
Randomized Online Matching in Regular Graphs

Ilan Reuven Cohen ∗‡
The Hebrew University of Jerusalem

David Wajc †‡
Carnegie Mellon University

Abstract
In this paper we study the classic online matching prob-
lem, introduced in the seminal work of Karp, Vazirani
and Vazirani (STOC 1990), in regular graphs. For such
graphs, an optimal deterministic algorithm as well as
efficient algorithms under stochastic input assumptions
were known. In this work, we present a novel random-
ized algorithm with competitive ratio tending to one
on this family of graphs, under adversarial arrival or-
der. Our main contribution is a novel algorithm which
achieves competitive ratio 1−O

(√
log d/

√
d
)
in expec-

tation on d-regular graphs. In contrast, we show that
all previously-studied online algorithms have competi-
tive ratio strictly bounded away from one. Moreover, we
show the convergence rate of our algorithm’s competi-
tive ratio to one is nearly tight, as no algorithm achieves
competitive ratio better than 1−O

(
1/
√
d
)
. Finally, we

show that our algorithm yields a similar competitive ra-
tio with high probability, as well as guaranteeing each
vertex a probability of being matched tending to one.

1 Introduction
The maximum matching problem constitutes one of the
most fundamental problems of computer science, with
countless practical and theoretical applications. This
problem has proven fertile soil for algorithmic study,
giving rise to precursors of key ideas in optimization
theory, including linear programming duality and the
primal-dual method [25, 46, 47], and even the equation
of efficiency with polynomial-time computability [24].
See the books of Lovász and Plummer [48] and Ahuja,
Magnanti, and Orlin [4] for an extensive treatise of some
of the classic results and techniques pertaining to these
problems.

A particularly well-studied instance of the maxi-
mum matching problem is maximum matching in d-
regular bipartite graphs; i.e., bipartite graphs in which

∗email: ilanrcohen@gmail.com. Supported in part by the I-
CORE program (center no. 4/11).
†email: dwajc@cs.cmu.edu. Supported in part by NSF grants

CCF-1527110 and CCF-1618280.
‡This work conducted in part while the authors were visiting

the Simons Institute for the Theory of Computing.

each vertex neighbors d other vertices. The class of bi-
partite d-regular graphs have been studied in many con-
texts, including expander graph constructions, schedul-
ing, routing in switch fabrics, and task assignment
[3, 17, 55]. In the context of matching theory, a conse-
quence of Hall’s Theorem [37] implies that such graphs
can be decomposed into d disjoint perfect matchings.
Indeed, the existence of a perfect matching in bipartite
regular graphs, first proved by König [45], is one of the
seminal results in matching theory.

On the algorithmic front, Gabow and Kariv [29]
presented an elegant O(m)-time algorithm for finding a
perfect matching in m-edge d-regular graphs for d an
integer power of two. (In contrast, for general bipartite
graphs, the best current maximum matching algorithms
require ω(m) time [38, 49].) Subsequent work, including
[5, 16, 17, 18, 58], finally culminated in an O(m)-time
perfect matching algorithm for all d. This linear-time
bound was later proven to be optimal for deterministic
algorithms by Goel, Kapralov and Khanna [34]. More-
over, those authors [32, 33, 34] presented sublinear -time
randomized algorithms for this problem, finally present-
ing an O(n log n)-time algorithm for perfect matching in
n-vertex regular bipartite graphs.

Online Matching. Given the importance of max-
imum matching in the classic offline model of compu-
tation, it is no surprise that it was also one of the first
problems to be considered in an online setting. In 1990,
in a seminal paper, Karp, Vazirani and Vazirani [43]
introduced the problem of online matching in general
(not necessarily regular) bipartite graphs under vertex
arrivals in one side of the graph. Karp et al. showed that
any deterministic algorithm, as well as the natural ran-
domized algorithm relying on uncorrelated randomness,
are no better than 1/2-competitive. More interestingly,
they presented an elegant use of correlated randomness
which yields a competitive ratio of 1−1/e for this prob-
lem, and proved this bound is best possible for any ran-
domized algorithm.

The emergence of Internet advertising proved to
be a catalyst for the resurgence of interest in online
matching problems and their generalizations. In [54]
Mehta et al. presented an (optimal) 1−1/e-competitive

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

algorithm for the adwords problem; generally, they
related online matching and its extensions to Internet
advertising, which sparked a flurry of research in this
field. See e.g. [8, 19, 27, 28, 35, 36, 39, 42, 50, 52]
for a partial list of such work and Mehta [53] for a
survey of recent developments in the field. We point
out the work of Aggarwal et al. [2], who obtained a
similar optimal 1 − 1/e bound for the vertex-weighted
online matching problem (where offline vertices have
some weight and the goal is to maximize the weight
of matched offline vertices), a problem which we also
consider in this paper.

Breaking the 1−1/e Barrier. The 1−1/e hard-
ness result of Karp et al. [43] for online matching is
prevalent in all this problem’s extensions. However, the
practical importance of these problems for Internet ad-
vertising have motivated researchers to seek a better
theoretical understanding of beyond worst-case guaran-
tees.

One such line of research considers stochastic arrival
models; in particular, random order arrival and iid
arrival models. In the random order model some input
graph is fixed ahead of time and the online vertices are
randomly permuted. In the iid arrival model, online
vertices are drawn from some (known or unknown)
distribution. For these arrival models, results beating
the 1−1/e competitive ratio were shown both for online
matching [8, 28, 42, 51, 52] and online vertex-weighted
matching [11, 36, 39]. For example, the ranking
algorithm of Karp et al. [43] is the current state-of-
the-art for online matching in random order, obtaining
competitive ratio of 0.696 [51], breaking the 1 − 1/e ≈
0.632 barrier in this model. On the other hand, even
these stochastic assumptions have their limitations, and
no algorithm can achieve competitive ratio better than
0.823 for these arrival models [52].

A different approach considers structural assump-
tions on the input. For the adwords problem, Buch-
binder et al. [12] showed that the natural assumption
of online vertices having degree at most some d al-
lows for a competitive ratio of 1 − (1 − 1/d)d. Azar
et al. [7] later showed this bound to be optimal. For on-
line matching and vertex-weighted matching, Naor and
Wajc [56] showed that adding the assumption that of-
fline vertices have degree at least k allows for a deter-
ministic algorithm with competitive ratio 1−(1−1/d)k.
In particular, for d-regular graphs, they showed the
optimal competitive ratio for deterministic algorithms
is 1 − (1 − 1/d)d. Deterministic algorithms on d-
regular graphs therefore outperform the 1 − 1/e opti-
mal bound of randomized algorithms in general (non-
regular) graphs; however, as d grows, deterministic al-
gorithms’ competitive ratio deteriorates back to 1−1/e.

Online Matching in Regular Graphs. In this
work, we study the classic problem of online matching,
in the class of d-regular graphs. For this class deter-
ministic algorithms fare better than on general graphs.
A natural question thus arises: “what is the optimal
competitive ratio for randomized online matching algo-
rithms on regular graphs?” We address this question
here, showing that while the problem becomes inher-
ently harder for deterministic algorithms as d grows (by
[56]), it becomes easier for randomized algorithms.

1.1 Our Results Our main contribution is a new
randomized algorithm, marking, which achieves com-
petitive ratio tending to one as d grows on d-regular
graphs.

Theorem 1.1. Algorithm marking achieves competi-
tive ratio (1− 2

√
Hd√
d

) = 1−O(
√

log d√
d

) on d-regular graphs.

We show the convergence of our algorithm’s com-
petitive ratio to one is near optimal.

Theorem 1.2. No randomized online matching algo-
rithm is better than

(
1− 1√

8πd

)
= 1−O(1√

d
)-competitive

on d-regular graphs.

We further show our algorithm achieves similar
competitive ratio with high probability.

Theorem 1.3. Algorithm marking is 1 − O(logn√
d

)-
competitive w.h.p. on n-vertex d-regular graphs.

Finally, we show our algorithm matches each ver-
tex with probability tending to one, implying a high
competitive ratio for weighted online matching variants
(more on this below).

Theorem 1.4. A modification of Algorithm marking
guarantees each vertex (both offline and online) a prob-
ability of 1 − O

(3
√

log d
3√
d

)
of being matched in d-regular

graphs. Algorithm marking itself matches each vertex
with probability at least 1−O

(√
log d
4√
d

)
.

Remark 1. We note that Karande et al. [42]
and Bahmani and Kapralov [8] showed that algorithms
ranking and random are 1 − O(1√

d
)-competitive on

d-regular graphs in the random order arrival model and
iid arrival model, respectively.1 In contrast, we show

1More generally, Karande et al. [42] showed that ranking
is 1 − O(1√

k
)-competitive on inputs with k edge-disjoint perfect

matchings in the random order model. As d-regular graphs can
be partitioned into d edge-disjoint perfect matchings, ranking is
therefore 1−O(1√

d
)-competitive on d-regular graphs in this model.

However, as we show in the full version of the paper, a graph
containing many edge-disjoint perfect matchings does not imply
even a constant additive improvement over the optimal 1 − 1/e
competitive ratio in the adversarial arrival model.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

that for the stricter adversarial arrival model algorithms
ranking and random (and many other natural algo-
rithms) do not achieve competitive ratio tending to one
as d grows on d-regular graphs. Nonetheless, we present
a new online matching algorithm which achieves similar
1 − Õ

(
1√
d

)
bounds on d-regular graphs in the stricter

adversarial arrival model.
Remark 2. Previous hardness results for online

matching and related problems can all be recast as hard-
ness results for fractional algorithms. This method does
not apply to our settings. Instead, our hardness result
explicitly considers variance of the integral solution (see
Section 8).

Remark 3. To the best of our knowledge, Theorem
1.3 is the first non-trivial (i.e., beating 1/2) high-
probability result for online matching in the adversarial
arrival model.

Remark 4. Note that this “fairness” property
of matching each vertex with probability at least c
implies a c-competitive ratio for vertex-weighted online
matching, where weights are given to both offline and
online vertices. Our algorithm is therefore the first
to beat the 1/2-competitive ratio on any non-trivial
graph class for the vertex-weighted variant with weights
assigned to online vertices.

Online Dependent Rounding Throughout this
paper, for simplicity of exposition we focus on matching
in regular graphs. In the paper’s full version we present
our general algorithm: an online dependent rounding
scheme which yields similar results for graphs admitting
an efficient fractional online matching algorithm induc-
ing fractional solutions with low “variance”. Dependent
rounding schemes have been studied extensively in the
offline setting [1, 6, 10, 14, 20, 21, 22, 30] and have
found many applications (e.g., [1, 9, 13, 15, 30]). In
the full version we present further applications of our
online dependent rounding scheme. For example, we
obtain a 1−O(1/ 3

√
d)-competitive algorithm for graphs

with minimum online degree at least d and maximum
offline degree at most d, and more generally with each
offline vertex having degree at most equal to the har-
monic mean of its neighbors’ degrees. Similarly, we ob-
tain high competitive ratio if online vertices have low
degree and offline vertices have high degree – a sce-
nario relevant to computational advertising. Finally, we
use our dependent rounding scheme to obtain sublinear-
time (1 − o(1))-approximate matching algorithms that
are faster than the O(n log n)-time algorithm of Goel
et al. [34], in the more restrictive online setting.2

2We thank Noga Alon for pointing out some of these applica-
tions and encouraging us to explore applications of our approach
to sublinear-time algorithms.

1.2 Our Techniques Our randomized algorithm is
guided by the optimal fractional online matching algo-
rithm, which assigns a value of 1/d to each edge. Con-
sequently, we strive to give every edge (i, t) a marginal
probability of roughly 1/d of being included in the
matching. This property would imply the probability
of each offline vertex i to be matched after arrival time
t is equal to 1/d times i’s current degree; that is, the
number of previously-arrived neighbors of this offline
vertex. While the goal of guaranteeing 1/d marginal
probability per edge of each online vertex may tempt us
to consider choosing matches fairly (uniformly at ran-
dom) among the unmatched neighbors, this approach
does not guarantee the right marginals, as the following
example shows.

Example 1. Suppose an online vertex t has d/2
neighbors of current degree one (unmatched, as t is
their first neighbor) and d/2 neighbors of current degree
d/2 + 1 (each previously matched with probability 1/2,
independently). The expected number of non-matched
high-degree vertices is d/4, and this number is sharply
concentrated; thus, the marginal probability of (i, t) for
high-degree vertices i is only roughly 2/(3d) and for low-
degree i, this marginal probability is roughly 4/(3d).3

This example suggests that in order to obtain
near-optimal marginal probabilities, an algorithm must
discriminate among offline neighbors based on their
current degree. For the above example, the following
local allocation rule suffices to closely approximate the
proper marginal probabilities. We assign each offline
vertex a weight inversely proportional to its residual
degree (that is, dminus its current degree) and match an
arriving online vertex to an unmatched neighbor with
probability proportional to its weight. In the previous
example, the high-degree vertices would be given a
weight of 2/d while the low-degree vertices would be
assigned a weight of 1/d. All of t’s neighbors will then
be matched to t with probability roughly 1/d.

More generally, this weight-based allocation rule
maintains roughly 1/d marginals, assuming indepen-
dence. However, our algorithm must further consider
correlations, as an offline vertex i’s probability of be-
ing matched to some online neighbor t depends on the
set of unmatched neighbors of t conditioned on i be-
ing unmatched and may therefore be hard to bound.
Crucially, positive correlation between offline vertices’
probability of being matched may harm any algorithm’s
performance, as the following example illustrates.

Example 2. Consider an online vertex t with d
neighbors of current degree d/2 + 1 which are perfectly

3Later we formalize and expand this example to show that the
random algorithm, which picks a match uniformly at random
among unmatched neighbors, is 1− Ω(1)-competitive.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

positively correlated; specifically, either all of t’s neigh-
bors are matched prior to t’s arrival, with probability
1/2, or none are. Then, the marginal probability of each
edge (i, t) is only 1/(2d).

Unfortunately, every maximally-matching algo-
rithm has d-regular graphs for which it creates posi-
tive correlations between some offline vertices. These
positive correlations seem difficult to control. With this
observation in mind, our algorithm will not be maximal,
turning down (some) possible matches.

To avoid positive correlations, our algorithm re-
lies on the more robust notion of marked offline ver-
tices. Marked offline vertices will form a superset of
the matched offline vertices, and will never be eligible
to be matched. The ability to mark more than one of-
fline vertex (or none) following each arrival allows us
to ensure each offline vertex a marginal probability of
precisely 1/d of being marked. In particular, for any
pair (i, t), our algorithm guarantees a fixed probability
of marking the unmarked offline vertex i upon arrival of
t independently of the realization of t’s other unmarked
neighbor set.4 Specifically, if the sum of the weights of
t’s unmarked neighbors is higher than its mean, each
neighbor is also marked, without being matched, inde-
pendently with some correcting probability (determined
by the sum of weights’ deviation from its mean). Con-
versely, if the total weight is smaller than its mean, the
algorithm marks no neighbor (and so does not match t)
with probability proportional to the deviation.

For the above marking procedure, the indicators
for pair (i, t) incurring a mark satisfy both previously-
discussed positive properties: 1/dmarginal probabilities
and negative correlation. The latter property allows us
to show the total weight of the unmarked neighbors
is concentrated, and as such allows us to bound the
deviation, which corresponds to the expected loss of the
algorithm.

Moreover, the negative correlation of these indica-
tors allows us to appeal to high concentration bounds,
in the form of Chernoff’s and Bernstein’s inequality on
(weighted) sums of these variables. This allows us to
bound the sum of weights of neighbors of online vertices,
showing it does not deviate much from its expectation.
As such deviation determines our algorithm’s probabil-
ity of matching edges, the concentration of this sum
yields both our high probability and per-vertex guaran-
tees.

4Of course, marking each offline neighbor independently would
satisfy the above properties. However, this approach would cause
each online vertex to not mark any of its neighbors, and in
particular would cause it to not be matched, with probability
(1 − 1/d)d → 1/e. Our algorithm must therefore mark its
neighbors using correlated randomness.

1.3 Paper Outline We start by formally defining
the problems we consider and outlining some negative
dependence properties we use in our analysis, in Sec-
tion 2. We then analyze several natural randomized
online matching algorithms in the context of regular
graphs, including the well-studied ranking and ran-
dom algorithms and show that these algorithms are
highly suboptimal on this family of inputs, in Section 3.
We then introduce our randomized algorithm and prove
some useful properties of this algorithm used for its anal-
ysis, including its aforementioned negative dependence
properties, in Section 4. Using these properties, we then
proceed to bound our algorithm’s competitive ratio in
expectation and with high probability in Sections 5 and
6 respectively, as well as bounding its per-vertex guar-
antees in Section 7. Finally, we complement our posi-
tive results with a nearly-matching lower bound in Sec-
tion 8.

2 Problem Definitions and Preliminaries
An instance I of the online matching problem consists
of a bipartite graph G = (L,R,E). The left hand side
vertices, which we refer to as offline vertices, are known
a priori; the right hand side vertices, which we refer
to as online vertices, are revealed over time. WLOG,
we assume the online vertices are numbered 1, 2, . . . , |R|.
The t-th online vertex is revealed at time step t together
with all of its edges. At this point, an online matching
algorithm immediately and irrevocably choose which
of t’s unmatched neighbors to match t to (if any).
An instance of the online vertex-weighted matching
problem consists similarly of a bipartite graph with
similar arrival dynamics, with the vertices associated
with a weight function w : V → R+. Online matching
is the special case of online vertex-weighted matching
where the weights are all one.

For an online vertex-weighted matching algorithm
A and instance I, denote by MA(I) the matching
output by A on I and by OPT (I) a maximum-weight
matching on I, where the weight of a matching M
is simply the sum of its matched vertices’ weights;
that is, w(M) ,

∑
v∈V (M) w(v). Algorithm A is

c-competitive on instance I if E[w(MA(I))] ≥ c ·
w(OPT (I)). Moreover, algorithm A is said to be
c-competitive on a family of instances F if it is c-
competitive on every instance I ∈ F . Naturally, one
seeks an algorithm of highest possible competitive ratio
on families of interest.

2.1 Negative Dependence Properties. In our
analysis we rely on several notions of negative depen-
dence between random variables. In particular, at the
heart of our analysis is the notion of negative associa-

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

tion, introduced by Khursheed and Lai Saxena [44] and
Joag-Dev and Proschan [40].

Definition 2.1 (Negative Association [40, 44]). A joint
distribution X1, X2, . . . , Xn is said to be negatively
associated (NA) if for any two functions f, g both
monotone increasing or both monotone decreasing, with
f(~X) and g(~X) depending on disjoint subsets of the Xi,
f(~X) and g(~X) are negatively correlated; i.e.,

E[f(~X) · g(~X)] ≤ E[f(~X)] · E[g(~X)].

Clearly, independent random variables are NA.
Another class of NA distributions is captured by the
zero-one rule. This rule asserts that if X1, X2, . . . , Xn

are zero-one random variables whose sum is always at
most one,

∑
iXi ≤ 1, then X1, X2, . . . , Xn are NA

(see [23]). Additional, more complex, NA distributions
can be “built” from simpler NA distributions using the
following closure properties.

(P1) Independent Union.
If X1, X2, . . . , Xn are NA, Y1, Y2, . . . , Ym are
NA, and {Xi}i are independent of {Yj}j , then
X1, X2, . . . , Xn, Y1, Y2, . . . , Ym are NA.

(P2) Concordant monotone functions.
Let f1, f2, . . . , fk : Rn → R be all mono-
tone increasing or all monotone decreasing, with
the fi(~X) depending on disjoint subsets of
X1, X2, . . . , Xn. Then, if X1, X2, . . . , Xn are NA,
so are f1(~X), f2(~X), fk(~X).

Negative association implies several useful proper-
ties, including the applicability of Chernoff-Hoeffding
type bounds [23]. In addition, NA clearly implies pair-
wise negative correlation. More generally, NA implies
the stronger notion of negative orthant dependence.

Definition 2.2. A joint distribution X1, X2, . . . , Xn is
said to be Negative Upper Orthant Dependent (NUOD),
if for all ~x ∈ Rn it holds that

Pr[
∧
i∈[n]

Xi ≥ xi] ≤
∏
i∈[n]

Pr[Xi ≥ xi],

and Negative Lower Orthant Dependent (NLOD) if for
all ~x ∈ Rn it holds that

Pr[
∧
i∈[n]

Xi ≤ xi] ≤
∏
i∈[n]

Pr[Xi ≤ xi].

A joint distribution is said to be Negative Orthant
Dependent (NOD) if it is both NUOD and NLOD.

Lemma 2.3 (NA variables are NOD ([23, 40])). If a
joint distribution X1, . . . , Xn is NA, then it is NOD.

In our analysis we will prove some scaled Bernoulli
random variables are NUOD. To motivate our interest
in this form of negative dependence, we note that for bi-
nary NUOD variables X1, X2, . . . , Xn, we have that for
each set I ⊆ [n], Pr[

∧
i∈I Xi = 1] ≤

∏
i∈I Pr[Xi = 1].

As shown by Panconesi and Srinivasan [57, proof of The-
orem 3.2, with λ = 1], this property implies that the
moment generating function of the sum of the Xi is up-
per bounded by the moment generating function of the
sum of independent copies of the Xi variables. A simple
extension of their argument shows the same holds if the
Xi are NUOD scaled Bernoulli variables. As in [57], fol-
lowing the standard proofs of Chernoff-Hoeffding type
bounds, this upper bound on the moment generating
function implies the applicability of the following up-
per tail bounds to the sum of NUOD scaled Bernoulli
variables “as though these variables were independent”.

Lemma 2.4 (Chernoff Bound for NUOD Bernoulli
Variables, [57]). Let X be the sum of binary NUOD
random variables X1, X2, ..., Xn. Then, for any δ > 1,

Pr[X > (1 + δ) · E[X]] ≤ exp

(
−δ · E[X]

3

)
.

Lemma 2.5 (Bernstein’s Inequality for NUOD Scaled
Bernoulli Variables). Let X be the sum of NUOD ran-
dom variables X1, X2, ..., Xn with Xi ∈ {0,Mi} and
Mi ≤M for each i ∈ [n]. Then, if σ2 =

∑n
i=1 V ar(Xi),

we have for all a > 0,

Pr[X > E[X] + a] ≤ exp

(
−a2

2(σ2 + aM/3)

)
.

3 Natural Approaches and Their Limitations
First, we consider several natural randomized online
matching algorithms and prove bounds on their com-
petitive ratio, showing that none of these algorithms
achieves competitive ratio tending to one as d grows. As
these results are somewhat tangential to our main re-
sult, we defer the proofs of this section to Appendix A,
where we also discuss several other natural randomized
algorithms. A particular family of d-regular instances
of interest in our proofs of this section is given in Figure
1 (here d = 2k).

random. The simplest and arguably the most
natural randomized algorithm to consider for online
matching is algorithm random, which matches an on-
line vertex to some unmatched neighbor chosen uni-
formly at random. While this algorithm has competitive
ratio tending to 1

2 for general graphs (see [43]), it can be
shown to be at least 1− (1− 1/d)d > 1− 1

e competitive
for regular graphs (see [56]). This algorithm does not,
however, achieve competitive ratio tending to one as d
grows.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

N(t) =


[2k] t ∈ [k]

[k] ∪ (2k, 3k] t ∈ (k, 2k]

(k, 2k] ∪ (3k, 4k] t ∈ (2k, 3k]

(2k, 4k] t ∈ (3k, 4k]

(a)

d/2 d 3d/2 2d

d/2

d

3d/2

2d

(b)

Figure 1: Instance Family. Subfigure 1a shows the
online vertices’ neighborhoods. Subfigure 1b shows the
bipartite adjacency matrix of the input. Blue entries
correspond to edges (“1” entries).

Lemma 3.1. Algorithm random is at most 11/12-
competitive on d-regular graphs.

ranking. Another natural algorithm to consider
is the optimal randomized algorithm for general bipar-
tite graphs, namely Algorithm ranking of Karp et al.
[43]. This algorithm starts by choosing a random per-
mutation σ ∈ Sn of the n offline vertices, following
which each online vertex is matched upon arrival to
its unmatched neighbor of lowest value according to
the permutation σ. While this algorithm achieves the
optimal 1 − 1/e competitive ratio for general bipartite
graphs, and gets a competitive ratio of 1 − O(1√

d
) on

d-regular graphs under random arrival order [42], this
algorithm’s competitive ratio on d-regular graphs under
adversarial arrival order does not tend to one as d grows.

Lemma 3.2. Algorithm ranking is at most (7/8 +
o(1))-competitive on d-regular graphs.

Randomized Multiplicative Weights. In [56]
Naor and Wajc proved that matching each online vertex
to an unmatched neighbor of maximum (current) degree
is the optimal deterministic algorithm for d-regular
graphs. The analysis of [56], which interprets the choice
of a highest-degree unmatched neighbor to match as a
choice of an unmatched neighbor i maximizing (d/(d−
1))dt(i) (where dt(i) is the degree of i at time t), suggests
the following randomized matching algorithm: for each
online vertex t, match t to its unmatched neighbor i with
probability proportional to (d/(d − 1))dt(i) this driving
exponential weight. We call this matching algorithm

Random Multiplicative Weights, or rmwm for short.
This algorithm can be shown to be at least 1−(1−1/d)d-
competitive (see Appendix A) but its competitive ratio
too does not converge to one as d increases.

Lemma 3.3. Algorithm rmwm is at most 3
4 + µ

2 ≈
0.946-competitive on d-regular graphs. Here µ ≈ 0.393
is the solution to 2µ+ µ

√
e = 1.

Random Among Highest-Degree Neighbors
Another natural randomized algorithm works as follows:
whenever an online vertex arrives, match it uniformly
at random to one of its unmatched neighbors of highest
(current) degree. (This algorithm can be verified to be
optimal for d = 2. We omit the proof for the sake
of brevity.) By the result of [56], as this algorithm
matches each online vertex to an unmatched neighbor
of highest degree, this algorithm’s competitive ratio on
d-regular graphs is at least 1 − (1 − 1/d)d > 1 − 1

e .
However, by the next lemma, this bound is effectively
tight for random-among-highest, which is therefore
asymptotically no better than the best deterministic
online matching algorithm for d-regular graphs.

Lemma 3.4. Algorithm random-among-highest
run on d-regular graphs has competitive ratio at most

1−
(

1− 1

d

)d
+O

(
1

d

)
.

In particular, for d → ∞, this algorithm’s competitive
ratio tends to 1− 1

e .

4 The marking Algorithm
In this section we present our algorithm for online
matching in regular graphs, Algorithm marking, which
is parameterized by some ε ∈ [0, 1], though generally
we will consider ε = 1/

√
d. (Unless otherwise stated,

we implicitly assume ε = 1/
√
d.) Algorithm marking

guarantees each offline vertex a probability of exactly
(1−ε)/d of being marked following each of its neighbors’
arrivals. (This ε helps us control variance, key to
our per-vertex and high probability guarantees.) In
order to do so, at time t the algorithm associates a
weight to each unmarked offline neighbor i of t inversely
proportional to i’s probability of not being marked
prior (for which, by construction, we have a closed
form). We call unmarked neighbors of t candidates,
and only they are eligible to be matched to t. The
algorithm then, with probability 1− ε, chooses a single
candidate vertex to match t to (and mark), chosen with
probability proportional to its weight. This step alone
may give t’s low-degree neighbors a probability of being
marked greater or less than 1−ε

d if the overall weight
of t’s candidates is too low or too high, respectively.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Accordingly, if the weight of t’s candidate set is smaller
than its expectation, the algorithm chooses not to match
t to any neighbor with probability 1− P1, proportional
to this deviation. If the converse holds, the algorithm
marks each candidate neighbor independently with the
correcting probability P2. These steps guarantee both
that the marginal probability of an edge causing a
mark is equal to the fractional value (1− ε)/d, together
with some strong negative correlation properties, which
imply the algorithm’s guarantees. Our algorithm, given
below, requires the following notation.

• dti the degree of i at time t.

• For a set S with weights w : S → R+ we
denote by w(S) =

∑
i∈S w(i). Moreover, we have

P1(S,w) , min{w(S)
d , 1} · (1− ε) and P2(S, i, w) ,

max

{(
w(S)

d −1
)
·w(i)·(1−ε)

w(S)−w(i)·(1−ε) , 0

}
.

• F t, the set of free (unmarked) offline vertices until
time t (inclusive).

Algorithm 1 marking

1: for all online vertices t with free neighbor do
2: ct ← N(t) ∩ F t−1.
3: for all i ∈ ct do
4: set wt(i)← d

d−dti·(1−ε)
.

5: w.p. P1(ct, wt) match t to some i∗ ∈ ct chosen
w.p. wt(i∗)/wt(ct) and mark i∗.

6: for all j ∈ ct \ {i∗} do
7: w.p. P2(ct, j, wt) mark j.

By definition, we have wt(i) ∈ (0, d] for all i ∈ ct,
and so P1, P2 ∈ [0, 1] are both well-defined probabilities.
Now, let F ti , 1[i ∈ F t] be an indicator for whether
offline vertex i is free after time t (inclusive), and
M t
i , 1[i ∈ F t−1 \ F t] be an indicator for whether

offline vertex i was marked at time t. Finally, let Ct
be the random set corresponding to ct. In the following
claims, we show that Pr[M t

i] = (1−ε)/d for all (i, t) ∈ E,
yielding a closed-form expression for Pr[F ti].

Claim 4.1. For any ct 3 i, we have Pr[M t
i | Ct = ct] =

wt(i) · 1−ε
d .

Proof. If wt(ct) ≤ d then P1(ct, wt) = wt(ct)
d · (1 − ε),

while P2(ct, i, wt) = 0, and so

Pr[M t
i | Ct = ct] = P1(ct, wt) · w

t(i)

wt(ct)
= wt(i) · 1− ε

d
.

Conversely, if wt(ct) > d then P1(ct, wt) = 1 − ε,

while P2(ct, i, wt) =

(
wt(ct)

d −1
)
·wt(i)·(1−ε)

wt(ct)−wt(i)·(1−ε) . A simple

calculation verifies that these choices of P1 and P2 imply
Pr[M t

i | Ct = ct] = wt(i) · 1−ε
d . (Indeed, P2 was chosen

precisely with this goal in mind.)

Taking total probability over all ct 3 i, we obtain
the following.

Claim 4.2. For any offline vertex i and time t with
(i, t) ∈ E, we have Pr[M t

i | F
t−1
i] = wt(i) · 1−ε

d .

The above claim yields a simple closed-form expres-
sion for the probability of a vertex to be free, given in
the following lemma.

Lemma 4.3. For any offline vertex i and time t, we
have Pr[M t

i] = (1−ε)·1[(i,t)∈E]
d , and consequently

Pr[F ti] = 1− dti · (1− ε)
d

=
d− dti · (1− ε)

d
.

Proof. We prove by induction on t that Pr[M t
i] =

(1−ε)·1[(i,t)∈E]
d . Together with the obvious observation

that Pr[i ∈ F 0] = 1, this claim implies the lemma.
Clearly Pr[M t

i] = 0 if (i, t) 6∈ E, so we now consider
(i, t) ∈ E. Indeed, by Claim 4.2 and the inductive
hypothesis, we have

Pr[M t
i] = Pr[M t

i | F t−1
i] · Pr[F t−1

i]

= wt(i) · 1− ε
d
· d− d

t−1
i · (1− ε)
d

,

which by our choice of wt(i) = d
d−dti·(1−ε)

is just 1−ε
d .

The above lemma immediately gives us the ex-
pected weight of Ct.

Corollary 4.4. For each online vertex t, we have that
E[wt(Ct)] = d.

Proof. By Lemma 4.3, every neighbor i of t has weight
wt(i) = F t−1

i /Pr[F t−1
i] and thus expected weight pre-

cisely E[wt(i)] = 1. Thus, by linearity of expectation
we have that indeed E[wt(Ct)] =

∑
i∈N(t) 1 = d.

We will later wish to show the weight of the set Ct is
concentrated around its mean. In the next section we set
the stage for such claims, proving negative dependence
between the F ti .

4.1 Negative Correlation of the F ti . Here we show
that for any time t, the random indicator variables F ti
are negative upper orthant dependent (NUOD). That
is, for any set of offline vertices I ⊆ L we have

(4.1) Pr[
∧
i∈I

F ti] ≤
∏
i∈I

Pr[F ti].

Essential to our proof of the above is the negative
association of the variables M t

i conditioned on the set
Ct of candidates of online vertex t.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Lemma 4.5. For any time t and set I ⊆ N(t), for
any ct ⊇ I, the variables {M t

i | i ∈ I} are negatively
associated conditioned on Ct = ct.

Proof. For all k ∈ ct, let Ak be an indicator for whether
k was marked in Line 5 and let {Bk | k ∈ ct} be
independent Bernoulli trials with success probability
P2(ct, i, wt). Clearly the Ak are zero-one variables with∑
k∈ct Ak ≤ 1, and so by the zero-one rule, the variables

{Ak | k ∈ ct} are NA. Furthermore, the variables {Bk |
k ∈ ct} are independent, and as such are NA. Moreover,
the joint distributions {Ak | k ∈ ct} and {Bk | k ∈ ct}
are independent of each other and so, by Property
(P1), the joint distribution D = {Ak, Bk | k ∈ ct} is
NA. Finally, the set {M t

k} are the output of monotone
increasing functions defined by disjoint subsets of a set
of NA variables (as M t

k = Ak ∨ Bk, since k is marked
either in Line 5 or in Line 7), and so the variables M t

k

are NA, by Property (P2).

Corollary 4.6. For any time t and sets I, J ⊆ L, with
I ⊆ N(t), we have

Pr[
∧
i∈I

M t
i |

∧
i∈I∪J

F t−1
i] ≤

∏
i∈I

(
1− wt(i) · 1− ε

d

)
.

Proof. By Lemma 4.5, for all ct ⊇ I the variables
{M t

i | i ∈ I} conditioned on Ct = ct are NA, and so by
Lemma 2.3 are NLOD. Thus, by Claim 4.1, we obtain

Pr[
∧
i∈I

M t
i | C

t = ct] ≤
∏
i∈I

Pr[
∧
i∈I

M t
i | C

t = ct]

=
∏
i∈I

(
1− wt(i) · 1− ε

d

)
.

Taking total probability over the events where∧
i∈I∪J F

t−1
i then yields the desired result.

Having proved Claim 4.2 and Corollary 4.6, we are
now ready to prove that the F ti satisfy 4.1.

Lemma 4.7. For any set of offline vertices I ⊆ L and
time t, we have

Pr[
∧
i∈I

F ti] ≤
∏
i∈I

Pr[F ti].

Proof. We prove this lemma by induction on t. First,
clearly Pr[

∧
i∈I F

0
i] = 1 =

∏
i∈I Pr[F 0

i]. Next, we
assume for t − 1 and prove for t. In our proof,
for the step of time t, for any vertex i ∈ I we
let Xi = Pr[F t−1

i]. By the inductive hypothesis,
Pr[
∧
i∈I F

t−1
i] ≤

∏
i∈I Pr[F t−1

i] =
∏
i∈I Xi. We now

address the inductive step. Let J = I ∩N(t). Then for
each i ∈ I \ J we clearly have Pr[F ti] = Pr[F t−1

i] = Xi.

On the other hand, by Claim 4.2, for any i ∈ J we have
Pr[F ti] = Pr[M t

i | F
t−1
i] · Pr[F t−1

i] =
(
1− wt(i) · 1−ε

d

)
·

Xi. Combining these bounds with the inductive step
and Corollary 4.6, we obtain

Pr[
∧
i∈I

F ti] = Pr[
∧
i∈J

M t
i |
∧
i∈I

F t−1
i] · Pr[

∧
i∈I

F t−1
i]

≤
∏
i∈J

(
1− wt(i) · 1− ε

d

)
·
∏
i∈I

Xi

=
∏
i∈I

Pr[F ti].

In particular, Lemma 4.7 implies that the variables
F ti are pairwise negatively correlated.

Corollary 4.8. For any two offline vertices i, j and for
any time t, we have Cov(F ti , F

t
j) ≤ 0.

For the next corollary, let ∆t
i , d − dti + 1 denote

the “residual” degree of i before time t.

Corollary 4.9. For each online vertex t, we have that

V ar(wt(Ct)) ≤
∑
i∈N(t)

V ar(wti) ≤ min

 ∑
i∈N(t)

d

∆t
i

,
d

ε

 .

Proof. As wt(i) =
F t−1

i

Pr[F t−1
i]

by Lemma 4.3, the variance

of this weight is at most V ar(wt(i)) ≤ 1
Pr[F t−1

i]
=

d
d−dt−1

i (1−ε) ≤ min{ d
∆t

i
, 1
ε }. The corollary then follows

by sub-additivity of variance of pairwise negatively-
correlated variables, together with Corollary 4.8.

Lemma 4.10. Taking the expectation over a uniformly-
chosen online vertex t, we have

Et[V ar(wt(Ct))] ≤ d ·Hd.

Et[
√
V ar(wt(Ct))] ≤

√
d ·Hd.

Proof. By Corollary 4.9, for each time t, we have that
V ar(wt(Ct)) ≤

∑
i∈N(t)

d
∆t

i
. Consequently,

Et[V ar(wt(Ct))] ≤

∑
t

∑
i: i∈N(t)

d
∆t

i

n

=

∑
i

∑
t: i∈N(t)

d
∆t

i

n

=
n ·
∑d

∆=1
d
∆

n
= d ·Hd,

implying the bound on the expected variance of wt(Ct).
The bound on the expected standard deviation of
wt(Ct) then follows by concavity of

√
x, which implies

Et[
√
V ar(wt(Ct))] ≤

√
Et[V ar(wt(Ct))] ≤

√
d ·Hd.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

5 Expected Competitive Ratio
We now proceed to bound the competitive ratio of
algorithm marking, restated below.

Theorem 1.1. Algorithm marking achieves competi-
tive ratio (1− 2

√
Hd√
d

) = 1−O(
√

log d√
d

) on d-regular graphs.

Proof. The probability of an online vertex t to be
matched by Algorithm marking is precisely

Pr[t matched] = E[P1(Ct, wt)]

= E
[
min

{
wt(Ct)

d
, 1

}
· (1− ε)

]
.

Now, if wt(Ct) were always precisely equal to its ex-
pectation, which is E[wt(Ct)] = d by Corollary 4.4, we
would be done, as the probability of t being matched
would be precisely 1− ε = 1− 1/

√
d, implying (an even

better bound than) the claimed bound. However, as
wt(Ct) is not always equal to its expectation, we have
still to account for deviation from the mean.

Let Y t = max{E[wt(Ct)] − wt(Ct), 0}. Using
this notation, the probability of t not being matched
by the algorithm is at most Pr[t unmatched] = 1 −
E[P1(Ct, wt)] = E[Y t]

d · (1 − ε) + ε ≤ E[Y t]
d + ε. Now,

for a fixed t, the expectation of Y t can be bounded by
appealing to Jensen’s inequality and using the concavity
of f(x) =

√
x, yielding

E[Y t] = E[max{E[wt(Ct)]− wt(Ct), 0}]
≤ E[| wt(Ct)− E[wt(Ct)] |]

= E[
√

(wt(Ct)− E[wt(Ct)])2]

≤
√

E[(wt(Ct)− E[wt(Ct)])2]

=
√
V ar(wt(Ct)).

By the above, the probability of a randomly-
chosen online vertex t to not be matched is at most
Et[Pr[t unmatched]] ≤ Et[

√
V ar(wt(Ct))]

d + ε. By Lemma
4.10, the first summand of this upper bound is at most

Et[
√
V ar(wt(Ct))]

d
≤
√
Et[V ar(wt(Ct))]

d
≤
√
Hd√
d
.

We conclude that the expected number of online vertices
left unmatched by algorithm marking is∑

t

Pr[t unmatched] = n ·
(√

Hd√
d

+ ε

)
= n ·

(√
Hd√
d

+
1√
d

)
≤ n · 2

√
Hd√
d
.

As the number of online vertices and OPT are both n,
the theorem follows.

6 High Probability Guarantees
For our high probability result, we turn the tables
around, and analyze the loss of the algorithm from the
point of view of the offline vertices. The main property
we rely on for this proof (in several ways) is Lemma
4.7; i.e., the fact that for all time t the variables F ti are
NUOD. This property allows us to appeal to Chernoff
bounds, as well as Bernstein’s inequality for weighted
versions of these variables, as discussed in Section 2.1
As a first such application, we bound the number of
unmarked offline vertices.

Lemma 6.1. With high probability, after running
marking with any ε ≥ logn

n on a d-regular graph, the
number of unmarked offline vertices,

∑
i F

n
i , satisfies∑

i

Fni = O (n · ε) .

Proof. By Lemma 4.3, E[Fni] = εd
d = ε. Therefore

E[
∑
i F

n
i] = n · ε ≥ log n. The lemma then follows by

applying the multiplicative upper tail Chernoff bound to
the sum of the NUOD variables Fni , namely Pr[

∑
i F

n
i ≥

(1+δ)·E[
∑
i F

n
i]] ≤ exp

(−δ·E[
∑

i F
n
i]

3

)
(Lemma 2.4).

Having bounded the number of unmarked offline
vertices, we now turn to bounding the number of
superfluously marked vertices. For this, we will require
the following lemma, bounding the probability of an
online vertex having an unexpectedly heavy candidate
set.

Lemma 6.2. Let k > 0. For any online vertex t, let

(6.2) a(t, k) ,
√
V ar(wt(Ct)) · log k + (1/3ε) · log k.

Then, for any c ≥ 1
4 we have

Pr[wt(Ct) > d+ 4c · a(t, k)] ≤ 1/kc.

Proof. By Lemma 4.7, the F t−1
i are NUOD; conse-

quently, so are wt(i) = F t−1
i /Pr[F t−1

i] for (i, t) ∈ E.
We may therefore apply Bernstein’s Inequality, Lemma
2.5, to the sum of these wti . To upper bound the max-
imum absolute value of any wti , note that |wt(i)| =
F t−1
i · d

d−dt−1
i ·(1−ε) ≤

d
d−d·(1−ε) = 1

ε . But by Corollary

4.4, E[wt(Ct)] = d. Plugging these values into Bern-
stein’s Inequality, we have that for all a > 0,

Pr[wt(Ct) > d+ a] = Pr[wt(Ct) > E[wt(Ct)] + a]

≤ exp

(
−a2

2(V ar(wt(Ct)) + a/3ε)

)
.

(6.3)

Consider a = 4c · a(t, k). For this a we have both

(6.4) V ar(wt(Ct)) ≤ a(t, k)2

log k
=

a2

16c2 log k
≤ a2

4c log k
,

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

as well as

(6.5)
1

3ε
≤ a(t, k)

log k
≤ a

4c log k
.

Plugging Inequalities 6.4 and 6.5 into Inequality
6.3, we conclude that for the above choice of a, the
probability Pr[wt(Ct) > d+ a] is at most

exp

(
−a2

2(a2/4c log k + a2/4c log k)

)
=

1

kc
.

Bounding the Number of Superfluous Marks.
We now turn our attention to upper bounding the
number of offline vertices which are marked but not
matched by algorithm marking, which we refer to as
superfluous marks.

Lemma 6.3. With high probability, after running
marking on a d-regular graph, the number of super-
fluously marked offline vertices is at most O

(
n · logn√

d

)
.

For our proof of Lemma 6.3 we will use the following
standard result, easily obtained by a simple coupling
argument. We omit the proof for the sake of brevity.

Lemma 6.4. Let X1, X2, . . . , Xm be random variables
and Y1, Y2, . . . , Ym be binary random variables such that
Yi = fi(X1, X2, . . . , Xi) for all i and for all ~x ∈ Rm,

Pr[Yi = 1 |
∧
`∈[i]

X` = x`] ≤ pi.

Then, if Z1, Z2, . . . , Zm are independent random vari-
ables with Zi ∼ Bernoulli(pi) for each i, we have

Pr[
∑
i

Yi ≥ k] ≤ Pr[
∑
i

Zi ≥ k].

We now turn to proving Lemma 6.3.

Proof of Lemma 6.3. For our proof, for all (i, t) ∈ E,
we let Sti be an indicator variable for offline vertex i
being superfluously marked at time t and let Xt

i be an
indicator random variable for wt(Ct) ≤ d + O(a(t)),
where a(t) = a(t, n). By Lemma 6.2 and union bound,
all Xt

i are one with high probability. Next, we let
Y ti = Sti · Xt

i be an indicator random variable for i
being superfluously marked at time t and candidate
set Ct not being unexpectedly large; i.e., wt(Ct) ≤
d + O(a(t)). We now proceed to upper bound the
conditional probabilities

Pr[Y ti = 1 |
∧

(i′,t′)≤(i,t)

Xt′

i′ = xt
′

i′] = Pr[Y ti = 1 | Xt
i = xti].

If Xt
i = 0 clearly Y ti = 0. It remains to consider the

case of Xt
i = 1.

First, the probability of i being unmarked before
time t conditioned on Xt

i = 1 is at most

Pr[F t−1
i | Xt

i] =
Pr[F t−1

i , Xt
i]

Pr[Xt
i]

≤ Pr[F t−1
i]

Pr[Xt
i]

≤ Pr[F t−1
i] · (1 + o(1)).

(6.6)

Next, the probability of i being superfluously
marked at time t conditioned on i not being marked
before time t, with t’s candidate set being some ct 3 i,
that is Pr[Sti | Ct = ct], is precisely(

1− P1(ct, wt) · w
t(i)

wt(ct)

)
· P2(ct, i, wt)

= max

{(wt(ct)
d − 1

)
· wt(i) · (1− ε)

wt(ct)
, 0

}
.

As this expression is monotone increasing in wt(ct),
ans since by Lemma 4.3 we have wt(i) = 1/Pr[F t−1

i],
the probability of i being superfluously matched by t,
conditioned on i being free before time t as well as
wt(ct) ≤ d+O(a(t)), is at most

Pr[Y ti | F t−1
i , Xt

i] ≤
O(a(t))

d · wt(i) · (1− ε)
d+O(a(t))

≤
O(a(t))

d · 1
Pr[F t−1

i]

d
.

(6.7)

Combining Inequalities 6.6 and 6.7 we obtain

Pr[Y ti | Xt
i] ≤

O(a(t))

d2
.

In order to bound the expected sum
∑
i,t E[Y ti], we

must first upper bound the sum of the different a(t).
By Lemma 4.10, we have Et[

√
V ar(wt(Ct))] ≤

√
d ·Hd.

Consequently, plugging this bound into 6.2, we obtain∑
t

O(a(t)) =
∑
t

O(
√
V ar(wt(Ct)) · log n+

√
d · log n)

≤ O
(
n ·
√
d ·Hd · log n+

√
d · log n

)
= O

(
n ·
√
d · log n

)
.

Therefore, summing over all i and t, we have that∑
t

∑
i∈N(t)

E[Y ti] ≤
∑
t

∑
i∈N(t)

O(a(t))

d2

=
∑
t

O(a(t))

d

= O

(
n · log n√

d

)
.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Appealing to Lemma 6.4 and the Chernoff bound for
the coupled independent random variables, we find that∑
i,t Y

t
i = O

(
n · logn√

d

)
with high probability. But, with

high probability Xt
i = 1 for all pairs (i, t) ∈ E, and

so with high probability the number of superfluously
marked offline vertices is at most∑

i,t

Sti =
∑
i,t

Y ti ·Xt
i =

∑
i,t

Y ti = O

(
n · log n√

d

)
.

We can now prove our algorithm’s high probability
guarantees, restated below.

Theorem 1.3. Algorithm marking is 1 − O(logn√
d

)-
competitive w.h.p. on n-vertex d-regular graphs.

Proof. The number of matched offline vertices is pre-
cisely the number of marked offline vertices minus the
number of superfluously marked offline vertices. That
is, if we denote by |M | the size of the matching, by |F |
and |S| the number of non-marked and superfluously
marked offline vertices, we have |M | = n − |F | − |S|.
The theorem then follows directly from Lemmas 6.1 and
6.3.

The results of this section imply that each offline
vertex is matched with probability at least 1−O

(
logn
4√
d

)
.

In the next section we give tighter bounds on this
probability, as well as bounds for the corresponding
probability for online vertices.

7 Per-Vertex Guarantees
In this section we show our algorithm guarantees each
vertex a probability of being matched tending to one
as d increases. As a byproduct, this implies that
our algorithm is a vertex-weight oblivious algorithm
achieving competitive ratio tending to one for all weight
functions, for weights on both offline and even on online
vertices.

Theorem 7.1. Algorithm marking run with a given
value of ε ≥ log d

3d matches each vertex with probability
at least 1− ε− 16

√
log d√
εd
− 1

d on d-regular graphs.

The following two corollaries of Theorem 7.1 imply
Theorem 1.4.

Corollary 7.2. Algorithm marking (with ε = 1/
√
d)

on d-regular graphs matches each vertex with probability
at least 1−O

(√
log d
4√
d

)
.

Corollary 7.3. Algorithm marking with ε =
3
√

log d/ 3
√
d on d-regular graphs matches each vertex with

probability at least 1−O
(

3
√

log d
3√
d

)
, respectively.

To relate the above results to online weighted
matching, we note that a vertex-weight oblivious algo-
rithm A is α-competitive if and only if it matches every
vertex with probability at least α. This observation im-
plies that Algorithm marking with the above values of
ε is a 1 − O

(√
log d
4√
d

)
- and 1 − O

(
3
√

log d
3√
d

)
-competitive

vertex-oblivious online vertex-weighted matching algo-
rithm, respectively. We now turn to proving this sec-
tion’s main result.

Proof of Theorem 7.1. Consider an edge (i, t) ∈ E. By
Corollary 4.9 the online vertex t has variance of weights
V ar(wt(Ct)) ≤ d

ε . Combined with the lower bound on

ε, we find that a(t, d) ≤ 2·
√

d
ε · log d. So, if we denote by

At the event that wt(Ct) > d+a, for a = 16 ·
√

d
ε · log d,

we have Pr[At] ≤ 1/d2, by Lemma 6.2. But by Lemma
4.3, as (i, t) ∈ E we have Pr[F t−1

i] =
d−dt−1

i ·(1−ε)
d ≥

d−dt−1
i

d ≥ 1
d . Consequently, we obtain the following

lower bound on i’s conditional probability of being free
by time t.

Pr[F t−1
i , At] = Pr[F t−1

i]− Pr[F t−1
i , At]

≥ Pr[F t−1
i]− Pr[At]

≥ Pr[F t−1
i]− 1/d2

≥ Pr[F t−1
i] · (1− 1/d).

On the other hand, the probability of i being
matched to t conditioned on i being free and t’s candi-
date set having sum of weights at most wt(Ct) ≤ d+ a
is at least

Pr[(i, t) ∈M | F t−1
i , At] = P1(wt(Ct)) · w

t(i)

wt(Ct)

≥ wt(i) · (1− ε)
d+ a

≥ wt(i)

d
·
(

1− ε− a

d

)
.

Combining the above lower bounds and recalling
that by Lemma 4.3 wt(i) = 1/Pr[F t−1

i], we find that
for every edge (i, t) ∈ E the probability of (i, t) being
matched is at least

Pr[(i, t) ∈M] ≥ Pr[(i, t) ∈M,F t−1
i , At]

≥ Pr[(i, t) ∈M | F t−1
i , At] · Pr[F t−1

i , At]

≥ 1

d
·
(

1− ε− a

d
− 1

d

)
.

Consequently, for any (online or offline) vertex v, sum-
ming up over v’s d edges, we find that indeed, by our

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

choice of a, v’s probability of being matched is at least

Pr[v matched] =
∑
e3v

Pr[e ∈M]

≥ d · 1

d
·
(

1− ε− a

d
− 1

d

)
= 1− ε− 16

√
log d√
dε

− 1

d
.

Better bounds for online vertices. The follow-
ing lemma shows a refined bound for online vertices.

Lemma 7.4. Algorithm marking run with a given
value of ε matches each online vertex with probability
at least 1− ε− 1√

εd
on d-regular graphs.

Proof. As observed in the proof of Theorem 1.1, the
probability of an online vertex t being left unmatched by
Algorithm marking is at most Pr[t unmatched] = 1 −
E[P1(Ct, wt)] = E[Y t]

d ·(1−ε)+ε ≤ E[Y t]
d +ε, where Y t =

max{E[wt(Ct)]−wt(Ct), 0}. Moreover, as noted in said
proof, E[Y t] ≤

√
V ar(wt(Ct)). But, by Corollary 4.9,

t satisfies V ar(wt(Ct)) ≤ d
ε . Consequently, we have, as

claimed

Pr[t unmatched] ≤ ε+
1√
εd
.

8 Hardness Result
In this section we present our hardness result for online
matching in d-regular graphs.

We note that previous hardness results for online
matching and its variants [7, 26, 41, 43] were stated,
or can be recast, as hardness results for fractional al-
gorithms. This approach, standard in the online algo-
rithms literature, relies on the simple observation that
any randomized algorithm A naturally induces a frac-
tional algorithm A′ with the same competitive ratio, by
assigning each edge (i, t) a value equal to its expected
value according to A. While this “first-moment method”
for proving hardness results is simple and powerful, it
fails miserably for online matching on regular graphs.
To see this, observe that an algorithm assigning a value
of 1/d to each edge yields an optimal solution on d-
regular graphs, or competitive ratio one. Consequently,
this approach can yield no non-trivial hardness result for
randomized algorithms on regular graphs. Moreover,
one cannot hope to obtain a competitive ratio of one
for randomized integral matching (for example, a sim-
ple distribution over 8-cycles proves no algorithm is bet-
ter than 7/8-competitive for 2-regular graphs). Given
the failing of such first-moment methods (i.e., consid-
ering solely the marginal probabilities of each edge be-
ing matched), our hardness result must deviate from

previous hardness results and explicitly consider higher
moments; specifically, variance.

Theorem 1.2. No randomized online matching algo-
rithm is better than

(
1− 1√

8πd

)
= 1−O(1√

d
)-competitive

on d-regular graphs.

Proof. We appeal to Yao’s Lemma [60], giving a distri-
bution over inputs for which no deterministic algorithm
achieves competitive ratio better than the above bound,
implying our claimed result. Without loss of generality,
we may assume that the deterministic algorithm is max-
imal; i.e., the algorithm always matches when possible.
The input consists of n = d2 offline vertices, partitioned
into d many d-tuples of offline vertices. During the first
phase, each of these d-tuples’ vertices all neighbor d/2
common online neighbors.5 Following the first phase,
the d offline vertices of each of the offline d-tuples are
randomly permuted and correspondingly numbered 1
through d. Next, a second phase begins, during which,
for each i ∈ [d], all the d offline vertices numbered i
neighbor d/2 common online vertices. By the maximal-
ity of the algorithm, each offline vertex is matched with
probability 1/2 during the first phase. Therefore, for
each i ∈ [d], if we denote by Xi the number of ver-
tices of the i-th tuple which are not matched during the
first phase, we find that Xi is distributed binomially,
Xi ∼ Bin(d, 1/2). In particular, Xi’s expectation is
E[Xi] = d/2. On the other hand, at most d/2 vertices
numbered i can be matched during the second phase,
and so the algorithm leaves Ui = max{0, Xi − d/2}
unmatched vertices among these d vertices. But as
Xi ∼ Bin(d, 1/2) is binomially distributed, then by the
normal approximation of the binomial distribution, we
find that for large d, Xi is approximately distributed
N(d/2,

√
d/2) and so the expectation of |Xi − E[Xi]| is

E[|Xi − E[Xi]|] ≈
√
d/2 ·

√
2/π =

√
d

2π ([31]). But as
Xi is symmetric around its expectation, the expected
number of i-numbered vertices left unmatched after the
second phase is

E[Ui] = E[max{0, Xi − d/2}] =

√
d

2π
· 1

2
=

√
d√

8π
.

That is, for any i ∈ [d], the expected fraction of the d
offline vertices numbered i and left unmatched is at least
(
√
d/8π)/d = 1/

√
8πd. Consequently, the competitive

ratio of any deterministic algorithm on this distribution
of inputs is at most 1− 1/

√
8πd.

5Note that if we want to let n increase arbitrarily compared to
d, this example can be extended to contain any number of vertices
n which is an integer product of d2, by taking multiple disjoint
and independently drawn copies of this graph and arrival order.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Appendix
A Omitted Proofs of Section 3
In this section we prove the bounds on the competitive
ratios of some natural randomized algorithms stated in
Section 3.

A particular family of instances of interest in our
proofs of upper bounds for the competitive ratio of these
algorithms is as follows. Let d = 2k be an even integer.
The input is a d-regular input, consisting of 2d offline
and online vertices, with the neighborhood of online ver-
tex t given in Figure 2a. See also the bipartite adja-
cency matrix of this input in Figure 2b. We note that
on these instances the generally optimal fractional al-
gorithm, water-filling of Pruhs & Kalyanasundaram
[41], attains a competitive ratio of 7/8. We now turn
our attention to analyzing the competitive ratio of some
simple randomized algorithms on these instances.

N(t) =


[2k] t ∈ [k]

[k] ∪ (2k, 3k] t ∈ (k, 2k]

(k, 2k] ∪ (3k, 4k] t ∈ (2k, 3k]

(2k, 4k] t ∈ (3k, 4k]

(a) Online vertices’ neighborhood

d/2 d 3d/2 2d

d/2

d

3d/2

2d

(b) Bipartite adjacency matrix of the input. Blue
entries correspond to edges (“1” entries).

Figure 2: Bad Instance

A particular distribution which will appear often in
our analysis of prior algorithms is the hypergeometric
distribution, which corresponds to the number of red
balls drawn among k ≤ n draws without replacement
from an urn containing n = r+b balls, r of which red and
b of which blue, where balls are picked without replace-
ment (sometimes referred to as the ‘urn problem’). By
linearity of expectation, the number of red balls drawn
is precisely k · r

r+b .

A.1 Algorithm random In this section we analyze
the simplest randomized online matching algorithm,
random given in Algorithm 2.

Algorithm 2 random

1: for all online vertices t do
2: if t has an unmatched neighbor i then
3: match t to an unmatched neighbor i chosen

uniformly at random.

Lemma 3.1. Algorithm random is at most 11/12-
competitive on d-regular graphs.

Proof. Consider the 2k-regular input of Figure 2. As
the k online vertices t ∈ (k, 2k] neighbor k common
unmatched offline vertices – the offline vertices (2k, 3k]
– these k online vertices are all matched by random.
Similarly, the k online vertices t ∈ (2k, 3k] are all
matched, too. Suppose that after time k exactly x
offline vertices in [k] are unmatched (and therefore k−x
offline vertices in (k, 2k] are unmatched, as exactly k
of the offline vertices in [2k] are matched by time k).
Then, by a standard urn problem argument, Algorithm
random will match k ·

(
x
k+x

)
= k ·

(
1 − k

k+x

)
and

k ·
(

k−x
k+k−x

)
= k ·

(
1 − k

k+k−x
)
offline vertices in [2k]

to online vertices in (k, 2k] and (2k, 3k], respectively.
Consequently, the number of matched offline vertices in
[2k] matched by Algorithm random is at most

≤ k + k ·
(

1− k

k + x
+ 1− k

k + k − x

)
≤ 3k − k2 ·

(
2

3k/2

)
=

5k

3
,

where the inequality follows by convexity of 1
k+x . We

conclude that Algorithm random achieves a gain of
at most 11k

3 out of an optimum of 4k. The lemma
follows.

A.2 Algorithm ranking In this section we ana-
lyze the classic algorithm of Karp et al. [43], which draws
a random permutation σ of the offline vertices upon ini-
tialization and greedily matches each online vertex to
its unmatched neighbor of highest priority according to
σ. In our analysis we will use an equivalent formulation
of ranking, introduced by Devanur et al. [19]; in their
terminology, each offline vertex i samples independently
a random value Yi distributed uniformly in [0, 1], and
each offline vertex is matched to its unmatched neigh-
bor i minimizing Yi. The algorithm is stated in this
terminology in Algorithm 3.

While this algorithm achieves the optimal 1 −
1/e competitive ratio for general bipartite graphs, its

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 3 ranking

1: for all offline vertices i do
2: sample Yi ∼ U [0, 1] (independently).
3: for all online vertices t do
4: if t has an unmatched neighbor i then
5: match t to arg min{Yi | i ∈ N(t) unmacthed}.

competitive ratio on d-regular graphs does not tend to
one as d grows, as the next lemma asserts.

Lemma 3.2. Algorithm ranking is at most (7/8 +
o(1))-competitive on d-regular graphs.

Proof. Consider the 2k-regular input of Figure 2. We
will consider the expected number of offline vertices in
[k] matched by Algorithm ranking, noting that the
exact same bound holds for the vertices in (k, 2k], by
symmetry. Let M be the median Y -value among the
Y -values of the offline vertices in [2k]. That is, M is
the k-th order statistic among 2k independent uniform
variables in (0, 1). In that case, its expectation can be
verified to be E[M] = k

2k+1 . Using this terminology,
we note that all online vertices in [k] are matched
to (all the) offline vertices in [2k] of Y -value at most
M and online vertices in (k, 2k] are first matched to
offline vertices with Y -value at most M before being
matched to any other vertex. We first study these
early matches. Denote by O and N (“old” and “new”,
respectively) the number of offline vertices in [k] and
(2k, 3k] with Y -value at most M . Clearly, as exactly k
of the 2k vertices in [2k] have Y -value at most M and
these vertices have i.i.d Y -values, then by symmetry
we have E[O] = k/2. On the other hand, for a given
value of M = x, the expected number of offline vertices
in (2k, 3k] with Y -value at most M = x is precisely
k · x by linearity and the definition of the uniform
distribution. Therefore, conditioning on M we find
that E[N] =

∫ 1

0
k · x · fM (x) dx = k · E[M] = k2

2k+1 =
k/2 − 1/4 + 1/(8k + 4). We now turn to analyzing the
number of offline vertices in [k] matched during time
range (k, 2k].

Conditioning on O and N as above, we find that
by time k + N + 1, the unmatched offline vertices in
the neighborhood of the online vertices (k, 2k] have
i.i.d Y -values, as these are all i.i.d uniform (0, 1) values
greater than M (lit. “conditioned on being greater than
M ”). As such, by a standard urn problem argument,
Algorithm ranking will match an expected (k − N) ·(

k−O
2k−O−N

)
additional offline vertices in [k] during time

range (k, 2k]. Overall, if we denote by MO the number
of offline vertices in [k] matched by the algorithm, we

have, after rearranging terms, that

E[MO] = E
[
k − (k −O)2

2k −O −N

]
.

Now, considering the expression k − (k−O)2

2k−O−N as a

function of O and N , f(O,N) = k− (k−O)2

2k−O−N , taking the
second derivative of f with respect toN we find that this
function is concave in N for N ∈ [0, k]. Consequently,
by Jensen’s Inequality, for any fixed value of O = x,
E[f(O,N) | O = x] ≤ E[f(O,E[N]) | O = x]. Plugging
in E[N] = k/2 − 1/4 + 1/(8k + 4) into the above, we
obtain a new function g(x) = E[f(O,E[N]) | O = x] =

k− (k−O)2

3k/2+1/4−1/(8k+4)−x . This function, in turn, can be
verified to be concave in x ∈ [0, k], and therefore

E[g(O)] ≤ g(E[O]) = g(k/2) ≤ 3k

4
+O(1).

To conclude, the number of offline vertices in [2k]
matched by Algorithm ranking on the instance of
Figure 2 is 2 · E[f(O,N)] ≤ 2 · E[g(O)] ≤ 3k

2 + O(1),
and the overall number of matched offline vertices is
therefore at most 7k

2 + O(1), out of an optimum of 4k.
The theorem follows.

Comparing algorithms random and rank-
ing We note that the proofs of Lemmas 3.1 and 3.2 rely
on the same family of instances, for which these analy-
ses are tight up to o(1) terms; that is, algorithm ran-
dom achieves competitive ratio 11/12 − o(1) on these
instances, while algorithm ranking achieves a strictly
lower competitive ratio, of at most 7/8+o(1). This is, to
the best of our knowledge, the first family of instances
for which algorithm random was shown to outperform
the worst-case optimal algorithm ranking.

Observation A.1. There exists a family of d-regular
graphs on which ranking is (7/8 + o(1))-competitive
while random is (11/12− o(1))-competitive.

We next consider these algorithms from the point
of view of vertex-weighted online matching. These
algorithms are clearly vertex-weight-oblivious algo-
rithms. By [56], Algorithm random is 1 − (1 − 1/d)d-
competitive for vertex-weighted online matching on d-
regular graphs. An alternative proof of this fact is read-
ily obtained by observing that any unmatched offline
vertex has probability of at least 1/d of being matched
to its next online neighbor, regardless of prior random
choices; as such, each offline vertex is matched to one of
its d neighbors with probability at least 1− (1− 1/d)d).
Here too algorithm ranking is outperformed by algo-
rithm random, as ranking does not yield such guar-
antees.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

Lemma A.2. For any d, there exist d-regular on-
line matching instances and offline vertices of these in-
stances which Algorithm ranking matches with proba-
bility at most 1

d + 8
d(d+1) .

Corollary A.3. ranking is o(1)-competitive for
vertex-weighted matching on regular graphs.

Proof of Lemma A.2. Let i be some offline vertex in a
d-regular input, with i neighboring [d]. For each online
vertex t = 1, 2, . . . , d, let t neighbor i and d − 1 other
offline vertices with no previous neighbors. In order to
bound the probability of i being matched, we wish to
bound the following conditional probability.

Pr[(i, t) ∈M |
∧
t′<t

(i, t′) 6∈M]

=
Pr[(i, t) ∈M ∧

∧
t′<t(i, t

′) 6∈M]

Pr[
∧
t′<t(i, t

′) 6∈M]
.

(A.1)

By the input’s construction, for i to not be matched
to its first t − 1 online neighbors, i must have lower
priority than t− 1 other offline vertices, which happens
with probability Pr[

∧
t′<t(i, t

′) 6∈M] = 1/t. For i to
be matched to its t-th online neighbor, i must have
lower priority than t−1 other offline vertices and higher
priority than d−1 other offline vertices, and so this event
happens with probability Pr[(i, t) ∈ M ∧

∧
t′<t(i, t

′) 6∈
M] = (d − 1)!(t − 1)!/(t + d − 1)!. Putting these two
together, we find that the conditional probability in A.1
is precisely

(d− 1)!(t− 1)!/(t+ d− 1)!

1/t
=

1(
t+d−1
t

) .
So, by the law of total probability we find that i’s

probability of being matched, Pr[i ∈M], is at most

=

d∑
t=1

Pr[(i, t) ∈M |
∧
t′<t

(i, t′) 6∈M] · Pr[
∧
t′<t

(i, t′) 6∈M]

≤
d∑
t=1

Pr[(i, t) ∈M |
∧
t′<t

(i, t′) 6∈M]

=

d∑
t=1

1(
t+d−1
t

)
≤ 1

d
+

2

d(d+ 1)
+ (d− 2) · 2 · 3

d(d+ 1)(d+ 2)

≤ 1

d
+

8

d(d+ 1)
.

Algorithm 4 rmwm

1: for all online vertices t do
2: if t has an unmatched neighbor i then

3: let φt−1(i) =
(

d
d−1

)dt−1
i

for all unmatched
i ∈ N(t), and Φt =

∑
i∈N(t) φ

t−1(i).
4: match t to an unmatched neighbor i chosen

with probability φt−1(i)
Φt

.

A.3 Randomized Multiplicative Weights
Method In this section we discuss Algorithm rmwm,
given in Algorithm 4.

We start by proving that Algorithm rmwm is
at least 1 − (1 − 1/d)k-competitive on (k, d)-bounded
graphs, introduced by Naor and Wajc in [56]. These are
graphs for which online vertices have degree at most d
and offline vertices have degree at least k. Note that
d-regular graphs are a special case of (d, d)-bounded
graphs.

Lemma A.4. Algorithm rmwm on is 1 − (1 − 1/d)k-
competitive on (k, d)-bounded graphs.

Corollary A.5. Algorithm rmwm is 1 − (1 − 1/d)d-
competitive on d-regular graphs.

Our proof follows the potential-based analysis of
[56]. The same theorem can alternatively be proven
using the primal-dual method, as in [56].

Proof of Lemma A.4. Let U ⊆ L be the set of un-
matched vertices on the left hand (offline) side of the
graph. We consider the potential Φt =

∑
i∈U φ

t(i),
which we shall show to be non-increasing over time (in
expectation). Let t be some online vertex and ∆Φt
the change to the potential Φ incurred by t’s arrival.
We condition on the set of unmatched neighbors of t
upon its arrival, Ft. If Ft = ∅, then t is not matched
and therefore ∆Φt = 0. If, however, Ft 6= ∅, then
each unmatched neighbor of t which is matched has
its contribution to the potential, φt−1(i), increase by
a
(

d
d−1 − 1

)
· φt−1(i) = 1

d−1 · φ
t−1(i). Therefore, if we

denote by Φt =
∑
i∈Ft

φt−1(i) the contribution of j’s
neighborhood to the potential, and denote for the sake
of brevity φi = φt−1(i), we have

E[∆Φj |Fj] =
∑
i

−φ2
i

Φt
+
∑
i

∑
i′ 6=i

φi · φi′
Φt

· 1

d− 1

=
1

d− 1
·
∑
i 6=i′
−
(
φi − φi′

)2
Φt

≤ 0,

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

where the first inequality follows from |Ft| ≤ |N(t)| ≤ d.
Given the above, conditioning on the possible Ft for
each t, we deduce that the the expected initial and final
potentials, Φinitial and Φfinal, satisfy

E[Φfinal] = Φinitial +
∑
t

E[∆Φt] ≤ |L|.

But on the other hand, the final potential is at least

E[Φfinal] ≥ E[|U |] ·
(

d

d− 1

)k
.

Concatenating the above inequalities, we obtain

E[|U |] ≤ |L| ·
(

1− 1

d

)k
.

and consequently the output matching M has expected
size at least

E[|M |] ≥ |L| ·

(
1−

(
1− 1

d

)k)
.

The above analysis implies that Algorithm rmwm
achieves a non-trivial competitive ratio on d-regular
graphs. However, as the next theorem asserts, this
algorithm’s competitive ratio when run on d-regular
graphs is still bounded away from one.

Lemma 3.3. Algorithm rmwm is at most 3
4 + µ

2 ≈
0.946-competitive on d-regular graphs. Here µ ≈ 0.393
is the solution to 2µ+ µ

√
e = 1.

Proof. Consider the 2k-regular input of Figure 2. We
will consider the expected number of offline vertices
in [k] matched by Algorithm rmwm, noting that the
exact same bound holds for the vertices in (k, 2k], by
symmetry. First, following the first k online arrivals,
some x ∈ [0, k] offline vertices in [k] are matched. By
symmetry, this value x is drawn from a hypergeometric
distribution with k draws from k white and k black
balls with equal probability. By concentration of this
distribution (which follows, for example, by negative
association of this distribution), we can apply chernoff
bounds and show that with high probability this x is
k
2 ±O(

√
k log k) = k

2 · (1± o(1)).
The number of offline vertices in [k] matched to any

of the online vertices in (k, 2k] is drawn according to
Wallenius’ noncentral hypergeometric distribution [59]
with k draws, N = x + k balls of either color; x white
balls of weight ω = (2k/(2k − 1))k and k black balls of
weight one.6 As limk→∞ ω = limk→∞(2k/(2k − 1))k =

6Note that in our problem the weights of white and black balls
grow, but at the same speed. Thus, their ratio – which determines
the probability of a particular color being drawn – is unchanged.

√
e, the expected number of white balls drawn (that

is, the expected number of vertices in [k] matched) is
approximated by a solution µ′ to

µ′

x
+

(
1− k − µ′

k

)√e
= 1.

That is, as N = k + x, this is

(A.2)
µ′

x
+

(
µ′

k

)√e
= 1.

Now, as x = k
2 · (1 ± o(1)) with high probability, the

solution to A.2 is approximately µ′ ≈ 0.393 · k, which is
µ′ = µ · k for µ ≈ 0.393 the solution to 2µ + µ

√
e = 1.

Consequently, an expected k/2+0.393·k(1±o(1)) offline
vertices in [k] (and likewise, in (k, 2k]) are matched
by rmwm. Accounting for the 2k offline vertices in
(2k, 4k], we find that algorithm rmwm matches at most
2k + 2 · (1/2 + µ) · (1 ± o(1)) · k offline vertices, out of
an optimum of 4k. The theorem follows.

A.4 Random Among High-Degree Neighbors
In this section we analyze the natural generalization
to the optimal algorithm for 2-regular graphs, given in
Algorithm 5.

Algorithm 5 random-among-highest

1: for all online vertices t do
2: if t has an unmatched neighbor i then
3: match t to an unmatched neighbor i of highest

current degree dti chosen u.a.r.

Lemma 3.4. Algorithm random-among-highest
run on d-regular graphs has competitive ratio at most

1−
(

1− 1

d

)d
+O

(
1

d

)
.

In particular, for d → ∞, this algorithm’s competitive
ratio tends to 1− 1

e .

Proof. Consider the following adversarial d-regular in-
put sequence on n = dd+1 offline and online vertices,
with online vertices arriving over d phases. We say
an offline vertex is active at online arrival t if it has
a non-zero probability of being unmatched prior to this
arrival, and inactive otherwise. Clearly, all dd+1 of-
fline vertices are active at first. The input maintains
the invariant that (under Algorithm random-among-
highest) exactly (d− 1)idd−i+1 offline vertices are ac-
tive by the end of phase i, each of degree i. During phase
i ≤ d−1, a 1

d -fraction of the active offline vertices (that

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

is, (d − 1)i−1dd−i+1 offline vertices) are divided into d-
tuples, each neighboring a new online vertex. These
offline vertices now reach degree i + 1. Each of these
degree-(i + 1) offline vertices together with d − 1 ac-
tive degree-i offline vertices neighbor a new online ver-
tex. By virtue of the algorithm’s choice of matches, the
(d−1)i−1dd−i+1 degree-(i+ 1) vertices all become inac-
tive. The phase ends with (d−i−1)·(d−1)i−1dd−i online
vertices neighboring these new inactive vertices (with
d inactive neighbors per such online vertex), bringing
these newly inactive vertices to degree d. We note that
the algorithm accrues no gain from these latter online
vertices, as all of their neighbors are inactive, and thus
matched. We lower bound the number of these online
neighbors in order to obtained the desired upper bound
on the algorithm’s competitive ratio on this input.

Summarizing the above, we have that the number
of unmatched online vertices is at least

∑d−1
i=1 (d− i−1) ·

(d − 1)i−1dd−i. Normalizing by OPT = n = dd+1, we
find that on this input sequence Algorithm random-
among-highest suffers a loss of at least

≥ 1

d
·
d−1∑
i=1

(
1− 1

d

)i−1

·
(
d− i− 1

d

)

=
1

d
·
d−1∑
i=1

(
1− 1

d

)i
− 1

d
·
d−1∑
i=1

1

d

(
1− 1

d

)i−1

· i

=
1

d
·
(
1− 1

d

)d − (1− 1
d

)(
1− 1

d

)
− 1

− 1

d
·
d−1∑
i=1

1

d

(
1− 1

d

)i−1

· i

=

(
1− 1

d

)
−
(

1− 1

d

)d
− 1

d
·
d−1∑
i=1

1

d

(
1− 1

d

)i−1

· i.

Now, the term
∑d−1
i=1

1
d ·
(
1− 1

d

)i−1 · i above should be
familiar. Indeed, this is the contribution of the first
f = d−1 possible values of a geometric random variable
X ∼ Geo(p) with success probability p = 1

d to the
expectation of X; that is,

f∑
i=1

p(1−p)i−1 ·i =

∞∑
i=1

p(1−p)i−1 ·i−
∞∑

i=f+1

p(1−p)i−1 ·i.

Now, the former term in the right hand side of the above
equation is just E[X] = 1

p , whereas the latter term is
simply Pr[X > f] · E[X|X > f], which, by memoryless-
ness of the geometric distribution, is precisely (1− p)f ·(

1
p + f

)
. Evaluating this expression with p = 1

d and
f = d− 1 and plugging the result into our lower bound
on the loss of Algorithm random-among-highest,
namely

(
1− 1

d

)
−
(
1− 1

d

)d− 1
d ·
∑d−1
i=1

1
d ·
(
1− 1

d

)i−1 · i =(
1− 1

d

)
−
(
1− 1

d

)d− 1
d ·
(
d−

(
1− 1

d

)d−1 · (2d− 1)
)
, we

find that the loss of this algorithm is at least

E[LossRMWM] = −1

d
+

(
1− 1

d

)d
·
(
−1 +

2d− 1

d− 1

)
= −1

d
+

(
1− 1

d

)d
·
(

1 +
1

d− 1

)
≥ −3

4
· 1

d
+

(
1− 1

d

)d
,

where the inequality follows from
(
1− 1

d

)
≥ 4−1/d

for all d ≥ 2. We conclude that the competitive
ratio of Algorithm random-among-highest is at most
1−
(
1− 1

d

)d
+ 3

4 ·
1
d = 1−

(
1− 1

d

)d
+O

(
1
d

)
, as claimed.

References
[1] Ageev, A. A. and Sviridenko, M. I. 2004. Pi-

page rounding: A new method of constructing algo-
rithms with proven performance guarantee. Journal
of Combinatorial Optimization 8, 3, 307–328.

[2] Aggarwal, G., Goel, G., Karande, C., and
Mehta, A. 2011. Online vertex-weighted bipartite
matching and single-bid budgeted allocations. In Pro-
ceedings of the 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). 1253–1264.

[3] Aggarwal, G., Motwani, R., Shah, D., and
Zhu, A. 2003. Switch scheduling via randomized edge
coloring. In Proceedings of the 44th Symposium on
Foundations of Computer Science (FOCS). 502–512.

[4] Ahuja, R. K., Magnanti, T. L., and Orlin,
J. B. 1993. Network flows - theory, algorithms, and
applications. Prentice hall.

[5] Alon, N. 2003. A simple algorithm for edge-
coloring bipartite multigraphs. Information Process-
ing Letters 85, 6, 301–302.

[6] Arora, S., Frieze, A., and Kaplan, H. 2002. A
new rounding procedure for the assignment problem
with applications to dense graph arrangement prob-
lems. Mathematical programming 92, 1, 1–36.

[7] Azar, Y., Cohen, I. R., and Roytman, A. 2017.
Online lower bounds via duality. In Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 1038–1050.

[8] Bahmani, B. and Kapralov, M. 2010. Improved
bounds for online stochastic matching. In Proceed-
ings of the 18th Annual European Symposium on Al-
gorithms (ESA). 170–181.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

[9] Bansal, N., Gupta, A., Li, J., Mestre, J.,
Nagarajan, V., and Rudra, A. 2012. When lp
is the cure for your matching woes: Improved bounds
for stochastic matchings. Algorithmica 63, 4, 733–
762.

[10] Bertsimas, D., Teo, C., and Vohra, R. 1999.
On dependent randomized rounding algorithms. Op-
erations Research Letters 24, 3, 105–114.

[11] Brubach, B., Sankararaman, K. A., Srini-
vasan, A., and Xu, P. 2016. New algorithms, bet-
ter bounds, and a novel model for online stochastic
matching. In Proceedings of the 24th Annual Euro-
pean Symposium on Algorithms (ESA). 24:1–24:16.

[12] Buchbinder, N., Jain, K., and Naor, J. S.
2007. Online primal-dual algorithms for maximizing
ad-auctions revenue. In Proceedings of the 15th
Annual European Symposium on Algorithms (ESA).
253–264.

[13] Calinescu, G., Chekuri, C., Pál, M., and
Vondrák, J. 2011. Maximizing a monotone sub-
modular function subject to a matroid constraint.
SIAM Journal on Computing (SICOMP) 40, 6, 1740–
1766.

[14] Chekuri, C., Vondrak, J., and Zenklusen, R.
2010. Dependent randomized rounding via exchange
properties of combinatorial structures. In Proceedings
of the 51st Symposium on Foundations of Computer
Science (FOCS). 575–584.

[15] Chekuri, C., Vondrák, J., and Zenklusen, R.
2011. Multi-budgeted matchings and matroid inter-
section via dependent rounding. In Proceedings of the
22nd Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA). 1080–1097.

[16] Cole, R. and Hopcroft, J. 1982. On edge col-
oring bipartite graphs. SIAM Journal on Computing
(SICOMP) 11, 3, 540–546.

[17] Cole, R., Ost, K., and Schirra, S. 2001. Edge-
coloring bipartite multigraphs in O(E logD) time.
Combinatorica 21, 1, 5–12.

[18] Csima, J. and Lovász, L. 1992. A matching
algorithm for regular bipartite graphs. Discrete
Applied Mathematics 35, 3, 197–203.

[19] Devanur, N. R., Jain, K., and Kleinberg,
R. D. 2013. Randomized primal-dual analysis of
ranking for online bipartite matching. In Proceed-
ings of the 24th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 101–107.

[20] Doerr, B. 2003. Non-independent randomized
rounding. In Proceedings of the 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA).
506–507.

[21] Doerr, B. 2005. Nonindependent randomized
rounding and an application to digital halftoning.
SIAM Journal on Computing (SICOMP) 34, 2, 299–
317.

[22] Doerr, B. 2006. Generating randomized round-
ings with cardinality constraints and derandomiza-
tions. In Proceedings of the 23rd International Sym-
posium on Theoretical Aspects of Computer Science
(STACS). 571–583.

[23] Dubhashi, D. and Ranjan, D. 1996. Balls and
bins: A study in negative dependence. BRICS Report
Series 3, 25.

[24] Edmonds, J. 1965. Paths, trees, and flowers.
Canadian Journal of mathematics 17, 3, 449–467.

[25] Egerváry, J. 1931. Matrixok kombinatorius tula-
jdonságairól. Matematikai és Fizikai Lapok 38, 1931,
16–28.

[26] Epstein, L., Levin, A., Segev, D., and
Weimann, O. 2013. Improved bounds for online pre-
emptive matching. In Proceedings of the 30th Inter-
national Symposium on Theoretical Aspects of Com-
puter Science (STACS). 389.

[27] Feldman, J., Korula, N., Mirrokni, V.,
Muthukrishnan, S., and Pál, M. 2009a. Online
ad assignment with free disposal. In Proceedings of
the 5th Conference on Web and Internet Economics
(WINE). 374–385.

[28] Feldman, J., Mehta, A., Mirrokni, V., and
Muthukrishnan, S. 2009b. Online stochastic
matching: Beating 1-1/e. In Proceedings of the
50th Symposium on Foundations of Computer Sci-
ence (FOCS). 117–126.

[29] Gabow, H. N. and Kariv, O. 1982. Algorithms
for edge coloring bipartite graphs and multigraphs.
SIAM Journal on Computing (SICOMP) 11, 1, 117–
129.

[30] Gandhi, R., Khuller, S., Parthasarathy, S.,
and Srinivasan, A. 2006. Dependent rounding and
its applications to approximation algorithms. Journal
of the ACM (JACM) 53, 3, 324–360.

[31] Geary, R. 1935. The ratio of the mean deviation
to the standard deviation as a test of normality.
Biometrika 27, 3/4, 310–332.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

[32] Goel, A., Kapralov, M., and Khanna, S.
2009. Perfect matchings in O(n1.5) time in regular
bipartite graphs. arXiv preprint arXiv:0902.1617 .

[33] Goel, A., Kapralov, M., and Khanna, S.
2010. Perfect matchings via uniform sampling in
regular bipartite graphs. ACM Transactions on
Algorithms (TALG) 6, 2, 27.

[34] Goel, A., Kapralov, M., and Khanna, S.
2013. Perfect matchings in O(n log n) time in reg-
ular bipartite graphs. SIAM Journal on Computing
(SICOMP) 42, 3, 1392–1404.

[35] Goel, G. and Mehta, A. 2008. Online budgeted
matching in random input models with applications
to adwords. In Proceedings of the 19th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA).
982–991.

[36] Haeupler, B., Mirrokni, V. S., and Zadi-
moghaddam, M. 2011. Online stochastic weighted
matching: Improved approximation algorithms. In
Proceedings of the 7th Conference on Web and Inter-
net Economics (WINE). 170–181.

[37] Hall, P. 1935. On representatives of subsets.
Journal of the London Mathematical Society 1, 1, 26–
30.

[38] Hopcroft, J. E. and Karp, R. M. 1971. An
n5/2 algorithm for maximum matchings in bipartite
graphs. In Proceedings of the 12th Annual Symposium
on Switching and Automata Theory (SWAT). 122–
125.

[39] Jaillet, P. and Lu, X. 2013. Online stochas-
tic matching: New algorithms with better bounds.
Mathematics of Operations Research.

[40] Joag-Dev, K. and Proschan, F. 1983. Negative
association of random variables with applications.
The Annals of Statistics, 286–295.

[41] Kalyanasundaram, B. and Pruhs, K. R. 2000.
An optimal deterministic algorithm for online b-
matching. Theoretical Computer Science 233, 1, 319–
325.

[42] Karande, C., Mehta, A., and Tripathi, P.
2011. Online bipartite matching with unknown dis-
tributions. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing (STOC). 587–
596.

[43] Karp, R. M., Vazirani, U. V., and Vazirani,
V. V. 1990. An optimal algorithm for on-line bi-
partite matching. In Proceedings of the 22nd Annual

ACM Symposium on Theory of Computing (STOC).
352–358.

[44] Khursheed, A. and Lai Saxena, K. 1981.
Positive dependence in multivariate distributions.
Communications in Statistics - Theory and Meth-
ods 10, 12, 1183–1196.

[45] König, D. 1916. Über graphen und ihre an-
wendung auf determinantentheorie und mengenlehre.
Mathematische Annalen 77, 4, 453–465.

[46] König, D. 1931. Gráfok és mátrixok. Matematikai
és Fizikai Lapok 38, 1931, 116–119.

[47] Kuhn, H. W. 1955. The hungarian method for
the assignment problem. Naval research logistics
quarterly 2, 1-2, 83–97.

[48] Lovász, L. and Plummer, M. D. 2009. Matching
theory. Vol. 367. American Mathematical Society.

[49] Madry, A. 2013. Navigating central path with
electrical flows: From flows to matchings, and back.
In Proceedings of the 54th Symposium on Foundations
of Computer Science (FOCS). 253–262.

[50] Mahdian, M., Nazerzadeh, H., and Saberi,
A. 2007. Allocating online advertisement space with
unreliable estimates. In Proceedings of the 8th ACM
Conference on Electronic Commerce (EC). 288–294.

[51] Mahdian, M. and Yan, Q. 2011. Online bipartite
matching with random arrivals: an approach based
on strongly factor-revealing lps. In Proceedings of
the 43rd Annual ACM Symposium on Theory of
Computing (STOC). 597–606.

[52] Manshadi, V. H., Gharan, S. O., and Saberi,
A. 2012. Online stochastic matching: Online actions
based on offline statistics. Mathematics of Operations
Research 37, 4, 559–573.

[53] Mehta, A. 2012. Online matching and ad alloca-
tion. Theoretical Computer Science 8, 4, 265–368.

[54] Mehta, A., Saberi, A., Vazirani, U., and
Vazirani, V. 2007. Adwords and generalized online
matching. Journal of the ACM (JACM) 54, 5, 22.

[55] Motwani, R. and Raghavan, P. 2010. Random-
ized algorithms. Cambridge University Press.

[56] Naor, J. S. and Wajc, D. 2015. Near-optimum
online ad allocation for targeted advertising. In Pro-
ceedings of the 16th ACM Conference on Economics
and Computation (EC). 131–148.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

[57] Panconesi, A. and Srinivasan, A. 1997. Ran-
domized distributed edge coloring via an extension
of the chernoff–hoeffding bounds. SIAM Journal on
Computing (SICOMP) 26, 2, 350–368.

[58] Schrijver, A. 1998. Bipartite edge coloring
in O(∆m) time. SIAM Journal on Computing
(SICOMP) 28, 3, 841–846.

[59] Wallenius, K. T. Biased sampling; the noncen-
tral hypergeometric probability distribution. Ph.D.
thesis, Stanford University.

[60] Yao, A. C.-C. 1977. Probabilistic computations:
Toward a unified measure of complexity. In Proceed-
ings of the 18th Symposium on Foundations of Com-
puter Science (FOCS). 222–227.

Copyright c© 2018 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Our Results
	Our Techniques
	Paper Outline

	Problem Definitions and Preliminaries
	Negative Dependence Properties.

	Natural Approaches and Their Limitations
	The marking Algorithm
	Negative Correlation of the Fti.

	Expected Competitive Ratio
	High Probability Guarantees
	Per-Vertex Guarantees
	Hardness Result
	Omitted Proofs of Section 3
	Algorithm random
	Algorithm ranking
	Randomized Multiplicative Weights Method
	 Random Among High-Degree Neighbors

