Decay solves the 1-hop broadcast problem
in O(log2 n) steps with high probability, any node neigh-
boring a clustered node at the beginning of an epoch will
join a cluster during this epoch with high probability and
so clusters are connected and have diameter at most 2 logn

β
.

Next, as all δu are distributed exponentially with parame-
ter β, the probability of any δu being greater than 2 logn

β

is exp
(
− 2 logn

β
·
)

= 1
n2 , and so with high probability

2 logn
β

≥ maxu δu.1 Consequently, with high probability

every node either joins a cluster before its start time or be-
comes its own cluster center, as its start time lies in the range
[0, 2 logn

β
]. Finally, the running time is immediate from the

algorithm’s description.

The sequential implementation of partition(β) has every
cluster C grow by one hop per round after C’s inception. Our
radio network implementation exhibits the same behavior,
in that every cluster grows by one hop per epoch, as every
epoch relies on Decay to solve 1-hop, and thus succeeds with
high probability. Throughout our analysis, we condition on
this high probability event occurring.

1This is precisely the reason clusters output by the sequen-
tial version of partition(β) have small diameter.

In the following section we prove that our radio network
implementation of partition(β) inherits the useful prop-
erties of its sequential and parallel counterparts stated in
Lemma 2.2. Moreover, we prove several additional useful
properties of this algorithm which will prove important in
obtaining our main result.

3.2 Partitioning the Graph - Analysis
In this section we state and prove multiple properties of

partition(β) useful in the analysis of Divide and Chatter.
We start with a definition which will lead our analysis.

Definition 3.1. For a given node v denote by Ni = Ni(v) =
B(v, (2 logn)i) the set of nodes at distance (2 logn)i from v,

and by ki(v) =
|Ni+1|−|Ni|
|Ni|

the ratio of number of nodes at

distance in the range ((2 logn)i, (2 logn)i+1] to the number
of nodes at distance (2 logn)i or less from v.

The expected cost of our protocol will depend on ki(v).
We start by showing these ki(v) are small on average.

Lemma 3.2. If we pick an i ∈ [s, t] uniformly at random for

t− s = Θ(loglogn d), then E[log ki(v)] = O
(

logn·log logn
log d

)
.

Proof. As |Ni+1| ≥ |Ni| for all i ∈ [s, t] by definition and
|N1| ≥ 1 and |Nt+1| ≤ n we have

t∏
i=s

ki(v) =

t∏
i=s

|Ni+1| − |Ni|
|Ni|

≤
t∏
i=s

|Ni+1|
|Ni|

≤ |Nt+1|
|N1|

≤ n

Taking out logs we obtain
∑t
i=s log ki(v) ≤ logn. So, if we

denote by δ , t− s+ 1, then as δ = Θ(log d
log logn

), we have

E[log ki(v)] =
1

δ
·

t∑
i=s

log ki(v) = O

(
logn · log logn

log d

)
The range of i considered in Lemma 3.2 will prove useful

later, as we will require (2 logn)i ∈ [da, db] for a, b = Θ(1).
The following simple observation will allow us to show

that rounding the δv doesn’t change the probability space
by much compared to the version of algorithm partition(β)
in which the δv are not rounded down.

Observation 3.3. For any pair of distances d(u, v) and
d(u,w) and shift values δv, δw, we have

Pr[d(u, v)− bδvc − (d(u,w)− bδwc) ≤ d]

≤ Pr[d(u, v)− δv − (d(u,w)− δw) ≤ d+ 1]

Next, we bound the probability of a node to be another
node’s cluster center, which will prove crucial in bounding
the expected distance of a node to its cluster center.

Lemma 3.4. Let β = (2 logn)−i, i ≥ 0. Then, for any two
nodes u and v at distance d = d(u, v) > 1

β
, the probability of

u being v’s cluster center after running partition(β) is at

most exp(−dβ+2)
|Ni|

.

Proof. For u to be v’s cluster center, we must have in partic-
ular that u’s cluster reached Ni before the start time of all
nodes in Ni; i.e., u’s start time must be at least d− 1

β
smaller

than the start time of all nodes w ∈ Ni, and so its shift value
δu must be greater than the shift values of all nodes w ∈ Ni
by at least d − 1

β
− 1. (The minus one term is due to the

rounding of the shift values, as discussed in Observation 3.3.)

5

That is, if we denote by ∆ = maxw∈Ni δw the maximum shift
value of any node in Ni, we find that the probability of u

being v’s cluster center is at most Pr
[
δu ≥ ∆ + d− 1

β
− 1
]
.

But as d− 1
β
− 1 ≥ 0, this probability is equal to

Pr

[
δu ≥ ∆ + d− 1

β
− 1

∣∣∣∣ δu ≥ ∆

]
· Pr [δu ≥ ∆]

By memorylessness of the exponential distribution we have

Pr

[
δu ≥ ∆ + d− 1

β
− 1

∣∣∣∣ δu ≥ ∆

]
= Pr

[
δu ≥ d−

1

β
− 1

]
≤ exp(−dβ + 2)

On the other hand, as the random shifts are i.i.d we have
that Pr [δu ≥ ∆] = Pr [δu ≥ maxw∈Ni δw] = 1

|Ni|+1
≤ 1
|Ni|

.

Combining both bounds, we find that the probability of u

being v’s cluster center is at most exp(−dβ+2)
|Ni|

The following corollary, while insufficient for our needs,
hints at the usefulness of the random choice of β = (2 logn)−i,
given our prior bound on the expectation of log ki(v).

Corollary 3.5. Denote by CC(v) the cluster center of node
v and by DCC(v) = d(v, CC(v)) its distance to v. Then, if
we run partition(β) with β = (2 logn)−i,

E[DCC(v)] = O

(
log ki(v) + 1

β

)
Proof. By definition, E[DCC(v)] =

∑
u d(u, v)·Pr[u = CC(v)].

To show that
∑
u d(u, v) · Pr[u = CC(v)] = O

(log ki(v)+1
β

)
,

we consider three distance ranges. First, the nodes at dis-

tance at most d(u, v) ≤ log ki(v)+1
β

from v clearly contribute

at most log ki(v)+1
β

to this expectation. Next, we consider

nodes at distance greater than 2 logn
β

from v. For a node u

at distance d(u, v) ≥ 2 logn
β

from v to be v’s cluster center

requires in particular that bδuc ≥ bδvc + d(u, v) ≥ 2 logn
β

.

But as Pr[maxu δu ≥ 2 logn
β
− 1] = O(1

n
), we find the contri-

bution of all nodes at distance at least 2 logn
β

from v to this

expectation is at most O(n · 1
n

) = O(1).
Finally, we direct our attention to nodes u at distance

between log ki(v)+1
β

and 2 logn
β

from v. By Ni’s definition,

there are at most |Ni+1| − |Ni| such nodes. By Lemma 3.4,

for any d ∈ [log ki(v)+1
β

, 2 logn
β

] the probability of a given

node at distance d from v being v’s cluster center is at most
exp(−dβ+2)
|Ni|

, and so u’s contribution to E[DCC(v)] is at most

d · exp(−dβ+2)
|Ni|

. As this expression is monotone decreasing in

d, we can upper bound it by assuming all nodes at distance

d ∈ [log ki(v)+1
β

, 2 logn
β

] from v are at distance precisely d′ =
log ki(v)+1

β
from v, and so the total contribution of such nodes

to this expectation is at most
(
|Ni+1|−|Ni|

)
·d′ · exp(−d′β+2)

|Ni|
,

which is precisely

=
log ki(v) + 1

β
· ki(v) · e2

ki(v) + 1

= O

(
log ki(v) + 1

β

)
Summing the above three contributions to the expectation,
the lemma follows.

As we shall see in Corollary 3.7, the probability of an
edge to be cut by partition(β) is at most O(β). So, for
an edge e = (u, v), if we denote by 1e an indicator random
variable for the event that the edge e is cut and denote by
DCC(v) the distance of v to its cluster center, given the

above bound E[DCC(v)] = O
(log ki(v)+1

β

)
, we might expect

E[1e ·DCC(v)] ≤ O(log ki(v)+1). As we shall see in Lemma
3.11, this is indeed the case. As our algorithm will cost
1(u,v) · (DCC(u) + DCC(v)) per edge (u, v) along a path
from an informed node to an uninformed node (plus a global
additive O(d) term), this will imply our main result. But
first, we proceed to prove our main technical lemma, which
implies an equivalent of Lemma 2.2 for our radio network
implementation of partition(β), as well as several other
useful properties of partition(β) which we will rely on.

3.2.1 Key Lemma and Corollaries
The following lemma generalizes Lemma 4.4 in [15] for

partition(β). Observation 3.3 implies the same asymptotic
properties hold for our partitioning with the random shifts
rounded down. The lemma is implied by the proof of Lemma
2.2 in [14], though its statement is strictly stronger. For
completeness we present a proof below.

Lemma 3.6. Let d1, d2, . . . , dn be n real values, and let δi be
i.i.d exponential random variables with parameter β. For all
t ∈ [n] denote by D(t) the t-th smallest value in the multiset

{di − δi | i ∈ [n]}. (e.g., D(1) is the smallest such value).
Then, for all k ≥ 1,

Pr[D(k) −D(1) ≤ d] ≤ (1− exp(−d · β))k−1

The above holds even if we condition on the index set I ⊆ [n]
that defines the smallest k values of {di − δi} and index ik
that defines the k-th smallest value. I.e., {di − δi | i ∈ I} =

{D(j) | j ∈ [k]} and dik − δik = D(k).

Proof. For simplicity, suppose I = [k] and D(k) = dk − δk
(for j 6= k we make no assumption regarding which i ∈ I

satisfies D(j) = di − δi). Consider some i ∈ [k − 1]. By

definition of D(k) we have D(k) ≥ di − δi. Put otherwise,
Pr[δi ≥ di −D(k)] = 1. By memorylessness of the exponen-
tial we thus have

Pr[δi ≤ d+ di −D(k)] = Pr[δi ≤ d+ di −D(k) | δi ≥ di −D(k)]

≤ Pr[δi ≤ d]

= 1− exp(−dβ)

Where the inequality is strict only if di − D(k) is negative.
Either way, we have Pr[δi ≤ d+ di −D(k)] ≤ 1− exp(−dβ).
Now, by independence of the random variables δi we have

Pr[D(k) −D(1) ≤ d] = Pr[

k−1∧
i=1

δi ≤ d+ di −D(k)]

=

k−1∏
i=1

Pr[δi ≤ d+ di −D(k)]

≤ (1− exp(−dβ))k−1

Lemma 3.6 together with Observation 3.3 implies many
useful properties of algorithm partition(β), given by the
following corollaries. In the proofs of these corollaries the
distances to some prescribed node plus 2 logn

β
will play the

roles of the di in Lemma 3.6’s statement.

6

Corollary 3.7. The probability of a fixed edge (u, v) being
cut by partition(β) is at most O(β).

Proof. For the edge (u, v) to be cut, u and v must belong to
different clusters. This implies that the two smallest shifted
and rounded distances from v are at most one apart. But by
Lemma 3.6 and Observation 3.3 this happens with probabil-
ity at most Pr[D(2) −D(1) ≤ 2] ≤ 1− exp(−2β) ≤ 2β.

The following useful property of partition(β), proved to
hold for the algorithm’s sequential and parallel implementa-
tion in [14], follows from Lemma 3.6.

Corollary 3.8. After running partition(β) the probability
of a fixed node u having nodes from t distinct clusters at
distance d or less from u is at most (1−exp(−(2d+1)·β))t−1.

Proof. Let w be u’s cluster center. Let v be some node at
distance d(u, v) ≤ d from u, belonging to a different cluster

whose cluster center is w′. Denote by d−δ(v, w) , 2 logn
β

+

d(v, w)− bδwc. Then d−δ(v, w
′) ≤ d−δ(v, w). Alternatingly

applying triangle inequality and d(u, v) ≤ d, we have

d−δ(u,w
′) ≤ d(u, v) + d−δ(v, w

′)

≤ d+ d−δ(v, w)

≤ d+ d(u, v) + d−δ(u,w)

≤ 2d+ d−δ(u,w)

So, if u is at distance at most d from t different clusters, the
t smallest values among d−δ(u,w) = 2 logn

β
+ d(u,w)− bδwc

differ by at most 2d from each other, so by Observation 3.3
the non-rounded shifted distances differ by at most 2d + 1.
Plugging these values into Lemma 3.6 yields the claimed
bound.

The following is a useful special case of the above corollary,
given that we always run partition(β) with β = d−Θ(1).

Corollary 3.9. For β = d−Θ(1), with high probability, every
node neighbors O(logn

log d
) clusters.

Lemma 3.10. Let d1, d2, . . . , dn be n real values, and let
δi be i.i.d exponential random variables with parameter β.
For all t ∈ [n] denote by D(t) the t-th smallest value in the
multiset {di−δi | i ∈ [n]}. Furthermore, for any d, let Ad be

the event that D(1) = di − δi for some i with di = d. Then,

Pr[
(
D(2) −D(1) = O(1)

)
∧Ad] = O(β) · Pr[Ad]

Proof. Condition on the pair of indices i1, i2 ∈ [n] such that

D(1) = di1 − δi1 , D(2) = di2 − δi2 and di1 = d. By Lemma
3.6, taking total expectation over all possible i1 with di1 = d,

we obtain Pr[D(2) −D(1) = O(1) | Ad] = O(β).

The following lemma is key to our approach’s effectiveness.

Lemma 3.11. Let v be a node. For a run of partition(β)
with β = (2 logn)−i, let 1v be an indicator random variable
for the event that the lowest two values of d(u, v)−bδuc differ
by some O(1), and let DCC(v) be the distance of v to its
cluster center. Then, E[1v ·DCC(v)] = O(1 + log ki(v)).

Proof. For any integer d, let Bd be the event that v’s dis-
tance to its cluster center is DCC(v) = d, and let E be the
event that 1v = 1. Then, by definition

E[1v ·DCC(v)] =
∑
d

d · Pr[E ∧Bd]

For E to hold, the two smallest (non-rounded) shifted dis-
tances d(u, v)− δu must differ by O(1), by Observation 3.3.
On the other hand, for v’s distance to cluster center to be d
requires the smallest value d(u, v) − bδuc to be determined
by a node u at distance d(u, v) = d. So, by Lemma 3.11 we
have Pr[E ∧Bd] = O(β) ·Pr[Bd]. Using this bound, we find

E[1v ·DCC(v)] =
∑
d

d · Pr[E ∧Bd]

=
∑
d

d ·O(β) · Pr[Bd]

= O(β) · E[DCC(v)]

which, by Corollary 3.5 is O(log ki(v) + 1).

In particular, by Lemma 3.2, we have the following.

Corollary 3.12. Let 1v and DCC(v) be as in Lemma 3.11.
Then if β = (2 logn)−i, with i chosen uniformly in [s, t] with

t−s = Θ(loglogn d), then E[1v ·DCC(v)] = O(logn·log logn
log d

).

As we transmit messages to and from the cluster center
within clusters using Lemma 2.1’s schedules and transmit
across clusters using Decay in O(log2 n) rounds (and spend
at most O(logn) rounds until starting to use the cluster’s
schedule, by Lemma 2.1) the expected cost of informing a
node at the end of a path p starting at an informed node is∑
v∈p E[1v · (DCC(v) + log2 n)], which together with Corol-

lary 3.12 yields the following.

Lemma 3.13. Let p be a path from an informed node to
some node t. Assuming no collisions, t is informed after an
expected O(|p| · logn·log logn

log d
+ logO(1) n) rounds of step (6).

The above approach as presented does not address the
issue of potential collisions (indeed, Lemma 3.13 states as
much explicitly) and therefore needs to be refined. In the
next section we show how to obtain the same asymptotic
behavior, while addressing potential collisions.

4. OVERCOMING COLLISIONS
In this section we show how to address potential collisions.

The potential collisions can be divided into three kinds.

(1) Collisions during preprocessing – precomputing cluster-
ings and schedules and transmitting I.

(2) Collisions when broadcasting using fine-grained clusters’
schedules, due to other fine-grained clusters from differ-
ent coarse clusters.

(3) Collisions when broadcasting using fine-grained clusters’
schedules, due to other fine-grained clusters from the
same coarse cluster.

In Sections 4.1, 4.2 and 4.3 we show how to deal with
collisions of types 1, 2 and 3, respectively. For the first
type of collisions we show that at a multiplicative polylog-
arithmic cost these collisions can be sidestepped. As the
cost of the preprocessing steps will be O(d/ logO(1) n), this
blowup will prove inconsequential. For the latter two kinds
of collisions, this approach will prove too costly, as these col-
lisions occur during the step whose running time dominates
the algorithm’s running time. Instead, we will consider a
partition of every path p of length |p| ∈ [d/2, d] from an
informed node to an uninformed node t into disjoint sub-
paths of length d0.1. By Lemma 3.13, the expected time

7

to inform the last node of any such sub-path after the first
node of this sub-path is informed (assuming no collisions)

is O(d0.1 · logn log logn
logn

), so the expected time to inform the

last node of p is O(d · logn log logn
logn

). In Sections 4.2 and 4.3

we show how to overcome collisions while guaranteeing the
same expectation for the time to inform a node at the end
of p.

An important tool we will rely on is correlated randomness
within clusters. It may seem surprising that this could be
achievable, but as we shall see, it is readily obtained by
extending algorithm partition(β).

Lemma 4.1. For any b, at an O
(

b
logn

)
multiplicative cost

to partition(β)’s running time, all nodes of each cluster
can agree on b bits of randomness with high probability.

Proof. The extra b bits can be transmitted by replacing ev-
ery step of partition(β) by O

(
b

logn

)
steps, in each step

broadcasting logn bits, originating at the cluster center.

This implies Step (3) of our algorithm, in which we trans-
mit d0.3 values, blows up the coarse-grained clustering’s run-
ning time by a factor of O(d0.3).

4.1 Collisions During Precomputation
Lemma 2.1’s and 2.2’s respective algorithms’ preprocess-

ing take O(D · logO(1) n) rounds for a clustering of maximum
diameter D. By our choices of β for the clusterings and
Lemma 3.1, the coarse-grained clustering has maximum di-
ameter

√
d logn and the d0.3 fine-grained clusterings have

maximum diameter d0.01 logn. For the coarse-grained clus-
ters, together with the blowup for step (3) mentioned above,
this clustering’s preprocessing takes d0.8 logn rounds. The
preprocessing stages for the d0.3 fine-grained clusterings take
O(d0.31 logO(1)) rounds. Both bounds are O(d/ logO(1) n), so
we can afford to blow up these algorithms’ running time by
a polylogarithmic factor in order to overcome potential col-
lisions. As the next lemma asserts, this can be done.

Lemma 4.2. Both the algorithms of Lemmas 2.1 and 2.2
can be implemented to succeed with high probability despite
potential collisions, at a multiplicative cost of logO(1) n to
their preprocessing stages’ running times.

Proof. Collisions while running partition(β) are addressed
in the proof of Lemma 3.1. As for the Algorithm of Lemma
2.1, we replace every step of the algorithm of Lemma 2.1 by
O(log2 n)-round meta-steps. In every constituent step of a
meta-step, in any cluster C, with probability 1

logn
, all nodes

of the cluster C that broadcast in the original algorithm, do
indeed broadcast. This is done by reusing O(log2 n) random
bits per cluster in round-robin order. (By Lemma 4.1, we
may assume each cluster has O(log2 n) bits corresponding to
outcomes of such biased coin flips, by blowing up the run-
ning time of partition(β) by a further O(logn) factor.) By
Corollary 3.9, with high probability each node v neighbors at
most O(logn

log d
) = O(logn) different clusters. Consequently,

the probability of a node v receiving a message it receives
in the algorithm of Lemma 2.1 is Ω(1/ logn) and so with
high probability this node will receive this message Ω(logn)
times, and in particular will receive it at least once, in the
corresponding meta-step. Taking union bound over all nodes
and steps of the algorithm, we find that with high probabil-
ity this collision-overcoming strategy simulates the original
algorithm despite potential collisions between clusters.

4.2 Collisions Between Coarse Clusters
The following definition will prove constructive in address-

ing collisions of type 2.

Definition 4.1. We say a node is bad if it has two different
coarse-grained clusters within distance d0.01 · logn of it. We
say a path is bad if one of its nodes is bad.

Consider a path p′ of length d0.1. By Corollary 3.8 and
union bound, the probability of p′ being bad is at most∑
v∈p′ Pr[v bad] = O(d0.1 · d0.01 · logn · d−0.5) = O(d−0.3).

So, by linearity of expectation, the expected number of bad
length-d0.1 sub-paths of p in any partition of p into length-

d0.1 sub-paths is O
(
d0.9

d0.3

)
= O(d0.6). Unfortunately, this ex-

pectation cannot be ascribed to the sum of independent ran-
dom variables, so we cannot directly apply Chernoff bounds
to obtain high concentration. Nonetheless, a more delicate
analysis will yield the desired concentration, by writing the
number of bad sub-paths as the sum of random variables
which are themselves sums of independent random variables
with high probability.

Lemma 4.3. For any partition of a path p of total length
|p| ∈ [d/2, d] into length-d0.1 sub-paths p1, p2, . . . , pd0.9/|p|,

the number of bad pi is O
(
d0.6

)
with high probability.

Proof. By the above discussion Pr[pi bad] = O(d−0.3). Since
all random shift values used to create the coarse-grained
clustering by partition(β) with β = d−0.5 are at most 2 logn

β

with high probability, conditioning on maxu δu ≤ 2 logn
β

does

not change the probability space much; in particular, the
probability of a sub-path pi being bad remains O

(
d−0.3

)
.

But, if maxu δu ≤ 2 logn
β

, then the events that any two sub-

paths pi, pj of p at distance at least 5 logn
β
≥ 4 logn

β
+ 2d0.1

apart depend on a disjoint set of shift values. That is, the
events that such distant sub-paths are bad are independent.

Denote by X the number of bad sub-paths in p1, . . . , pd0,9

and by Xi the bad sub-paths pj indexed j ≡ i mod 5 logn
β

.

By the above, if we condition on maxu δu ≤ 2 logn
β

, these Xi
are sums of independent Bernoulli random variables with
success probability O(d−0.3), and are thus upper-bounded

by binomials Yi ∼ Bin(n′, p′), with parameters n′ = d0.9·β
5 logn

and p′ = Θ(d−0.3). Plugging in β = d−0.5, we find that
E[Yi] = n′p′ = Ω(d0.9 · d−0.5/ logn · d−0.3) = Ω(logn).
By Chernoff bound each i satisfies Xi ≤ Yi = O(E[Yi]) =
O(n′/d0.3) with high probability. So, the number of bad
sub-paths satisfies X = O

(
d0.6

)
with high probability.

The above lemma yields the following useful corollary.

Corollary 4.4. On any path p of length |p| ∈ [d/2, d] from
an informed node to an uninformed node, the time spent by
Divide and Chatter to transmit messages along bad sub-paths
of p is O(d) with high probability.

Proof. By Lemma 4.3 p’s bad sub-paths have overall length
O(d0.6 ·d0.1) = O(d

log2 n
) with high probability. As our algo-

rithm runs a step of Decay every two steps and Decay solves
the 1-hop broadcast problem in O(log2 n) rounds with high
probability, transmitting along all bad sub-paths takes O(d)
rounds with high probability.

8

4.3 Cutting out Collision-Prone Nodes
In this section we address collisions between fine-grained

clusters within the same coarse-grained cluster when using
their schedules; i.e., collisions of type 3.

The natural approach to overcome potential collisions be-
tween different fine-grained clusters in any coarse-grained
cluster when running the schedules of Lemma 2.1 is simple:
make nodes that border a cluster (other than their own) not
participate in their clusters’ fast schedule. That is, rather
than taking entire clusters to be the induced subgraphs for
which we run the schedules of Lemma 2.1, take the clus-
ters (set)minus their nodes bordering other clusters, hoping
that these new subgraphs have the same useful properties as
the entire clusters. This approach, however, does not quite
work, as these new subgraphs could have much higher diam-
eter, and indeed need not even be connected. The following
definition will prove useful in refining this approach.

Definition 4.2. Consider a run of partition(β), and let
δv be the exponential variables associated with each node.
We say a node v is risky if the lowest two values in the
(multi)set {d(u, v) − bδvc | u ∈ V } differ by at most one.
Otherwise, we say the node v is safe.

Recall that we condition on the (high probability) event
that partition(β) grows each cluster by one hop per epoch
after the cluster’s inception; that is, one hop every O(log2 n)
rounds, corresponding to one step of the sequential imple-
mentation. Given this conditioning, the set of safe nodes
contains no nodes bordering other clusters, so running the
fast schedules in their induced subgraphs avoids potential
collisions between clusters. Crucially for our use, for any
cluster C, all safe nodes of C induce a connected component
of diameter no greater than that of C, as any safe node’s path
to its cluster center must be comprised solely of safe nodes.
Therefore, the preprocessing stage of Lemma 2.1 can be run
on subgraphs induced by the safe nodes in a cluster in the
same time bounds as required to do the same for the en-
tire cluster, namely O(d) rounds. It remains to show how
to notify risky nodes that they are risky without changing
partition(β)’s running time by too much.

Lemma 4.5. partition(β) can be run in O(logO(1) n/β)
rounds so that all risky nodes are informed that they are
risky with high probability.

Proof. We extend the radio network implementation dis-
cussed in Section 3.1. By Lemma 4.1 we may assume each
cluster center sends some O(log2 n) random bits to its clus-
ter’s nodes by blowing up the running time by O(logn).

Recall that each epoch of partition(β) is implemented
using O(logn) Decay phases in which clustered nodes in-
form their one-hop neighborhood of the fact. By a phase
of Decay we mean broadcast with probability 2−i for i =
0, 1, 2, . . . , log2 n − 1. We modify the above in the follow-
ing ways, using the random bits of each cluster in round-
robin order: (1) during each Decay phase, for each cluster,
all nodes of the cluster remain silent with probability 1

2
.

(2) after each epoch, we run for a further O(log2 n) phases
of Decay during which for each cluster C, with probability

1
logn

, all risky nodes of C which have been notified of being

risky broadcast one epoch after joining their cluster using a
phase of Decay. As in our proof of Lemma 4.2, this guar-
antees that a node v neighboring such a risky node in its
cluster will receive a message from one such neighbor with
high probability within these O(log2 n) Decay phases.

Consider a node v which borders a cluster other than its
own, and is therefore risky. As each cluster is silent inde-
pendently and with constant probability, the following hold
with high probability: v receives Ω(logn) message during
any epoch neighbors of v may broadcast. Moreover, v re-
ceives a message from at least two distinct clusters either
during the epoch in which v joins its cluster, or in the fol-
lowing epoch (depending on whether the two lowest values
in {d(u, v) − bδuc | u ∈ V } differ by zero or one.) Either
way, if v neighbors a cluster other than its own, v is notified
that it is risky.

Now, consider a node w which does not border a cluster
other than its own. Then, w is risky if and only if some
node(s) v preceding w in a shortest path from w’s cluster
center u to w is (are) risky. As these risky nodes all have the
same distance from the cluster center, they all broadcast at
the end of the same epoch (the epoch following w’s joining
its cluster), and so w is notified of being risky one epoch after
joining its cluster. Repeating the above, every risky node is
notified of the fact by partition(β)’s termination and no
safe node is incorrectly notified of being risky.

Lemma 4.6. Let p be a path from an informed node to
some node t. Then, if schedules are computed and run only
for safe nodes of fine-grained clusters, t is informed after an
expected O(|p| · logn·log logn

log d
) rounds of step (6).

Proof. Once a risky node is informed of the message the next
node along p is informed in at most O(log2 n) rounds, by
virtue of the Decay steps. By Lemma 3.6 a node is risky with
probability O(β) and so the cost of informing risky nodes
is O(|p| · β · log2 n) rounds in expectation. For the largest
possible β value we use in step (6), namely β = O(1/d0.001),
this is O(|p|). We proceed to bound the cost incurred by
safe nodes.

Consider some cluster of partition(β). For a node v
to be the first (resp., last) safe node along p in its cluster
requires the next (resp., previous) node along p to be risky,
hence the two lowest values of {d(u, v) − bδvc | u ∈ V }
must differ by at most O(1). By Lemma 3.11, if we denote
by 1v an indicator for the event that v is a first or last
safe node in its cluster along p, then for a fixed choice of i
we have E[1v ·DCC(v)] = O(1+log ki(v)). As in our proof of
Lemma 3.13, the time to transmit along p is commensurate
to this expression, summed over all v ∈ p. By our bound on
Ei[log ki(v)] of 3.2, the lemma follows.

5. FINAL ANALYSIS
In this section we prove the main result of this paper.

For succinctness, we say a path is crossed after r rounds if
r rounds after the first node on this path is informed of a
message, so is the last node. We will give a bound on the
time to cross a path from an informed to an uniformed node.

Theorem 5.1. The algorithm Divide and Chatter solves
the d-hop broadcast problem in the radio network model in
O(d · logn log logn

log d
) + logO(1) n rounds with high probability.

Proof. As discussed in Section 4, the preprocessing steps
(1)-(5) all take O(d) rounds despite potential collisions. It

remains to prove O(d · logn log logn
log d

+logO(1) n) rounds of step

(6) suffice to solve the d-hop broadcast problem.
Consider a path p of length |p| ∈ [d/2, d] from an informed

node to an uninformed node, and let p1, p2, . . . , p|p|/d0.1 be

9

a partition of p into Θ(d0.9) sub-paths of length d0.1. By
Corollary 4.4, the time to cross all bad sub-paths is O(d)
with high probability. We proceed to bound the time spent
on good sub-paths.

Now, consider Xj , the time to cross a good sub-path pj .

By Lemma 4.6, we know that E[Xj] = O(d0.1 logn log logn
log d

).

We let the number of rounds spent using each random choice
of β = (2 log n)−i in step (6) be twice this expectation.
Therefore, by Markov’s inequality the probability of cross-
ing a sub-path within this many rounds is at least one half.
As we ignore partial progress of the message along a sub-
path when attempting to cross the same sub-path, these
attempts are independent assuming independently-chosen i.
Now, while the random choices of i are not strictly speaking
independent, note that since we choose d0.3 random i values
and a sub-path of length d0.1 is crossed with high probability
within O(logn) attempts, the choices of i are independent
w.h.p. for “close” sub-paths pk, p` with |k − `| ≤ d0.2/ logn.
Thus, by Chernoff bound, running step (6) for 2E[X] rounds
a total of Θ(d0.2/ logn) = Ω(logn) times, we find that in
any set of d0.2/ logn consecutive sub-paths of p we cross
good sub-paths at least d0.2/ logn times with high proba-
bility; in particular, we cross all good sub-paths in this set.
Summing over all such consecutive sets of sub-paths of p,
we find that after Θ(d0.9) attempts to cross a path during

O(d0.1 logn log logn
log d

) rounds, we cross all good sub-paths of p.

We conclude that for d = logΩ(1) n, Divide and Chatter solves
the d-hop broadcast problem in the radio network mode in
O(d logn log logn

log d
) rounds with high probability.

6. ACKNOWLEDGMENTS
This research supported in part by NSF grant CCF-1527110

”Distributed Algorithms for Near Planar Networks”and NSF-
BSF grant ”Coding for Distributed Computing”.

7. REFERENCES
[1] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg, A lower

bound for radio broadcast, Journal of Computer and
System Sciences 43 (1991), no. 2, 290–298.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai, On the
time-complexity of broadcast in multi-hop radio
networks: An exponential gap between determinism
and randomization, Journal of Computer and System
Sciences 45 (1992), no. 1, 104–126.

[3] I. Chlamtac and S. Kutten., On broadcasting in radio
networks: Problem analysis and protocol design., IEEE
Transactions on Communications 33 (1985), no. 12,
1240–1246.

[4] Ferdinando Cicalese, Fredrik Manne, and Qin Xin,
Faster centralized communication in radio networks,
Algorithms and Computation, Springer, 2006,
pp. 339–348.

[5] A. Czumaj and W. Rytter, Broadcasting algorithms in
radio networks with unknown topology, In Proc. IEEE
Symp. on Foundations of Computer Science (2003),
492–501.

[6] Michael Elkin and Guy Kortsarz, Improved schedule
for radio broadcast, Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete
algorithms, Society for Industrial and Applied
Mathematics, 2005, pp. 222–231.

[7] Iris Gaber and Yishay Mansour, Centralized broadcast

in multihop radio networks, Journal of Algorithms 46
(2003), no. 1, 1–20.

[8] Leszek Gasieniec, David Peleg, and Qin Xin, Faster
communication in known topology radio networks, In
Proc. ACM Symp. on Principles of Distributed
Computing (2005), 129–137.

[9] M. Ghaffari and B. Haeupler, Near-optimal leader
election in multi-hop radio networks, In Proc.
ACM-SIAM Symp. on Discrete Algorithms (2013),
748–766.

[10] Mohsen Ghaffari, Bernhard Haeupler, and Majid
Khabbazian, Randomized broadcast in radio networks
with collision detection, Proceeding of the ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC) (2013), 325–334.

[11] D. Kowalski and A. Pelc, Broadcasting in undirected
ad hoc radio networks, In Proc. ACM Symp. on
Principles of Distributed Computing (2003), 73–82.

[12] Dariusz R Kowalski and Andrzej Pelc, Optimal
deterministic broadcasting in known topology radio
networks, Distributed Computing 19 (2007), no. 3,
185–195.

[13] E. Kushilevitz and Y. Mansour, An Ω(d log(n/d))
lower bound for broadcast in radio networks, SIAM
Journal on Computing 27 (1998), no. 3, 702–712.

[14] Gary L Miller, Richard Peng, Adrian Vladu, and
Shen Chen Xu, Improved parallel algorithms for
spanners and hopsets, Proceedings of the 27th ACM
on Symposium on Parallelism in Algorithms and
Architectures, ACM, 2015, pp. 192–201.

[15] Gary L Miller, Richard Peng, and Shen Chen Xu,
Parallel graph decompositions using random shifts,
Proceedings of the twenty-fifth annual ACM
symposium on Parallelism in algorithms and
architectures, ACM, 2013, pp. 196–203.

[16] David Peleg, Time-efficient broadcasting in radio
networks: a review, Distributed Computing and
Internet Technology, Springer, 2007, pp. 1–18.

10

	Introduction
	The Divide and Chatter Framework
	Radio Network Primitives
	The Algorithm - General Approach
	The Divide and Chatter Algorithm

	Partitioning the Graph
	Radio Network Model Implementation
	Partitioning the Graph - Analysis
	Key Lemma and Corollaries

	Overcoming Collisions
	Collisions During Precomputation
	Collisions Between Coarse Clusters
	Cutting out Collision-Prone Nodes

	Final Analysis
	Acknowledgments
	References

