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On the complexity of vertex-coloring
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Given a graph G = (V,E) and a weight function w : E → R, a coloring of vertices of G, induced by w, is defined
by χw(v) =

∑
e3v w(e) for all v ∈ V . In this paper, we show that determining whether a particular graph has a

weighting of the edges from {1, 2} that induces a proper vertex coloring is NP-complete.
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1 Introduction
For a given graphG = (V,E), letw : E → R be a weight function. We say thatw is proper if the coloring
of the vertices χw(v) =

∑
e3v w(e), v ∈ V , is proper. In 2004, Karoński, Łuczak, and Thomason (2004)

showed that any graph with no components isomorphic to K2 has a proper weighting from a finite set of
reals. Furthermore, they conjectured that every graph with no components isomorphic to K2 has a proper
weighting from W = {1, 2, 3}. Addario-Berry, Dalal, McDiarmid, Reed, and Thomason (2007) showed
that the above holds if W = {1, . . . , 30}. This result was improved by Addario-Berry, Dalal, and Reed
(2008), who showed that one can take W = {1, . . . , 16}. Subsequently, Wang and Yu (2008) proved that
W = {1, . . . , 13} suffices. A recent breakthrough by Kalkowski, Karoński, and Pfender (2010) showed
that the set of weights can be as small as W = {1, 2, 3, 4, 5}.

On the other hand, Addario-Berry, Dalal, and Reed (2008) showed that almost all graphs have a proper
weighting from {1, 2}. In this paper, we show that determining whether a particular graph has a proper
weighting of the edges from {1, 2} is NP-complete. Consequently, there is no simple characterization of
graphs with proper weightings from {1, 2}, unless P=NP. Formally, let

1-2WEIGHT = {G : G is a graph having a proper weighting from {1, 2}} .
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Fig. 1: A k-disallowing gadget (a) and its symbolic representation (b); a construction of h(G) (c).

Theorem 1.1 1-2WEIGHT is NP-complete.

Before we prove this statement, we consider a similar theorem with a somewhat simpler proof, which
we use as a template to prove Theorem 1.1. By analogy to 1-2WEIGHT we denote by 0-1WEIGHT the
family of graphs with a proper weighting from {0, 1} and show the following:

Theorem 1.2 0-1WEIGHT is NP-complete.

2 0-1WEIGHT is NP-complete
Here we prove Theorem 1.2.

First note that 0-1WEIGHT is clearly in NP, since one can verify in polynomial time for a given graph
whether a weighting of its edges from {0, 1} is proper.

Next we consider the well-known NP-hard problem

3-COLOR = {G : G is a graph having a proper 3-vertex-coloring} .

In order to prove that 0-1WEIGHT is NP-hard (and hence NP-complete), we show a reduction from 3-
COLOR to 0-1WEIGHT. To this end, we define a polynomial time reduction h, such that G ∈ 3-COLOR
if and only if h(G) ∈ 0-1WEIGHT. To achieve this, we need two auxiliary gadgets.

We refer to the first gadget as a triangle gadget. This consists of a triangle xab, with x referred to as
the top and with a and b each having no other coinciding edges. Note that any proper weighting w from
{0, 1} of a graph with such a triangle must hold w(xa) 6= w(xb); otherwise χw(a) = w(ab) + w(ax) =
w(ba)+w(bx) = χw(b). Hence, {w(xa), w(xb)} = {0, 1} and so every such triangle gadget contributes
exactly 1 to χw(x).

The second gadget, called a k-disallowing gadget, consists of a main triangle vxy with v referred to
as the root and with x and y each constituting the top of k − 1 distinct triangle gadgets (see Figure 1(a)).
Note that in any proper weighting w from {0, 1}, w(vx) 6= w(vy); otherwise, as both χw(x) and χw(y)
have k − 1 contributed by x and y’s triangles, χw(x) = w(xv) + w(xy) + k − 1 = w(yv) + w(yx) +
k − 1 = χw(y). Therefore, if w(xy) = 0 then {χw(x), χw(y)} = {k − 1, k} and, if w(xy) = 1 then
{χw(x), χw(y)} = {k, k + 1}. In either case, v has one neighbor z ∈ {x, y} with χw(z) = k, and
consequently, χw(v) 6= k in any proper weighting from {0, 1}. Also {w(vx), w(vy)} = {0, 1} and hence
this gadget contributes exactly 1 to χw(v).
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Now we are ready to show a reduction from 3-COLOR to 0-1WEIGHT, h, such that G ∈ 3-COLOR if
and only if h(G) ∈ 0-1WEIGHT. Let G = (V,E) be a graph of order n. We may assume that n ≥ 3.
Otherwise, n ≤ 2 and G is in 3-COLOR and so it suffices to take as h(G) an empty graph which is
trivially in 0-1WEIGHT. For n ≥ 3 we construct the graph h(G) = (W,F ) as follows (see Figure 1(c)).
We start with G = (V,E). For each v ∈ V :

(i) connect v to two new vertices, s and t (distinct for each v);

(ii) add n− 1 new k-disallowing gadgets for all k ∈ {n+ 2, n+ 3, . . . , 2n} with v as their root.

Clearly, h(G) can be calculated in time polynomial in the size of G.

Fact 2.1 In h(G) the following holds: any proper weighting w from {0, 1} satisfies χw(v) ∈ {n −
1, n, n+ 1} for every v ∈ V .

Proof: Fix v ∈ V . Since w(vs)+w(vt) ∈ {0, 1, 2}, v is the endpoint of deg(v) ≤ n− 1 edges in V , and
v is the root of (n− 1) k-disallowing gadgets (each contributing 1 to χw(v)), we have:

χw(v) ∈ {0, 1, 2}+ {0, 1, . . . , deg(v)}+ {n− 1} ⊆ {n− 1, n, . . . , 2n},

where by A + B we mean the set of all sums of an element from A with an element from B. Observing
the above and the fact that v is the root of k-disallowing gadgets for all k ∈ {n+2, . . . , 2n}, we find that
any proper weighting w from {0, 1} satisfies χw(v) ∈ {n− 1, n, n+ 1}, as claimed. 2

It remains to show that G ∈ 3-COLOR if and only if h(G) ∈ 0-1WEIGHT.
First let us assume that G ∈ 3-COLOR. That means there exists a proper 3-coloring of G, say χ : V →

{n− 1, n, n+1}. We define a weighting of the edges of h(G), w : F → {0, 1} as follows. For all e ∈ E
let w(e) = 0. For all v ∈ V , if χ(v) = n − 1 then w(vs) = w(vt) = 0; otherwise, if χ(v) = n then
w(vs) = 1 andw(vt) = 0; and finally, if χ(v) = n+1 thenw(vs) = w(vt) = 1. All other edges (parts of
gadgets) are weighted as follows: For a triangle gadget xab with root x, w(xa) = 1, w(xb) = w(ab) = 0.
For a k-disallowing gadget with root v, and main triangle vxy, w(vx) = w(xy) = 1, w(vy) = 0, and
the weighting of all other triangle gadgets as described above. Note that w is a proper weighting of h(G)
(satisfying χw(v) = χ(v) for all v ∈ V ), as required.

Now let us assume that G /∈ 3-COLOR. Therefore, for all χ : V → {n− 1, n, n+ 1}, χ is not proper.
But, from Fact 2.1, any proper weighting from {0, 1} of h(G) satisfies χw(v) ∈ {n− 1, n, n+ 1} for all
v ∈ V . Thus, there is no such proper weighting and hence h(G) /∈ 0-1WEIGHT.

This completes the proof of Theorem 1.2.

3 1-2WEIGHT is NP-complete
The proof of Theorem 1.1 extends the ideas introduced in the proof of Theorem 1.2. Since clearly 1-
2WEIGHT is in NP, it remains to show that 1-2WEIGHT is NP-hard. As before, we show a reduction
from 3-COLOR to 1-2WEIGHT. To this end, we define a polynomial time reduction f , such that G ∈
3-COLOR if and only if f(G) ∈ 1-2WEIGHT. Below we define auxiliary gadgets.

As in Section 2, we will use a triangle gadget. Now note that every triangle xab, with only x having
other adjacent edges (x is referred to as the top), contributes exactly 3 to χw(x) in any proper weighting
w from {1, 2}.
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Fig. 2: A k-disallowing gadget (a) for even k, (b) for odd k and their symbolic representation (c); a construction of
f(G), (d).

Now we define a 2-edge gadget consisting of the set of vertices {x, c, d, e, f} with x and c adjacent
and {c, d, e, f} spanning a complete graph K4. One can check that every proper weighting w from {1, 2}
of a graph adjacent to such a gadget only at x requires w(xc) = 2. We refer to x as the endpoint.

We use the above gadgets to construct another gadget, called a k-disallowing gadget. As we will see,
this gadget has similar properties as its namesake in Section 2. We therefore allow ourselves the re-use
of the name for this new, slightly different, gadget. We assume that k ≥ 8. The k-disallowing gadget
contains a main triangle vxy with v referred to as the root. Moreover, if k is even, x and y each form the
endpoint of (k − 6)/2 edge disjoint 2-edge gadgets and x and y are each tops of distinct triangle gadgets
(see Figure 2(a)). If k is odd, x and y each form the endpoint of (k − 3)/2 edge disjoint 2-edge gadgets
(see Figure 2(b)). Note that in any proper weighting w from {1, 2}, w(vx) 6= w(vy); otherwise, since the
weight contributed by gadgets to χw(x) and χw(y) is k − 3, then χw(x) = w(xv) + w(xy) + k − 3 =
w(yv)+w(yx)+k−3 = χw(y). Therefore, for any k, if w(xy) = 1 then {χw(x), χw(y)} = {k−1, k}
and, if w(xy) = 2 then {χw(x), χw(y)} = {k, k+1}. In either case, v has one neighbor z ∈ {x, y} with
χw(z) = k, and consequently, χw(v) 6= k in any proper weighting from {1, 2}. Also {w(vx), w(vy)} =
{1, 2}, and hence this gadget contributes exactly 3 to χw(v).

Now we are ready to show a polynomial time reduction from 3-COLOR to 1-2WEIGHT, f , such that
G ∈ 3-COLOR if and only if f(G) ∈ 1-2WEIGHT. Let G = (V,E) be a graph of order n. As
in Section 2, we may assume that n ≥ 3. We construct the graph f(G) = (W,F ) as follows (see
Figure 2(d)). We start with G = (V,E). For each v ∈ V :

(i) connect v to two new vertices s and t (distinct for each v);

(ii) connect v to all vertices from a new set Uv (distinct for each v) with |Uv| = n− 1− deg(v);
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(iii) add n− 1 new k-disallowing gadgets for all k ∈ {4n+ 1, 4n+ 2, . . . , 5n− 1} with v as their root.

Clearly, f(G) can be calculated in time polynomial in the size of G.

Fact 3.1 In f(G) the following holds: any proper weighting w from {1, 2} satisfies χw(v) ∈ {4n −
2, 4n− 1, 4n} for every v ∈ V .

Proof: Fix v ∈ V . Since w(vs) + w(vt) ∈ {2, 3, 4}, v is the endpoint of n − 1 edges with endpoints in
V ∪ Uv and v is the root of (n− 1) k-disallowing gadgets (each contributing 3 to χw(v)), we have:

χw(v) ∈ {2, 3, 4}+ {n− 1, . . . , 2n− 2}+ {3n− 3} = {4n− 2, . . . , 5n− 1}.

Observing the above and the fact that v is the root of k-disallowing gadgets for all k ∈ {4n + 1, 4n +
2, . . . , 5n− 1}, we find that any proper weighting w from {1, 2} satisfies χw(v) ∈ {4n− 2, 4n− 1, 4n},
as claimed. 2

Now we show that G ∈ 3-COLOR if and only if f(G) ∈ 1-2WEIGHT.
First let us assume that G ∈ 3-COLOR. That means there exists a proper 3-coloring of G, say χ :

V → {4n − 2, 4n − 1, 4n}. We define a weighting of the edges of f(G), w : F → {1, 2} as follows.
For all e ∈ E let w(e) = 1. For all edges e = vu with v ∈ V and u ∈ Uv we set w(e) = 1. For all
v ∈ V , if χ(v) = 4n − 2 then w(vs) = w(vt) = 1; otherwise, if χ(v) = 4n − 1 then w(vs) = 1
and w(vt) = 2; finally, if χ(v) = 4n then w(vs) = w(vt) = 2. All other edges (parts of gadgets) are
weighted as follows: For a triangle gadget xab with root x, w(xa) = 2, w(xb) = w(ab) = 1. For a
2-gadget defined by {x, c, d, e, f} with x adjacent to c, we have w(xc) = w(cd) = w(ce) = w(de) =
w(df) = 2 and w(cf) = w(ef) = 1. For a k-disallowing gadget with root v and main triangle vxy,
w(vx) = w(xy) = 2, w(vy) = 1, and the weighting of all other gadgets as described above. Note that w
is a proper weighting of f(G) (satisfying χw(v) = χ(v) for all v ∈ V ), as required.

Next let us assume that G /∈ 3-COLOR. Therefore, for all χ : V → {4n − 2, 4n − 1, 4n}, χ is
not a proper vertex coloring. But, from Fact 3.1, any proper weighting from {1, 2} of f(G) satisfies
χw(v) ∈ {4n − 2, 4n − 1, 4n} for all v ∈ V . Thus, there is no such proper weighting and hence
f(G) /∈ 1-2WEIGHT.

This concludes the proof of Theorem 1.1.

4 Concluding remarks
In this paper we showed that determining whether a graph has a proper weighting from either {0, 1} or
{1, 2} is NP-complete. As a matter of fact, these two problems are not the same, in the sense that the
corresponding families of graphs 0-1WEIGHT and 1-2WEIGHT are not equal. For example, the graph
consisting only of one 2-edge gadget is in 1-2WEIGHT, as seen before, but it is easy to check that it is not
in 0-1WEIGHT. Furthermore, we believe that our approach can be generalized to show that determining
whether a graph has a proper weighting from {a, b} is NP-complete for any different rational numbers a
and b. It is not clear if the same would hold for any two distinct irrational numbers.
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We would like to thank Michał Karoński, who introduced us to the 1-2-3 conjecture. We are also very
grateful to the referees for their detailed comments on an earlier version of this paper.



50 Andrzej Dudek and David Wajc ‘

References
L. Addario-Berry, K. Dalal, C. McDiarmid, B. A. Reed, and A. Thomason. Vertex-colouring edge-

weightings. Combinatorica, 27(1):1–12, 2007. ISSN 0209-9683. doi: http://dx.doi.org/10.1007/
s00493-007-0041-6.

L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. Discrete
Appl. Math., 156(7):1168–1174, 2008. ISSN 0166-218X. doi: DOI:10.1016/j.dam.2007.05.
059. URL http://www.sciencedirect.com/science/article/B6TYW-4PT2FK1-1/
2/f3371b3c9c874a200bf561073f921e12.

M. Kalkowski, M. Karoński, and F. Pfender. Vertex-coloring edge-weightings: Towards the 1-2-3-
conjecture. J. Comb. Theory, Ser. B, 100(3):347–349, 2010.
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