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Abstract

We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We
are given a fixed metric with a server at each of the points, and then requests arrive online,
each drawn independently from a known probability distribution over the points. Each request
has to be matched to a free server, with cost equal to the distance. The goal is to minimize the
expected total cost of the matching.

Such stochastic arrival models have been widely studied for the maximization variants of
the online matching problem; however, the only known result for the minimization problem is a
tight O(log n)-competitiveness for the random-order arrival model. This is in contrast with the
adversarial model, where an optimal competitive ratio of O(log n) has long been conjectured
and remains a tantalizing open question.

In this paper, we show improved results in the i.i.d arrival model. We show how the i.i.d
model can be used to give substantially better algorithms: our main result is anO((log log log n)2)-
competitive algorithm in this model. Along the way we give a 9-competitive algorithm for the
line and tree metrics. Both results imply a strict separation between the i.i.d model and the
adversarial and random order models, both for general metrics and these much-studied metrics.

1 Introduction

We study the minimum-cost metric (perfect) matching problem under online i.i.d. arrivals. In this
problem, we are given a fixed metric (S, d) with a server at each of the n = |S| points. Then
n requests arrive online, where each request is at a location that is drawn independently from a
known probability distribution D over the points. Each such arriving request has to be matched
immediately and irrevocably to a free server, whereupon it incurs a cost equal to distance of its
location to this server. The goal is to minimize the total expected cost.
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The minimization version of online matching was first considered in the standard adversarial
setting by Khuller et al. [27] and Kalyanasundaram and Pruhs [24]; both papers showed (2n− 1)-
competitive deterministic algorithms, and proved that this was tight for, say, the star metric. After
about a decade, a randomized algorithm with an O(log3 n)-competitiveness was given by Meyerson
et al. [32]; this was improved to O(log2 n) by Bansal et al. [4], which remains the best result known.
(Recall that the maximization version of matching problems have been very widely studied, but
they use mostly unrelated techniques.)

The competitive ratio model with adversarial online arrivals is often considered too pessimistic,
since it assumes an all-powerful adversary. One model to level the playing field, and to make
the model perhaps closer to practice, is to restrict the adversary’s power. Two models have been
popular here: the random-order arrivals (or secretary) model, and the i.i.d. model defined above.
The random-order model is a semi-random model, in which the worst-case input is subjected
to random perturbations. Specifically, the adversary chooses a set of requests, which are then
presented to the algorithm in a uniformly random order. The min-cost online matching problem
in this random-order model was studied by Raghvendra, who gave a tight O(log n)-competitive
algorithm [37]. The random-order model also captures the i.i.d. setting, so the natural goal is to
get a better algorithm for the i.i.d. model. Indeed, our main result for the i.i.d. model gives exactly
such a result:

Theorem 1.1 (Main Theorem). There is an O((log log log n)2)-competitive algorithm for online
minimum-cost metric perfect matching in the i.i.d. setting.

Observe that the competitiveness here is better than the lower bounds of Ω(log n) known for
the worst-case and random-order models.

Matching on the Line and Trees. There has also been much interest in solving the problem
for the line metric: a deterministic lower bound of (9 + ε) for some ε > 0 is known, showing
it is strictly harder than the optimal search (or “cow-path”) problem, which it generalizes [14].
However, getting better results for the line than for general metrics has been elusive: an O(log n)-
competitive randomized algorithm for line metrics (and for doubling metrics) was given by [19].
In the deterministic setting, recently Nayyar and Raghvendra [36] gave an O(log2 n)-competitive
algorithm, whose competitive ratio was subsequently proven to be O(log n) by Raghvendra [38],
improving on the o(n)-competitive algorithm of Antoniadis et al. [2]. To the best of our knowledge,
nothing better is known for tree metrics than for general metrics in both the adversarial and the
random-order models. Our second result for the i.i.d. model is a constant-competitive algorithm
for tree metrics.

Theorem 1.2 (Algorithm for Trees). There is a 9-competitive algorithm for online minimum-cost
metric perfect matching on tree metrics in the i.i.d. setting.

Observe that the competitiveness here is better than the lower bound of 9 + ε for line metrics
in the worst-case model.

Max-Weight Perfect Matching. Recently, Chang et al. [7] presented a 1/2-competitive algorithm
for the maximum-weight perfect matching problem in the i.i.d. setting. We show that our algorithm
is versatile, and that a small change to our algorithm gives us a maximization variant matching
this factor of 1/2. Our approach differs from that of [7], in that we match an arriving request
based on the realization of free servers, while they do so based on the “expected realization”. See
Appendix D for details.

2



1.1 Our Techniques

Both Theorems 1.1 and 1.2 are achieved by the same algorithm. The first observation guiding this
algorithm is that we may assume that the distribution D of request locations is just the uniform
distribution on the server locations. (In Appendix A we show how this assumption can be removed
with a constant factor loss in the competitiveness.) Our algorithm is inspired by the following two
complementary consequences of the uniformity of D.

• Firstly, each of the n−t+1 free servers’ locations at time t are equally likely to get a request in
the future, and as such they should be left unmatched with equal probability. Put otherwise,
we should match to them with equal probability of 1/(n − t + 1). However, matching any
arriving request to any free server with probability 1/(n− t+ 1) is easily shown to be a bad
choice.

• So instead, we rely on the second observation: the tth request is equally likely to arrive at
each of the n server locations. This means we can couple the matching of free server locations
with the location of the next request, to guarantee a marginal probability of 1/(n− t+ 1) for
each free server to be matched at time t.

Indeed, the constraints that each location is matched at time t with probability 1/n (i.e., if it
arrives) and each of the free servers are matched with marginal probability 1/(n − t + 1) can be
expressed as a bipartite flow instance, which guides the coupling used by the algorithm. Loosely
speaking, our algorithm is fairly intuitive. It finds a min-cost fractional matching between the
current open server locations and the expected arrivals, and uses that to match new requests. The
challenge is to bound the competitive ratio—in contrast to previously used approaches (for the
maximization version of the problem) it does not just try to match vertices using a fixed template
of choices, but rather dynamically recomputes a template after each arrival.

A major advantage of this approach is that we understand the distribution of the open servers.
We maintain the invariant that after t steps, the set of free servers form a uniform random (n− t)-
subset of [n]—the randomness being over our choices, and over the randomness of the input. This
allows us to relate the cost of the algorithm in the tth step to the expected cost of this optimal flow
between the original n points and a uniformly random subset of (n− t) of these points. The latter
expected cost is just a statistic based on the metric, and does not depend on our algorithm’s past
choices. For paths and trees, we bound this quantity explicitly by considering the variance across
edge-cuts in the tree—this gives us the proof of Theorem 1.2.

Since general metrics do not have any usable cut structure, we need a different idea for The-
orem 1.1. We show that tree-embedding results can be used either explicitly in the algorithm or
just implicitly in the proof, but both give an O(log n) loss. To avoid this loss, we use a different
balls-and-bins argument to improve our algorithm’s competitiveness to O((log log n))2). In par-
ticular, we provide better bounds on our algorithm’s per-step cost in terms of E[OPT ] and the
expected load of the k most loaded bins in a balls and bins process, corresponding to the number of
requests in the k most frequently-requested servers. Specifically, we show that E[OPT ] is bounded
in terms of the expected imbalance between the number of requests and servers in these top k
server locations. Coupling this latter uniform k-tuple with the uniform k-tuple of free servers left
by our algorithm, we obtain our improved bounds on the per-step cost of our algorithm in terms of
E[OPT ] and these bins’ load, from which we obtain our improved O((log logn)2) competitive ratio.
Interestingly, combining both balls and bins and tree embedding bounds for the per-step cost of
step k (appealing to different bounds for different ranges of k) gives us a further improvement: we
prove that our algorithm is O((log log log n)2) competitive.
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1.2 Further Related Work

I.i.d. stochastic arrivals have been studied for various online problems, e.g., for Steiner tree/forest [16],
set cover [18], and k-server [9]. Closer to our work, stochastic arrivals have been widely studied in
the online matching literature, though so far mostly for maximization variants. Much of this work
was motivated by applications to online advertising, for which the worst-case optimal (1 − 1/e)-
competitive ratios [1, 26, 31] seem particularly pessimistic, given the financial incentives involved
and time-learned information about the distribution of requests. Consequently, many stochastic
arrival models have been studied, and shown to admit better than 1− 1/e competitive guarantees.
The stochastic models studied for online matching and related problems, in increasing order of
attainable competitive ratios, include random order (e.g., [17, 25, 29]), unknown i.i.d.—where the
request distribution is unknown—(e.g., [10, 33]), and known i.i.d. (e.g., [3, 6, 13]). Additional work
has focused on interpolating between adversarial and stochastic input (e.g., [11, 28]). See Mehta’s
survey [30] and recent work [8, 15, 21, 22, 23, 35] for more details. The long line of work on online
matching, both under adversarial and stochastic arrivals, have yielded a slew of algorithmic design
ideas, which unfortunately do not seem to carry over to minimization problems, nor to perfect
matching problems.

As mentioned above, the only prior work for stochastic online matching with minimization
objectives was the random order arrival result of Raghvendra [37]. We are hopeful that our work
will spur further research in online minimum-cost perfect matching under stochastic arrivals, and
close the gap between our upper bounds and the (trivial) lower bounds for the problem.

2 Our Algorithm

In this section we present our main algorithm, together with some of its basic properties. Through-
out the paper we assume that the distribution over request locations is uniform over the n servers’
locations. We show in Appendix A that this assumption is WLOG: it increases the competitive
ratio by at most a constant. In particular, we show the following.

Lemma 2.1. Given an α-competitive algorithm ALGU for the uniform distribution over server
locations, U , we can construct a (2α+ 1)-competitive algorithm ALGD for any distribution D.

Focusing on the uniform distribution over server locations, our algorithm is loosely the following:
in each round of the algorithm, we compute an optimal fractional matching between remaining free
servers and remaining requests (in expectation). Now when a new request arrives, we just match
the newly-arrived request according to this matching.

2.1 Notation

Our analysis will consider k-samples from the set S = [n] both with and without replacement. We
will set up the following notation to distinguish them:

• Let Ik be the distribution over k-sub-multisets of S = [n] obtained by taking k i.i.d. samples
from the uniform distribution over S. (E.g., In is the request set’s distribution.)

• Let Uk be the distribution over k-subsets of S obtained by picking a uniformly random k-
subset from

(
S
k

)
.

In other words, Ik is the distribution obtained by picking k elements from S uniformly with re-
placement, whereas Uk is without replacement.
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For a sub-(multi)set T ⊆ S of servers, let M(T ) denote the optimal fractional min-cost b-
matching in the bipartite graph induced between T and the set of all locations S, with overall unit
capacity on either side. That is, the capacity for each node in T is 1/|T | and the capacity for each
node in S is 1/n. So, if we denote by di,j the distance between locations i and j, we let M(T )
correspond to the following linear program.

M(T ) := min
∑

i∈T,j∈S
di,j · xi,j (M(·))

s.t.
∑
j∈S

xi,j = 1
|T | ∀i ∈ T

∑
i∈T

xi,j = 1
n ∀j ∈ S

x ≥ 0

We emphasize that in the above LP, several servers in S (and likewise in T ) may happen to be at
the same point in the metric space, and hence there is a separate constraint for each such point j
(and likewise i). Slightly abusing notation, we let M(T ) denote both the LP and its optimal value,
when there is no scope for confusion.

2.2 Algorithm Description

The algorithm works as follows: at each time k, if Sk ⊆ S is the current set of free servers, we
compute the fractional assignment M(Sk), and assign the next request randomly according to it.
As argued above, since each free server location is equally likely to receive a request later (and
therefore it is worth not matching it), it seems fair to leave each free server unmatched with equal
probability. Put otherwise, it is only fair to match each of these servers with equal probability. Of
course, matching any arriving request to a free server chosen uniformly at random can be a terrible
strategy. In particular, it is easily shown to be Ω(

√
n)-competitive for n servers equally partitioned

among a two-point metric. Therefore, to obtain good expected matching cost, we should bias
servers’ matching probability according to the arrived request, and in particular we should bias it
according to M(Sk). This intuition guides our algorithm fair-bias, and also inspires its name.

Algorithm 1 fair-bias

1: Sn ← S. . Sk is the set of free servers, with |Sk| = k.
2: for time step k = n, n− 1, · · · , 1 do
3: compute optimal fractional matching M(Sk), denoted by xSk .
4: upon arrival of request rk = r do
5: randomly choose server s from Sk, where si is chosen w/prob. pi = n · xSk

si,r.
6: assign r to s.
7: end event
8: Sk−1 ← Sk \ {s}.
9: end for

A crucial property of our algorithm is that the set Sk of free servers at each time k happens to be
a uniformly random k-subset of S. Recall that fair-bias assigns each arriving request according to
the assignment M(Sk). This means that to analyze the algorithm, it suffices to relate the optimal
assignment cost OPT to the optimal assignment costs for uniformly random subsets Sk, as follows.
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Lemma 2.2. (Structure Lemma) For each time k, the set Sk is a uniformly-drawn k-subset of S;
i.e., Sk ∼ Uk. Consequently, the algorithm’s cost is

E[ALG] =

n∑
k=1

ESk∼ Uk [M(Sk)].

Proof. The proof of the first claim is a simple induction from n down to 1. The base case of Sn is
trivial. For any k-subset T = {s1, · · · , sk} ⊆ S,

Pr [Sk = T ] =
∑

s∈S\T

Pr [Sk+1 = T ∪ {s}] · Pr [rk+1 assigns to s | Sk+1 = T ∪ {s}]

= (n− k) · 1(
n

k+1

) · 1

k + 1
=

1(
n
k

) ,
where the second equality follows from induction and the fact that

Pr [rk+1 assigned to s | Sk+1 = T ∪ {s}] =
∑
r∈S

x
Sk+1
s,r =

1

k + 1
.

To compute the algorithm’s cost, we consider some set Sk = T of k free servers. Since the request
rk = r is chosen with probability 1/n, following which we match it to some free server s ∈ Sk with
probability n · xSk

s,r, we find that the next edge matched by the algorithm has expected cost

E[ds,rk | Sk = T ] =
∑
r

1

n
·
∑
s∈T

n · xTs,r · ds,r = M(T ).

Therefore, the expected cost of the algorithm is indeed

E[ALG] =
n∑

k=1

E[ds,rk ] =
n∑

k=1

∑
T∈(Sk)

Pr
Sk∼Uk

[Sk = T ] · E[ds,rk | Sk = T ]

=
n∑

k=1

∑
T∈(Sk)

Pr
Sk∼Uk

[Sk = T ] ·M(T ) =
n∑

k=1

ESk∼Uk [M(Sk)].

The structure lemma implies that we may assume from now on that the set of free servers Sk
is drawn from Uk. In what follows, unless stated otherwise, we have Sk ∼ Uk. More importantly,
Lemma 2.2 implies that to bound our algorithm’s competitive ratio by α, it suffices to show that∑

k E[M(Sk)] ≤ α · E[OPT]. This is exactly the approach we use in the following sections.

3 Bounds for General Metrics

In Section 4 we will show that algorithm fair-bias is O(1)-competitive for line metrics (and more
generally tree metrics), by relying on variance bounds of the number of matches across tree edges in
OPT and M(Sk), our algorithm’s guiding LP. For general metrics, if we first embed the metric in a
low-stretch tree metric [12] (blowing up the expected cost of E[OPT] by O(log n)) and run algorithm
fair-bias on the obtained metric, we immediately obtain an O(log n)-competitive algorithm. In
fact, explicitly embedding the input metric in a tree metric is not necessary in order to obtain
this result using our algorithm. By relying on an implicit tree embedding, we obtain the following
lemma (mirroring the variance-based bound underlying our result for tree metrics). This lemma’s
proof is deferred to Appendix C.1.
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Lemma 3.1. ESk∼Uk [M(Sk)] ≤ O(logn)√
nk
· E[OPT].

Summing over all values of k ∈ [n], we find that fair-bias is O(log n)-competitive on general
metrics. While this bound is no better than that of Raghvendra’s t-net algorithm for random order
arrival [37] (and therefore for i.i.d arrivals), the result will prove useful in our overall bound for
our algorithm. In Sections 3.1 and 3.2, we use a different balls-and-bins argument to decrease our
bounds on the algorithm’s competitive ratio considerably, to O((log log n))2), by considering the
imbalance between number of requests and servers in the top k most requested locations. (The
former quantity corresponds to the load of the k most loaded bins in a balls and bins process –
motivating our interest in this process.) Finally, in Section 3.3, we combine this improved bound
with the one from Lemma 3.1, summing different bounds for different ranges of k, to prove our
main result: an O((log log log n)2) bound for our algorithm’s competitive ratio.

3.1 Balls and Bins: The Poisson Paradigm

For our results, we need some technical facts about the classical balls-and-bins process.
The following standard lemma from [34, Theorem 5.10] allows us to use the Poisson distribution

to approximate monotone functions on the bins. For i ∈ [n], let Xm
i be a random variable denoting

the number of balls that fall into the ith bin, when we throw m balls into n bins. Let Y m
i be

independent draws from the Poisson distribution with mean m/n.

Lemma 3.2. Let f(x1, · · · , xn) be a non-negative function such that E[f(Xm
1 , · · · , Xm

n )] is either
monotonically increasing or decreasing with m, then

E[f(Xm
1 , · · · , Xm

n )] ≤ 2 · E[f(Y m
1 , · · · , Y m

n )].

A classic result states that for m = n balls, the maximum bin load is Θ(log n/ log logn) w.h.p.
(see e.g., [34, Lemmas 5.1, 5.12]). The following lemma is a partial generalization of this result. Its
proof, which relies on the Poisson approximation of Lemma 3.2, is deferred to Appendix C.

Lemma 3.3. Let n balls be thrown into n bins, each ball thrown independently and uniformly at
random. Let Lj be the load of the jth heaviest bin, and Nk :=

∑
j≤k Lj be the number of balls in

the k most loaded bins. There exists a constant C0 > 0 such that for any k ≤ C0n,

E[Nk] ≥ Ω

(
k · log(n/k)

log log(n/k)

)
.

In the next lemma, whose proof is likewise deferred to Appendix C, we rely on a simple Chernoff
bound to give a weaker lower bound for E[Nk] that holds for all k ≤ n/2.

Lemma 3.4. For sufficiently large n and any k ≤ n/2, we have E[Nk] ≥ 1.5k.

3.2 Relating Balls and Bins to Stochastic Metric Matching

We now bound the expected cost incurred by fair-bias at time k by appealing to the above
balls-and-bins argument; this will give us our stronger bound of O((log logn)2). Specifically, we
will derive another lower bound for E[OPT] in terms of ESk∼Uk [M(Sk)]. In our bounds we will
partition the probability space In (corresponding to n i.i.d. requests) into disjoint parts, based on
Tk, the top k most frequently requested locations (with ties broken uniformly at random). By
symmetry, Pr[Tk = T ] = 1/

(
n
k

)
for all T ∈

(
S
k

)
. By coupling Tk with Uk, we will lower-bound

E[OPT ] by ESk∼Uk [M(Sk)] times E[Nk] − k, the expected imbalance between number of requests
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and servers in Tk. Here E[Nk] is the expected occupancy of the k most loaded bins in the balls and
bins process discussed in Section 3.1.

To relate E[OPT | Tk = Sk] to M(Sk), we will bound both these quantities by the cost of a
min-cost perfect b-matching between Sk and S\Sk; i.e., each vertex v has some (possibly fractional)
demand bv which is the extent to which it must be matched. To this end, we need the following
simple lemma, which asserts that for any min-cost metric b-matching instance, there exists an
optimal solution which matches co-located servers and requests maximally. We defer the lemma’s
proof, which follows from a local change argument and triangle inequality, to Appendix C.

Lemma 3.5. Let I be a fractional min-cost bipartite metric b-matching instance, with demand `i
and ri for the servers and requests at location i. Then, there exists an optimal solution x for I with
xii = min{`i, ri} for every point i in the metric.

We are now ready to prove our main technical lemma, lower-bounding E[OPT | Tk = Sk] in
terms of M(Sk) and the imbalance between number of requests of the k most requested locations,
Nk, and the number of servers in those locations.

Lemma 3.6. For all k < n and Sk ∈
(
S
k

)
, we have E[OPT | Tk = Sk] ≥ (E[Nk]− k) ·M(Sk).

Proof. Applying Lemma 3.5 to M(Sk), we find that the optimal value of M(Sk) is equal to that
of a min-cost bipartite perfect b-matching instance with left vertices associated with Sk, each with
demand 1

k −
1
n , and right vertices associated with S \ Sk, each with demand 1

n .
We now turn to the meat of the proof – lower bounding E[OPT | Tk = Sk]. In particular, we

will lower bound E[OPT | Tk = Sk] by a min-cost bipartite perfect b-matching instance with left
and right vertices as above (i.e., Sk and S \ Sk, respectively), but with uniform demands on both
sides of at least (E[Nk]−k)/k and (E[Nk]−k)/(n−k), respectively. That is, the biregular min-cost

bipartite b-matching whose cost C we showed lower bounds M(Sk), but scaled by an f ≥ (E[Nk]−k)
k·(1/k−1/n)

factor. Before proving this lower bound on E[OPT | Tk = Sk], we note that it implies our desired
bound, as

E[OPT | Tk = Sk] ≥ (E[Nk]− k)

k · (1/k − 1/n)
· C > (E[Nk]− k) · C = (E[Nk]− k) ·M(Sk).

It remains to lower bound E[OPT | Tk = Sk] in terms of such a biregular b-matching instance.
For the remainder of this proof, for notational simplicity we denote by Ω the probability space

induced by conditioning on the event Tk = Sk. To lower bound EΩ[OPT ], we will provide a
fractional perfect matching ~x of the expected instance (in Ω), and show that EΩ[OPT ] ≥

∑
ij dij ·xij ,

while
∑

j∈S\Sk
xij ≥ (E[Nk]−k)/k for all i ∈ Sk and

∑
i∈S xij ≥ (E[Nk]−k)/(n−k) for all j ∈ S\Sk.

Consequently, focusing on edges (i, j) ∈ Sk× (S \Sk), we find that the min-cost biregular bipartite
perfect b-matching above lower bounds

∑
i∈Sk,j∈S\Sk

dij · xij ≤
∑

ij dij · xij ≤ EΩ[OPT ]. We now
turn to producing an ~x satisfying our desired properties.

For any two locations i, j ∈ S, we let (i, j) ∈ OPT indicate that a request in location i is served
by the server in location j. Let pij := PrΩ[(i, j) ∈ OPT ]. We will show how small modifications
to ~p will yield a fractional perfect matching ~x as discussed in the previous paragraph. Let Yi be
the number of requests at server i. By Lemma 3.5, we know that (i, i) ∈ OPT ⇐⇒ Yi ≥ 1. So,
pii = PrΩ[Yi ≥ 1]. Consequently, if we let ∆in(j) :=

∑
j′∈S\{j} pj′j and ∆out(j) :=

∑
j′∈S\{j} pjj′ ,

we have by Lemma 3.5 that ∆in(j) = Pr[Yi ≥ 1] and ∆out(i) = E[(Yi−1)+] for all i ∈ S. (As usual,
x+ = max{x, 0}.) Consequently, ∆in(j) = ∆in(j′) and ∆out(j) = ∆out(j

′) for all j, j′ ∈ S \ Sk,
as [Yj | Ω] and [Y ′j | Ω] are identically distributed. Moreover, as

∑
j∈S\Sk

(∆in(j)−∆out(j)) =
Nk − k ≥ 0, we find that ∆in(j) − ∆out(j) ≥ 0 for all j ∈ S \ Sk. Now, suppose Yi ≥ 1 for all
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i ∈ Sk (conditioning on the complementary event is similar), we have by Lemma 3.5 that pji = 0
for all i ∈ Sk and j ∈ S \ {i}. Moreover, by symmetry we have ∆out(i) = (E[Nk] − k)/k for all
k locations i ∈ Sk. We now show how to obtain from ~p a fractional matching ~x between Sk and
S \ Sk of no greater cost than ~p, such that pjj′ = 0 for all j 6= j′ ∈ S \ Sk and such that the values
∆in(j)−∆out(j) are unchanged for all j ∈ S. Consequently, all (simple) edges in the support of ~x go
between Sk and S \Sk, and ∆out(i) = (E[Nk]−k)/k for all i ∈ Sk and ∆in(j) = (E[Nk]−k)/(n−k)
for all j ∈ S \ Sk, yielding our desired lower bound on EΩ[OPT ] in terms of a biregular bipartite
b-matching instance.

We start by setting ~x ← ~p. While there exists a pair j 6= j′ ∈ S \ Sk with xj′j > 0, we pick
such a pair. As ∆in(j) − ∆out(j) ≥ 0, there must also be some flow coming into j. We follow a
sequence of edges j1 ← j2 ← j3 ← . . . with each jr ∈ S \ Sk and with xjrjr−1 > 0 until we either
repeat some jr ∈ S\ or reach some jr with xijr0 for some i ∈ S. (Note that one such case must
happen, as ∆in(j)−∆out(j) ≥ 0 for all j ∈ S \ Sk.) If we repeat a vertex, jr, we only consider the
sequence of nodes given by the obtained cycle, j1 ← j2 ← j3 · · · ← jr = j1. Let ε = minr xjrjr−1

be the smallest xjj′ in our trail. If we repeated a vertex, we found a cycle, and we decrease xjj′

by ε for all consecutive j, j′ in the cycle. If we found some i ∈ S and xijr > 0, we decrease all xjj′

values along the path (including xijr) by ε and increase xij1 by ε. In both cases, we only decrease
the cost of ~x (either trivially, or by triangle inequality) and we do not change ∆in(j)−∆out(j) for
any j ∈ S, while decreasing

∑
j 6=j′∈S\Sk

xjj′ . As the initial x-values are all rational, repeating the
above terminates, with the above sum equal to zero, which implies a biregular fractional solution
~x as required. The lemma follows.

Coupling the distribution of Tk and the set of k free servers, we obtain the following.

Lemma 3.7. ESk∼Uk [M(Sk)] ≤ E[OPT]/(E[Nk]− k).

Proof. Taking expectations over Sk ∼ Uk, we obtain our claimed bound.

ESk∼Uk [M(Sk)] =
∑

Sk∈(Sk)

1(
n
k

) ·M(Sk) defn. of Uk

≤
∑

Sk∈(Sk)

1(
n
k

) 1

(E[Nk]− k)
· E[OPT | Tk = Sk] Lemma 3.6

=
1

(E[Nk]− k)
· E[OPT]. Pr[Tk = Sk] =

1(
n
k

) .
Plugging in the lower bounds of Lemmas 3.3 and 3.4 for the top k most loaded bins’ loads,

E[Nk], we obtain the following bounds on fair-bias’s per-step cost in terms of E[OPT ].

Lemma 3.8. For C0 a constant as in Lemma 3.3, there exists a constant C such that

ESk∼Uk [M(Sk)] ≤

{
C · log log(n/k)

k log(n/k) · E[OPT] if k < C0n
2
k · E[OPT] if C0n ≤ k ≤ n/2.

The following lemma allows us to leverage Lemma 3.8, as it allows us to focus on ESk∼Uk [M(Sk)]
for k ≤ n/2. Its proof relies on our characterization of M(Sk) in terms of a balanced b-matching
instance between Sk and S\Sk as in the proof of Lemma 3.6, which implies that M(Sk) ≤M(Sn−k)
for all k ≤ n/2. Its proof is deferred to Appendix C.

Lemma 3.9.
∑n

k=1 ESk∼Uk [M(Sk)] ≤ 2 ·
∑n/2

k=1 ESk∼Uk [M(Sk)].
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Using our upper bound on ESk∼Uk [M(Sk)] of Lemma 3.8 and summing the two ranges of k ≤ n/2
in Lemma 3.9 we find that fair-bias is O((log log n)2) competitive. We do not elaborate on this
here, as we obtain an even better bound in the following section.

3.3 Our Main Result

We are now ready to prove our main result, by combining our per-step cost bounds given by our
balls and bins argument (Lemma 3.8) and our implicit tree embedding argument (Lemma 3.1).

Theorem 3.10. Algorithm fair-bias is O((log log log n)2)-competitive for the online bipartite met-
ric matching problem under i.i.d arrivals on general metrics.

Proof. By the structure lemma (Lemma 2.2) and Lemma 3.9, we have that

E[ALG] =
n∑

k=1

ESk∼Uk [M(Sk)] ≤ 2 ·
n/2∑
k=1

ESk∼Uk [M(Sk)]. (1)

We use the three bounds from Lemma 3.1 and Lemma 3.8 for different ranges of k to bound the
above sum. Specifically, by relying on Lemma 3.1 for k ≤ n/ log2 n, we have that

n/ log2 n∑
k=1

ESk∼Uk [M(Sk)] ≤
n/ log2 n∑

k=1

O(log n)√
nk

· E[OPT ]

≤ O
(√

n

log2 n
· log n · E[OPT ]√

n

)
= O(1) · E[OPT ].

Next, by the first bound of Lemma 3.8 applied to k ∈ [n/ log2 n,C0n], we have that

C0n∑
k=n/ log2 n

ESk∼Uk [M(Sk)] ≤
C0n∑

k=n/ log2 n

O(log log(n/k))

k · log(n/k)
· E[OPT ]

≤ O
(
−(log log(n/k))2

∣∣∣C0n

n/ log2 n

)
· E[OPT ]

= O((log log log n)2) · E[OPT ].

Finally, by the second bound of Lemma 3.8 applied to k ≥ C0n, we have that

n/2∑
k=C0n

ESk∼Uk [M(Sk)] ≤
n/2∑
C0n

2

k
· E[OPT ] ≤ O

(
log

(
n/2

C0n

))
· E[OPT ] = O(1) · E[OPT ].

Combining all three bounds with Equation (1), the theorem follows.

4 A Simple O(1) Bound for Tree Metrics

In this section we show the power of the structure lemma, by analyzing fair-bias on tree metrics.
Recall that a tree metric is defined by shortest-path distances in a tree T = (V,E), with edge
lengths de. By adding zero-length edges, we may assume that the tree has n leaves, and that
servers are on the leaves of the tree. For any edge e in the tree, deleting this edge creates two
components T1(e) and T2(e); denote by T1(e) the component with fewer servers/leaves. Let ne
denote the number of leaves on this smaller side, T1(e). Hence ne ≤ n/2 for all edges e.

We now lower bound E[OPT], by considering the mean average deviation of the number of
requests which arrive in T1(e) for each edge e.
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Lemma 4.1. The expected optimal matching cost in a tree metric on n ≥ 2 vertices is at least
E[OPT] ≥ 1

2 ·
∑

e∈T de ·
√
ne.

Proof. Let Xe denote the number of requests that arrive in the component with fewer leaves, T1(e).
Every matching will match at least |Xe − ne| = |Xe − E[Xe]| requests across the edge e (with the
equality due to the uniform IID arrivals). Summing over all edges and taking expectations, we find
that

E[OPT] ≥
∑
e

de · E
[
|Xe − ne|

]
=
∑
e

de · E
[
|Xe − E[Xe]|

]
. (2)

It remains to lower bound E[|Xe − E[Xe]|], the mean average deviation of Xe. Observe that
Xe ∼ Bin(n, ne/n), with ne ∈ [1, n−1]. The following probabilistic bound appears in [5, Theorem 1]:

Claim 4.2. Let Y ∼ Bin(n, p), with n ≥ 2 and p ∈ [1/n, 1− 1/n]. Then, we have both

E|Y − EY | ≥ std(Y )/
√

2,

(Note that convexity implies that E|Y − EY | ≤ std(Y ) holds for all distributions, so this is a
partial converse.) Applying Claim 4.2 to our case, where p = ne/n ∈ [1/n, 1− 1/n],

E[|Xe − EXe|] ≥ std(Xe)/
√

2 =
√
ne(1− ne/n)/2 ≥

√
ne/4,

where the second inequality follows from ne ≤ n/2. Combined with (2), the lemma follows.

To upper bound E[M(Sk)], we again consider the mean average deviation of the number of
requests in T1(e), but this time when drawing k i.i.d. samples. First, we need to bound the cost of
M(Sk) for a set Sk resulting from k draws without replacement by the cost for a multiset obtained
by taking k i.i.d. draws with replacement.

Lemma 4.3. (Replacement Lemma) For all S and k ∈ [|S|], we have

ESk∼Uk [M(Sk)] ≤ ESk∼Ik [M(Sk)].

We defer the proof of this lemma to Appendix B, where we prove a more general statement
regarding stochastic convex optimization with constraints and coefficients determined by elements
of a set chosen uniformly with and without replacement. Armed with this lemma, it suffices to
bound ESk∼Ik [M(Sk)] from above, which we do in the following.

Lemma 4.4. ESk∼Ik [M(Sk)] ≤
∑

e∈T de ·
√
ne/(kn).

Proof. Fix some edge e and let T1(e) be its smaller subtree, containing ne ≤ n/2 leaves. Let
Xe ∼ Bin(k, ne/n) be the random variable denoting the number of servers in T1(e) chosen in k i.i.d
samples from S. For any given realization of Sk (and therefore of Xe) the fractional solution to
M(Sk) utilizes edges between the different subtrees of e by exactly |Xe/k − ne/n|. Since this is a
tree metric, we have

M(Sk) =
∑
e∈T

de ·
∣∣∣∣Xe

k
− ne

n

∣∣∣∣ =
∑
e∈T

de ·
1

k
·
∣∣∣∣Xe −

k

n
· ne
∣∣∣∣ =

∑
e∈T

de ·
1

k
· |Xe − E[Xe]|.

Taking expectations over Sk, and using the fact that the mean average deviation is always upper
bounded by the standard deviation (by Jensen’s inequality), we find that indeed

ESk∼Ik [M(Sk)] =
∑
e∈T

de ·
1

k
· E[|Xe − E[Xe]|] ≤

∑
e∈T

de ·
1

k
· std(Xe)
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=
∑
e∈T

de ·
1

k
·
√
k · ne

n

(
1− ne

n

)
≤
∑
e∈T

de ·
√

ne
k · n

.

Combining the replacement lemma (Lemma 4.3) with Lemmas 4.4 and 4.1, we obtain the
following upper bound on ESk∼Uk [M(Sk)] in terms of E[OPT ].

Lemma 4.5. ESk∼Uk [M(Sk)] ≤ 2 · E[OPT ]√
nk

.

We can now prove our simple result for tree metrics.

Theorem 4.6. (Tree Bound) Algorithm fair-bias is 4-competitive on tree metrics with n ≥ 2
nodes, if the requests are drawn from the uniform distribution.

Proof. We have by the structural lemma (Lemma 2.2) and Lemma 4.5 that

E[ALG] =

n∑
k=1

E[M(Sk)] ≤
n∑

k=1

2 · E[OPT ]√
nk

≤ 2 · E[OPT ]√
n
·
(

1 +

∫ n

x=1

1√
x
dx

)
≤ 4 · E[OPT ].

The above bound holds for all n ≥ 2 (for n = 1 any algorithm is trivially 1 competitive). For n
large, however, our proof yields an improved asymptotic bound of

√
2 · e+ o(1) ≈ (3.845 + o(1)), by

relying on the asymptotic counterpart of Claim 4.2 in [5, Corollary 2], E|Y −EY | ≥ std(Y )/(e/2 +
o(1)). Combining Theorem 4.6 with our transshipment argument (Lemma 2.1), we obtain a 9-
competitive algorithm under any i.i.d. distribution on tree metrics on n ≥ 2 nodes, and even better
than 9-competitive algorithms for large enough n.

5 Open Questions

In this work, we presented algorithm fair-bias and proved that it is O((log log log n)2)-competitive
for general metrics, and 9-competitive for tree metrics. Perhaps the first question is whether our
algorithm (or indeed any algorithm) is O(1) competitive for (known or unknown) i.i.d arrivals for
general metrics. Indeed, we do not know of any instances where Algorithm fair-bias’s performance
is worse than O(1) competitive. However, it is not clear how to extend our proofs to establish an
O(1) competitive ratio.

Another question is the relationship between the known and unknown i.i.d. models and the
random order model. The optimal competitive ratios for the various arrival models for online
problems can be sorted as follows (see e.g. [30, Theorem 2.1])

C.R.(Adversarial) ≥ C.R.(Random Order) ≥ C.R.(Unknown IID) ≥ C.R.(Known IID).

For the online metric matching problem the best bounds known for the above are, respectively,
Θ(n) [24, 27], Θ(log n), O(log n) (both [37]), and O((log log log n)2) (this work). Given the lower
bound of [37], our work implies that one or both of the inequalities in C.R.(Random Order) ≥
C.R.(Unknown IID) ≥ C.R.(Known IID) is strict (and asymptotically so). It would be in-
teresting to see which of these inequalities is strict, by either presenting a o(log n)-competitive
algorithm for unknown i.i.d or a ω((log log log n)2) lower bound for this model. For the line metric,
given the lower bound of [14], our work implies that one of the three inequalities above must be
strict. Understanding the exact relationships between these arrival models for this simple metric
may prove useful in understanding the relationships between the different stochastic arrival models
more broadly. Moreover, it would be interesting to study these questions for other combinatorial
optimization problems with online stochastic arrivals.
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Appendix

A Distribution over Server Locations (Transshipment Argument)

In this section, we show that the assumption that the requests are drawn from U , the uniform
distribution over server locations, is without loss of generality.

Lemma 2.1. Given an α-competitive algorithm ALGU for the uniform distribution over server
locations, U , we can construct a (2α+ 1)-competitive algorithm ALGD for any distribution D.

Proof. As before, we identify the set of servers S with the n points on the metric and let r1, . . . , rn
be the requests that arrive according to the distribution D. Define pi := Prr∼D[r = i].

Consider the linear program defined by the transshipment problem between the distribution D
to the uniform distribution on the servers S.

LP := min
∑
i,j

di,j · xi,j

s.t.
∑
j

xi,j = pi ∀i ∈ metric

∑
i

xi,j =
1

n
∀j ∈ S

x ≥ 0

Let M = n ·LP . Given a request sequence {r1, . . . , rn} drawn from D, we create a coupled sequence
{r̃1, . . . , r̃n} by moving an arrived request rk at server location j to location i in the metric with
probability xi,j/pi Each server location j ∈ S appears with probability

∑
i xi,j = 1

n and hence the
sequence {r̃1, . . . , r̃n} is distributed according to the uniform distribution U . After this move, it
matches the request according to ALGU .

We bound this algorithm’s cost as follows. First, the probability of a given request being moved
from some location i to j is precisely pi · xi,j/pi = xi,j . Summing up over all i, j, the expected
movement cost for all n time steps is precisely M = n ·LP . Secondly, the expected cost of matching
from r̃i is precisely E[ALGU ]. By the triangle inequality, we can bound the total cost by the sum
of the initial costs and the matching costs according to ALGU , yielding the relation

E[ALGD] ≤ E[ALGU ] +M. (3)

We use the same coupling as above, but in the other direction to relate OPTU to M . In
particular, given a request sequence {r1, . . . , rn} drawn from U , we create a coupled sequence
{r̃1, . . . , r̃n} by moving an arrived request rk at server location j to location i in the metric with
probability n · xi,j . Now Pr[r̃k = i] = 1

n ·
∑

j n · xi,j =
∑

j xi,j = pi. That is, the resulting
distribution is D. One way to bound the optimal solution for distribution U is to match request rk
to the match of r̃k. As before, the expected movement cost to locations {r̃1, . . . , r̃n} is M , and by
triangle inequality, we find that

E[OPTU ] ≤ E[OPTD] +M. (4)

We now bound E[OPTD] in terms of M . Each location i in the metric has an expected npi
appearances, who must therefore be matched an expected npi many times. Each server, on the
other hand, is matched precisely once in expectation. Therefore, the probabilities pi,j of an arrival
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at location i being matched to a server at location j constitute a feasible solution to n ·LP , and so
must have

∑
i,j di,j · pi,j ≥ n · LP = M . Therefore, E[OPTD] satisfies

E[OPTD] ≥M. (5)

Combining equations (3), (4) and (5) with ALGU ’s α-competitiveness, we obtain our desired
result.

E[ALGD] ≤ E[ALGU ] +M Equation (3)

≤ α · E[OPTU ] +M ALGU is α-comp.

≤ α · (E[OPTD] +M) +M Equation (4)

≤ (2α+ 1) · E[OPTD]. Equation (5)

B Stochastic Convex Optimization,
with and without Replacement

In Lemma 4.3 we claimed that the expected cost of the linear program M(Sk) for Sk chosen at
random from the k-subsets of S is lower than its counterpart when Sk is obtained from k i.i.d
draws from S. More succinctly, we claimed that ESk∼Uk [M(Sk)] ≤ ESk∼Ik [M(Sk)]. In this section
we prove a more general claim for any linear program (and more generally, any convex program),
implying the above. Let S be some n-element set, and for any multiset T with all its elements
taken from S, let P (T ) be the following convex program.

P (T ) := minf(x, χT ) (P (·))
s.t. gi(x, χT ) ≤ 0 ∀i ∈ [m]

hj(x, χT ) = 0 ∀j ∈ [`]

Here f(x, χT ) and all gi(x, χT ) are convex functions and hj(x, χT ) are affine in their arguments x
and χT , and χT is the incidence vector of the multiset T . (That is, for any s ∈ S, we let χT (s)
denote the number of appearances of s in T .) Note that M(T ) defined in Section 2.1 is a linear
program of the above form. As such, the following lemma generalizes – and implies – Lemma 4.3.

Lemma B.1 (Replacement Lemma). For any convex program P as above, we have

ESk∼Uk [P (Sk)] ≤ ESk∼Ik [P (Sk)].

Proof. Our proof relies on a coupling argument, starting with a refined partition of the probability
space of Sk ∼ Ik. This space is partitioned into equiprobable events AM for each ordered multiset
M of size k supported in S, corresponding to M being sampled. For each ordered multiset M ,
we denote by support(M) := {s ∈ S | s ∈ M} the set of elements in M . Next, we denote by
SUP(M) := {T ∈

(
S
k

)
| T ⊇ support(M)} the family of k-sets which contain M ’s elements (i.e.,

supersets of M ’s support). We will wish to “equally partition” the event AM among the k-tuples
in SUP(M). To this end, when M is sampled from Ik, we roll a |SUP(M)|-sided die labeled by
the members of SUP(M). For any k-set T ∈ SUP(M), we denote by AM,T the event that M was
sampled from Ik and the die-roll came out T , and for any k-tuple T ∈

(
S
k

)
, we let AT :=

⋃
M AM,T .

It is easy to verify that by symmetry we have Pr[AT ] = 1/
(|S|
k

)
for every T ∈

(
S
k

)
.

We now wish to couple the above refinement of the probability space of Ik and the optimal
solution to P (Sk) with their counterpart under Uk. We will need the following claim.
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Claim B.2. For all k-set T ∈
(
S
k

)
and element s ∈ T , we have ESk∼Ik [χSk

(s) | AT ] = 1.

Proof. By definition, each non-empty AM,T ⊆ AT satisfies ESk∼Ik [
∑

s∈T χSk
(s) | AM,T ] = k, since

any ordered multiset M of size k with SUP(M) 3 T has all its elements in T . Therefore, taking
total expectation over M with SUP(M) 3 T , we get ESk∼Ik [

∑
s∈T χSk

(s) | AT ] = k. Therefore, by
symmetry, we find that indeed each of the k elements s ∈ T has ESk∼Ik [χSk

(s) | AT ] = 1.

Now, consider some k-set T ∈
(
S
k

)
. For any ordered multiset of k elements M such that

SUP (M) 3 T , denote by xM ∈ arg minP (M) a solution of P (M) of minimum cost. By definition,
for each i ∈ [m] we have that gi(x

M , χM ) ≤ 0 and for each j ∈ [`] we have that hj(x
M , χM ) = 0.

Therefore, if we let yT := EM∼Ik [xM | AT ] be the “average” optimal solution for P (M) over all M
with SUP (M) 3 T , then by Jensen’s inequality and convexity of gi, we have that

0 ≥ EM∼Ik [gi(x
M , χM ) | AT ] linearity

≥ gi(EM∼Ik [xM | AT ],EM∼Ik [χM | AT ]) Jensen’s Ineq.

= gi(y
T , χT ). Claim B.2

Similarly, we have that hj(y
T , χT ) = EM∼Ik [hj(x

M , χM ) | AT ] = 0 for all j ∈ [`], as hj is affine. We
conclude that yT is a feasible solution to P (T ), and therefore f(yT , χT ) ≥ P (T ). Again appealing
to Jensen’s inequality, recalling that yT = EM∼Ik [xM | AT ] and that EM∼Ik [χM | AT ] = χT by
Claim B.2, we find that

EM∼Ik [f(xM , χM ) | AT ] ≥ f(yT , χT ) ≥ P (T ).

The lemma follows by total expectation over M , relying on Pr[AT ] = 1/
(|S|
k

)
for each T ∈

(
S
k

)
.

EM∼Ik [P (M)] =
∑

T∈(Sk)

EM∼Ik [P (M) | AT ] · Pr[AT ]

≥
∑

T∈(Sk)

P (T ) · Pr[AT ] = ET∼Uk [P (T )].

C Deferred Proofs of Section 3

In this section we provide the proofs deferred from Section 3.

C.1 Implicit Tree Embedding

In Section 4, we proved that algorithm fair-bias is O(1)-competitive on tree metrics. Therefore, as
noted in Section 3, using tree embeddings and applying algorithm fair-bias to the points according
to distances in the obtained tree embedding yields an O(log n)-competitive algorithm for general
metrics. Here we present an upper bound on fair-bias’s expected per-arrival cost which implies
the same competitive bound, by relying on an implicit tree embedding.

Lemma 3.1. ESk∼Uk [M(Sk)] ≤ O(logn)√
nk
· E[OPT].

Proof. For our proof we rely on low-stretch tree embeddings [12]. Given an n-point metric with
distances di,j , this embedding is a distribution D over tree metrics T over the same point set, with
tree distances dTi,j satisfying the following for any two points i, j in the metric.

di,j ≤ dTi,j . (6)
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ET∼D[dTi,j ] ≤ O(log n) · di,j . (7)

For such a tree metric T , let MT (S) denote M(S) with the distances di,j replaced by dTi,j . (As
before, we also let this denote the optimum value of this program.) By (6) we immediately have
that M(S) ≤MT (S) for any set S, as any solution ~x to MT (S) is feasible for M(S) and has lower
cost for this latter metric,

∑
i,j xi,j · di,j ≤

∑
i,j xi,j · dTi,j . Consequently, we have

M(S) ≤ ET∼D[MT (S)]. (8)

Next, we denote by OPT T the optimum cost of the min-cost perfect matching of the requests
to servers for distances dTi,j . By Lemma 4.5 we have that for a tree metric T

ESk∼Uk [MT (Sk)] ≤ 4 · E[OPT T ]√
nk

. (9)

Finally, for any realization of requests, the minimum-cost matching of requests to servers under
di,j has expected cost (over the choice of T ) at most O(log n) times higher under dTi,j , by (7).

Therefore, by a coupling argument we get the following bound on ET∼DE[OPT T ] in terms of
E[OPT ].

ET∼D[OPT T ] ≤ O(log n) · E[OPT ]. (10)

Combining Equations (8), (9) and (10), we obtain our desired bound.

ESk∼Uk [M(Sk)] ≤ ET∼DESk∼Uk [MT (Sk)] ≤ 4 · ET∼DE[OPT T ]√
nk

≤ O(log n) · E[OPT ]√
nk

.

C.2 Load of k Most Loaded Bins

Here we prove our lower bounds on the sum of loads of the k most loaded bins in a balls and bins
process with n balls and bins.

Lemma 3.3. Let n balls be thrown into n bins, each ball thrown independently and uniformly at
random. Let Lj be the load of the jth heaviest bin, and Nk :=

∑
j≤k Lj be the number of balls in

the k most loaded bins. There exists a constant C0 > 0 such that for any k ≤ C0n,

E[Nk] ≥ Ω

(
k · log(n/k)

log log(n/k)

)
.

Proof. Let t = log(n/k)
log log (n/k) , and define

f(x1, · · · , xn) =

{
1 if the kth largest number in x1, · · · , xn is less than t/2
0 otherwise

.

Clearly, the function f(x1, · · · , xn) satisfies the condition in Lemma 3.2, i.e., f(x1, · · · , xn) is non-
negative and E[f(Xm

1 , · · · , Xm
n )] is monotonically decreasing with m. Since we have an equal

number of balls and bins, we consider the case m = n. We abbreviate Xn
i to Xi and Y n

i to Yi. Let
Mk be the kth largest number among Y1, · · · , Yn. Applying Lemma 3.2,

Pr [Lk < t/2] = E [f(X1, · · · , Xn)] ≤ 2 · E [f(Y1, · · · , Yn)] = 2 · Pr [Mk < t/2] .
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Define the indicator variable Zi := 1(Yi≥t/2), and observe that Pr[Mk < t/2] = Pr[
∑

i Zi < k]. We
bound the latter via a Chernoff bound, so we need a lower bound on E[

∑
i Zi].

E[
∑
i

Zi] = n · Pr[Yi ≥ t/2] ≥ n · Pr[Yi = t/2]
(a)
=

n

e(t/2)!

(b)

≥ 4n

t!

(c)

≥ 4k. (11)

The equality (a) uses the definition of the Poisson distribution, the inequality (b) uses that
t! ≥ 4e(t/2)! for sufficiently large t. For inequality (c), we know t! ≤

√
t/e (t/e)t from Stirling’s

approximation, and so when n/k is sufficiently large, plugging in t = log(n/k)
log log (n/k) gives

log(t!) ≤ (t+ 1/2) log t− t− 1 ≤ t log t ≤ log(n/k).

Putting things together, and using a Chernoff bound, we get

Pr [Lk < t/2] ≤ 2 · Pr [Mk < t/2] = 2 · Pr[
∑
i

Zi < k] ≤ 2e−
(3/4)2.4k

2 ≤ 2e−k.

The lemma then follows directly, as

E[Nk] ≥ E [Nk | Lk ≥ t/2] · Pr [Lk ≥ t/2] ≥ k · (t/2) · (1− 2e−k) = Ω
( k · log(n/k)

log log(n/k)

)
.

The following simple lemma states that in the min cost perfect matching, we can always match
requests and servers in the same location as much as possible. That is, xii = 1

n for every requested
location i.

Lemma 3.4. For sufficiently large n and any k ≤ n/2, we have E[Nk] ≥ 1.5k.

Proof. In expectation, there are n (1− 1/n)n ∼ n/e empty bins, thus on average one would expect
1/(1−1/e) > 1.5 balls in each non-empty bin. To make this intuition formal, let t = (1−1/e+0.01)n
and define

f(x1, · · · , xn) =

{
1 if more than t of x1, · · · , xn are greater than 0
0 otherwise.

It is easy to verify that the function f(x1, · · · , xn) is non-negative and E[f(Xm
1 , · · · , Xm

n )] is
monotonically increasing in m. Define the variable Zi := 1(Yi>0); then Zi ∼ Bernoulli(1 − 1/e).
Lemma 3.2 and a Chernoff bound now give that for sufficiently large n,

E[f(X1, · · · , Xn)] ≤ 2 · E[f(Y1, · · · , Yn)] = 2 · Pr

[∑
i

Zi > tn

]
≤ 2e−

0.012·(1−1/e)n
2 < 0.01.

Hence

E[Nt] ≥ E [Nt | f(X1, · · · , Xn) = 0] · Pr [f(X1, · · · , Xn) = 0] ≥ n · (1− 0.01) = 0.99n.

Finally, for k ≤ n/2(≤ t), we have that indeed E[Nk]
k ≥ E[Nt]

t ≥ 0.99n
(1−1/e+0.01)n ≥

3
2 .
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C.3 Further Deferred Proofs

Lemma 3.5. Let I be a fractional min-cost bipartite metric b-matching instance, with demand `i
and ri for the servers and requests at location i. Then, there exists an optimal solution x for I with
xii = min{`i, ri} for every point i in the metric.

Proof. Fix an optimal solution x∗ of I of maximum
∑

i x
∗
ii among optimal solutions of I. Suppose

for contradiction that there exists some i ∈ Sk such that x∗ii < min{`i, ri}. WLOG `i ≤ ri and so
there exists some locations j, j′ such that x∗ij > 0 and x∗j′i > 0. Let ε = min{x∗ij , x∗j′i}. Consider
the solution x̃ obtained from x∗ by increasing x∗ii and x∗j′j by ε and decreasing x∗ij and x∗j′i by ε.
This x̃ is a feasible solution to I (as sums of the form

∑
i xij and

∑
j xij are unchanged and x̃ ≥ 0).

Moreover, we find that

∑
ij

dij · x̃ij =

∑
ij

dij · x∗ij

+ ε · (dii + djj′ − dij − dij′)

= OPT (I) + ε · (djj′ − dij − dij′) ≤ OPT (I),

by triangle inequality. That is, x̃ is an optimal solution to I with a higher
∑

i xii than x∗, contra-
dicting our assumption. The lemma follows.

Lemma 3.9.
∑n

k=1 ESk∼Uk [M(Sk)] ≤ 2 ·
∑n/2

k=1 ESk∼Uk [M(Sk)].

Proof. As noted in the proof of Lemma 3.7, by Lemma 3.5, the optimal value of M(Sk) is equal to
that of a min-cost bipartite perfect b-matching instance with left vertices associated with Sk with
demand 1

k −
1
n and right vertices associated with S \ Sk with demand 1

n . Similarly, M(S \ Sk) is
equal to the same, but with each i ∈ Sk having demand 1

n and each i ∈ S \ Sk having demand
1

n−k −
1
n . That is, these programs are just scaled versions of each other, and we we have that for

any k ≤ n/2,

M(Sk) =
1/k − 1/n

1/n
·M(S\Sk) =

(n
k
− 1
)
·M(S\Sk) ≥M(S\Sk).

Consequently, taking expectation over Sk (equivalently, over S \Sk), we find that for any k ≤ n/2,
we have ESk∼Uk [M(Sk)] ≥ ESn−k∼Un−k

[M(Sn−k)]. The lemma follows.

D Max Weight Perfect Matching Problem in i.i.d Model

Here we prove that, with a small modification, fair-bias achieves the optimal competitive ratio,
i.e 1/2, in the max weight perfect matching problem introduced in [7]. Here, rather than compute a
minimum cost perfect matching, we are tasked with computing a maximum weight perfect matching,
which need not correspond to a metric. Since we are now in a maximization problem and we are
no longer in a metric space, we will not make the assumption that the distribution of all requests is
uniform among all servers. Moreover, we make the following modification to our algorithm: in each
round of fair-bias, instead of finding a min cost perfect matching, we would find the max weight
perfect matching. Correspondingly, we change the notation for M(T ): instead of being a min cost
perfect b-matching induced by the set of free servers T and requests R, now M(T ) refers to the
max weight perfect b-matching between the set of free servers T and requests R. More formally,
we have

M(T ) := max
∑

i∈T,j∈R
wi,j · xi,j (12)
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s.t.
∑
j∈T

xi,j =
1

|T |
∀i ∈ T

∑
i∈R

xi,j = pi ∀j ∈ R

x ≥ 0.

Generalizing fair-bias, if Sk is the realized set of free servers and xSk an optimal solution to M(Sk),
then upon arrival of a request at location i (which happens with probability pi), we randomly pick
a server s to match this request to, chosen with probability xSk

i,s/pi.
Difference compared to [7]. We note that Chang et al. [7] used a similar LP to M(T ).

Essentially, they used M(S), the program obtained by considering all servers (and not just free
ones). Following [13, 20], they refer to this as the optimum of the “expected graph”. Their algorithm
picks a preferred server among all servers with probability xSk

r,s/pi. If this server is already matched,
in order to output a perfect matching they randomly (i.e., uniformly) pick an alternative server to
match to. Our algorithm does not need to fall back on a second random choice, as it only picks
a server among free servers. As we shall see, our algorithm’s analysis follows rather directly from
our analysis of fair-bias for the minimization variant.

A key observation is that the structure lemma (Lemma 2.2) still holds for our maximization
variant of fair-bias. We restate it here.

Claim D.1. (Structure Lemma, Restated) For each time k, the set Sk is a uniformly-drawn k-subset
of S; i.e., Sk ∼ Uk. Consequently, the weight of the algorithm’s output matching is

E[ALG] =
n∑

k=1

ESk∼ Uk [M(Sk)].

Claim D.1 holds due to the same argument in Lemma 2.2. Notice that all we needed in the proof
of Lemma 2.2 is that upon arrival of a request rk = i when there are k free servers Sk we match
rk = i to a any free server s with probability xSk

i,s/pi, and so we use edge (i, s) with probability

precisely xSk
i,s . This implies that each free server s ∈ Sk is matched with probability precisely 1

k and

that the expected weight of the edge matched is precisely
∑

i∈S,j∈Sk
wi,j · xSk

i,j .
Next, we note that E[OPT ] can be upper bounded in terms of M(S).

Claim D.2. E[OPT] ≤ n ·M(S).

The proof is exactly the same as Equation (5). See also [7, Lemma 1].
Now we can prove that the maximization variant of fair-bias is 1/2 competitive for the max

weight perfect matching problem in the i.i.d model.

Theorem D.3. The max-weight variant of fair-bias is 1/2 competitive.

Proof. Letting xSk ∈ arg maxM(Sk) for every Sk, we have the following bound

ESk∼Uk [M(Sk)] =
∑
Sk

1(
n
k

) ∑
i∈Sk,j∈R

wi,j · xSk
i,j def. of xSk

≥
∑
Sk

1(
n
k

) ∑
i∈Sk,j∈R

wi,j · xSi,j def. of xSk and M(Sk)

=
∑
i∈S

Pr
Sk∼Uk

[i ∈ Sk] ·
∑
j∈R

wi,j · xSi,j
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=
k

n
·M(S) def. of M(S)

≥ k

n2
· E[OPT]. Claim D.2

Summing these up, by the structure lemma (Claim D.1) we have

E[ALG] =
n∑

i=1

ESk∼Uk [M(Sk)] ≥
n∑

k=1

k

n2
· E[OPT] ≥ 1

2
· E[OPT].

E Need for Metricity (or other assumptions)

Here we outline simple examples showing that even under i.i.d arrivals, online minimum cost perfect
matching does not admit even a polynomially-bounded competitive ratio. For unknown i.i.d, and
therefore for random order and adversarial arrivals, even one edge violating the triangle inequality
is enough to rule out sub-exponential competitive ratio. For random order and adversarial arrivals
one such edge is enough to cause the competitive ratio to be unbounded.

Lemma E.1. The competitive ratio of any online min cost perfect matching algorithm under known
i.i.d arrivals is at least Ω(2n/2/n3). This is true even under a uniform distribution and if the costs
of all but 2 request types obey triangle inequality.

Proof. Let n be even and let [n] be the set of servers. Consider the following set of request types
(each with probability 1/n of being drawn at each arrival): the first n− 2 request types have cost
1 to be served by all servers. So far the instance corresponds to the uniform metric on 2n − 2
points. Now, second to last request type has cost 1 to be served by serves in [n/2], and cost 2n/2

to be served by serves in [n/2 + 1, n], and the last request type has the exact opposite costs. When
fewer than n/2 of the last two types arrive, OPT is exactly n, whereas in the opposite case, which
happens with probability at most 2−n/2 by standard Chernoff Bounds, OPT is at most n · expn/4,
and so E[OPT ] ≤ 2n. On the other hand, with probability Ω(1/n2), exactly one request from the
last two request types arrives, and this is the last of all arrivals. In this case, as the algorithm must
match n − 1 servers before this arrival, with constant probability the sole remaining unmatched
server has cost 2n/2 to match to this last request. Therefore, we have E[ALG] = Ω(2n/2/n2).

A similar argument implies that for the unknown i.i.d arrival model, even a single edge which
violates triangle inequality is enough to rule out sub-exponential competitive ratio .

Lemma E.2. The competitive ratio of any online min-cost perfect matching algorithm under un-
known i.i.d arrivals is at least nn−2/2. This is true even under a uniform distribution and if the
costs of all edges but one satisfy the triangle inequality.

Proof (Sketch). The distribution is similar to that of Lemma E.1. We have [n] denote the servers
and have n−1 request types with service cost 1 for each server. The final type has service cost 1 for
all servers except for one (unknown) server for which the service cost is nn. Each request is drawn
uniformly from this distribution. Unless n copies of the last request type arrive (an even which
happens with probability 1/nn), the cost of the optimal matching is OPT = n, and otherwise it is
n− 1 + nn, and so E[OPT ] ≤ 2n. On the other hand, with probability Ω(1/n), the special request
type has exactly one arrival, and this is at the last time step, and so with probability 1/n this
request’s “costly” serve is the sole unmatched server, implying E[ALG] = Ω(nn−2).
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Finally, the same argument can show that the same input as in Lemma E.2, with the sole costly
edge being arbitrarily high, rules out any bounded competitive ratio, as having exactly one request
of each type yields and input with OPT = n but with ALG’s matching cost being unboundedly
bad with probability Ω(1/n).

Corollary E.3. The competitive ratio of any online min-cost perfect matching algorithm under
random arrival order is unbounded. This is true even if the costs of all edges but one edge satisfy
the triangle inequality.
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