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Abstract

In these notes we present the notion of Negative Association, discuss some of its useful properties, and
end with some example applications. The slogan to bear in mind here is “independent, or better”.

1 Negative Association - Definition

In randomized algorithms, our randomness often takes on the form of independent random variables, allowing
us to apply powerful theorems concerning such variables, a prominent example being Chernoff-Hoeffding
bounds. However, we can’t always expect random variables we observe (or generate during the run of our
algorithms) to be independent. Nonetheless, these variables may satisfy some form of negative dependence,
in which case useful properties of independence may carry over. This talk focuses on one such notion of
negative dependence, namely Negative Association.

Intuition Consider a set of random variables X1, X2, . . . , Xn, satisfying the following: if a subset S of these
variables is “high”, then a disjoint subset T must be “low”. This property can be formalized as follows.

Definition 1 (Negative Association [10, 8]). A set of random variables X1, X2, . . . , Xn is said to be negatively
associated (NA) if for any two disjoint index sets I, J ⊆ [n] and two functions f, g both monotone increasing
or both monotone decreasing, it holds

E[f(Xi : i ∈ I) · g(Xj : j ∈ J)] ≤ E[f(Xi : i ∈ I)] · E[g(Xj : j ∈ J)].

In order to simplify notation later, we will think of monotone functions f and g and disjoint subsets
I, J ⊆ [n] as defining functions in n variables fI , gJ : Rn → R, applying them to vectors ~X = (X1, X2, . . . , Xn)

given by sets of (NA) random variables, and stipulate that the values of f( ~X) and g( ~X) be determined by
disjoint subsets of the Xi. In this notation, the above definition can be restated as follows.

Definition 2 (Negative Association [10, 8]). A set of random variables X1, X2, . . . , Xn is said to be negatively
associated (NA) if for any two n-dimensional functions f, g : Rn → R, depending on disjoint subsets of indices
and both monotone increasing or both monotone decreasing in their respective indices, it holds

E[f( ~X) · g( ~X)] ≤ E[f( ~X)] · E[g( ~X)].

2 Useful Properties - Part 1

As a special case of the definition of NA, taking fi( ~X) = Xi, we find that NA variables are negatively
correlated.

Corollary 1 (NA implies Negative Correlation). Let X1, X2, . . . , Xn be NA random variables. Then, for all
i 6= j, the following holds: E[XiXj ] ≤ E[Xi] · E[Xj ]. That is, Cov(Xi, Xj) ≤ 0.

Another useful property of NA variables is Negative Orthant Dependence (NOD), given below.
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Corollary 2 (NA implies NOD). If X1, X2, . . . , Xn are NA random variables, then for any set of values
x1, x2, . . . , xn and disjoint subsets I, J ⊆ [n], it holds

Pr[Xi ≥ xi, ∀i ∈ I ∪ J ] ≤ Pr[Xi ≥ xi, ∀i ∈ I] · Pr[Xj ≥ xj , ∀j ∈ J ]

Pr[Xi ≤ xi, ∀i ∈ I ∪ J ] ≤ Pr[Xi ≤ xi, ∀i ∈ I] · Pr[Xj ≤ xj , ∀j ∈ J ].

Proof. This is a direct application of the definition, by taking f and g to be indicator random variables for
the relevant events, which are clearly both monotone increasing/decreasing functions in ~X.

Relying on Corollary 2, we obtain the following.

Corollary 3 (Marginal Probability Bounds). For any NA variables X1, . . . , Xn and real values x1, . . . , xn,

Pr[
∧
i

Xi ≥ xi] ≤
∏
i

Pr[Xi ≥ xi] and Pr[
∧
i

Xi ≤ xi] ≤
∏
i

Pr[Xi ≤ xi].

The following corollary of NA will prove useful shortly.

Corollary 4. Let X1, X2, . . . , Xn be NA random variables. Then, for every set of k positive monotone
increasing functions f1, . . . , fk depending on disjoint subsets of the Xi, it holds

E
[∏

i

fi( ~X)
]
≤
∏
i

E[fi( ~X)].

Proof. Induction on k, relying on the observation that the product of positive monotone increasing functions
is itself a positive monotone increasing function.

Chernoff-Hoeffding Bounds - Expect the Expected. One appealing property of NA variables is the
applicability of Chernoff-Hoeffding bounds to such variables, despite the variables’ potential dependences.

Theorem 5 (Chernoff-Hoeffding bounds for NA variables [4]). Let X1, X2, . . . , Xn be NA random variables
with Xi ∈ [ai, bi] always. Then Y =

∑
iXi satisfies Hoeffding’s upper tail bound. Namely,

Pr[|Y − E[Y ]| ≥ t] ≤ 2 exp

(
− 2t2∑

i(bi − ai)2

)
.

If Xi ∈ {0, 1} always, we have

Pr[Y ≥ (1 + δ)E[Y ]] ≤
(

eδ

(1 + δ)1+δ

)E[Y ]

Pr[Y ≤ (1− δ)E[Y ]] ≤
(

e−δ

(1− δ)1−δ

)E[Y ]

.

Proof. For the upper tail bounds, the standard proof of Chernoff/Hoeffding’s Inequality goes through almost
unchanged, with one small change: for any s > 0, we cannot claim E[e

∑
i sXi ] =

∏
i E[esXi ], as the Xi are

not independent; but, by Corollary 4 since the Xi are NA, they satisfy E[e
∑
i sXi ] = E[

∏
i e
sXi ] ≤

∏
i E[esXi ],

which suffices to prove the desired bounds. For the lower tail bounds, we rely on {bi−Xi}i being NA, a fact
which we do not prove here, but will follow from Lemma 9, Proposition ii, below.

3 Some example NA distributions

Knowing a joint distribution is NA may be useful, but do any such distributions even exist? In this section
we present a few such joint distributions on n variables which are NA.
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3.1 Toy Example - Independent Random Variables

Observation 6. [([8])] Let X1, X2, . . . , Xn be independent random variables. Then X1, X2, . . . , Xn are NA.

Ok, this example is a little unimpressive. Let’s consider some more interesting examples.

3.2 More Interesting Examples - The 0-1 Principle

Lemma 7. [The Zero-One Principle ([4])] Let X1, X2, . . . , Xn be zero-one random variables such that∑
iXi ≤ 1 always. Then X1, X2, . . . , Xn are NA.

Proof. Consider two monotonically increasing functions f : Rn → R and g : Rn → R depending on disjoint
subsets of indices. We want to show that E[f( ~X) · g( ~X)] ≤ E[f( ~X)] · E[f(g( ~X)]. WLOG, f(~0) = g(~0) = 0.1

Now, for f and g monotone n-dimensional functions determined by disjoint subsets of [n] and satisfying
f(~0) = g(~0) = 0 we have, as ~X ∈ {0, 1}n and

∑
iXi ≤ 1, that

E[f( ~X) · g( ~X)] = 0 ≤ E[f( ~X)] · E[g( ~X)]

3.3 More Interesting Examples - Permutation Distributions

Many problems involving permutations claim some form of negative dependence, without proof. The following
is a simple proof implying many such claims.

Lemma 8. [Permutation Distributions are NA ([8])] Let x1 ≤ x2 ≤ · · · ≤ xn be n values and let X1, X2, . . . , Xn

be random variables such that {X1, X2, . . . , Xn} = {x1, x2, . . . , xn} always, with all possible assignments
equally likely. Then X1, X2, . . . , Xn are NA.

Proof. The proof is by induction on n. For n = 2 this is easy to check or prove similarly to the 0-1 Lemma.
The condition E[f( ~X · g( ~X))] ≤ E[f( ~X)] · E[g( ~X)] can be written more succinctly as Cov(f( ~X), g( ~X) ≤ 0
(indeed, this is exactly how [8, 10] define NA). For the inductive step, we use two properties of covariances:
(1) LetX,Y, Z be three random variables. Then, Cov(X,Y ) = E[Cov(X,Y ) | Z]+Cov(E[X | Z],E[Y | Z]).23

(2) Chebyshev’s (less famous) Inequality: Let X be a random variable and f and g be monotone increasing
and decreasing functions, respectively; then, Cov(f(X), g(X)) ≤ 0.

Now, to show that permutation distributions are NA for general n, we consider two monotone increasing
functions f1 and f2 defined over disjoint subsets of the indices, S1 and S2. First, as we are dealing with
permutations and all permutations have equal probability, we may assume that f1 and f2 are permutation
invariant. Next, let I be an indicator for the location of the smallest value of the xi’s, x1. I takes on all
values in [n] with equal probability. By (1) above, we have

Cov(f1( ~X), f2( ~X)) = E[Cov(f1( ~X), f2( ~X) | I)] + Cov(E[f1( ~X) | I],E[f2( ~X) | I])

Conditioning on the location of the smallest value’s place leaves us with n− 1 variables in random order, or
in other words a permutation distribution on n− 1 elements. By the inductive hypothesis, the first term of
the rhs is at most zero. Next, by the permutation-invariance of f1 and f2, we find that E[f1( ~X | I)] takes
on exactly two values, corresponding to whether or not I ∈ S1 (that is, some i ∈ S1 satisfies Xi = x1). In
particular, this value is smaller when I ∈ S1 and larger otherwise. Therefore E[f1( ~X) | I] and E[f2( ~X) | I]
are respectively monotone increasing and decreasing functions of a binary random variable, namely 1[I ∈ S1].
By Chebyshev’s Inequality the second term on the rhs is at most zero, too.

1Otherwise, the functions f ′( ~X) = f( ~X) − f(~0) and g′( ~X) = g( ~X) − g(~0) vanish at ~0 and satisfy the required inequality if
and only if f and g do. That is, f ′ an g′ depend on disjoint subsets of indices if and only if f and g do and f ′ and g′ also satisfy
E[f ′( ~X) · g′( ~X)] ≤ E[f ′( ~X)] · E[g′( ~X)] if and only if E[f( ~X) · g( ~X)] ≤ E[f( ~X)] · E[g( ~X)].

2Throughout these notes, for discrete variables X,Z we denote by E[Z | X] the conditional expectation of Z given X, which
is itself a random variable which for all x ∈ support(X) takes on value E[Z | X = x] with probability Pr[X = x], and similarly
for continuous X and Z.

3See, e.g. https://en.wikipedia.org/wiki/Law_of_total_covariance for a proof of this identity.
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4 Closure Properties

An attractive feature of NA is that NA can be proven to hold for sets of random variables if they can be
obtained by sets of NA variables (e.g., the distributions discussed in Section 3) using the following operations.
This allows for “calculation-free” proofs of NA.

Lemma 9 (NA closure properties [10, 8, 4]).

(i) The union of independent sets of NA random variables is NA.
That is, if X1, X2, . . . , Xn are NA, Y1, Y2, . . . , Ym are NA, and {Xi}i are independent of {Yj}j, then
X1, X2, . . . , Xn, Y1, Y2, . . . , Ym are NA.

(ii) Concordant monotone functions defined on disjoint subsets of a set of NA random variables are NA.
That is, suppose f1, f2, . . . , fk : Rn → R are all monotonically increasing or all monotone decreasing,
with each fi depending on disjoint subsets of [n], S1, S2, . . . , Sk ⊆ [n]. In that case, if X1, X2, . . . , Xn

are NA, then the set of random variables Y1 = f1( ~X), Y2 = f2( ~X), . . . , Yk = fk( ~X) are NA.

Proof. We start by proving Property i. Denote by XA, XB and YA, YB some arbitrary partition of ~X and ~Y .
Let fA and fB be increasing functions. Then,

EX [fA(XA, YA) | YA = ~yA, YB = ~yB] = EX [fA(XA, YA) | YA = ~yA]

EX [fB(XB, YB) | YA = ~yA, YB = ~yB] = EX [fB(XB, YB) | YB = ~yB],

as fA(XA, YA) and gB(XB, YB) do not depend on YB and YA, respectively. Denote the conditional expecta-
tions

hA(YA) = EX [fA(XA, YA) | YA]

hB(YB) = EX [fB(XB, YB) | YB].

Note that hA and hB are increasing functions in their arguments. Therefore, by NA of ~X and ~Y , as ~X and
~Y are independent, we have

E[f(XA, YA) · g(XB, YB)] = E[E[fA(XA, YA) · fB(XB, YB) | YA, YB]]

Now, for all values YA and YB can take, as ~X and ~Y are independent, the expectation of the products is no
greater than the product of the expectations, by NA of ~X. So, by total probability, the above is at most

≤ E[E[fA(XA, YA) | YA, YB] · E[fB(XB, YB) | YA, YB]

= E[E[fA(XA, YA) | YA] · E[fB(XB, YB) | YB]

= E[hA(YA) · hB(YB)]

≤ E[hA(YA)] · E[hB(YB)]

= E[fA(XA, YA)] · E[fB(XB, YB)].

where the last inequality follows from the independence of ~X and ~Y and the NA of ~X and ~Y , respectively.
Property ii is nearly immediate. Consider f1, . . . , fk all monotone increasing/decreasing and g and h

monotonically increasing functions determined by disjoint subsets of the Yi. Then g and h applied to the Yj
are compositions of monotone increasing functions with monotone increasing/decreasing functions and are
therefore increasing/decreasing, as the case may be, determined by disjoint subsets of the Xi. But then, as
the Xi are NA, we have E[g(~Y ) · h(~Y )] ≤ E[g(~Y )] · E[h(~Y )].

Note: Joag-Dev and Proschan [8] show that property ii is unique to NA among a wide class of notions
of negative correlation.
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5 Applications

5.1 Random Sampling Without Replacement

Suppose we haveN items to pick from and we sample n ≤ N items of these without replacement,X1, X2, . . . , Xn.
These Xi can be seen as the first n items of a permutation distribution, and are therefore NA.

5.2 Fermi-Dirac Occupancy Numbers

The Fermi-Dirac distribution is given by the following process. Bins contain at most one ball each, with each
distribution of the m balls among the n bins equally likely. That is, if B1, B2, . . . , Bn are indicator variables
for bin i having a ball in it, then for any values m1,m2, . . . satisfying

∑
imi = m this distribution satisfies

Pr[

n∧
i=1

Bi = mi] =

(
n

m

)−1

.

Proof. Follows immediately from Permutation Distributions being NA, as Dermi-Firac distribution is pre-
cisely a Permutation Distribution on m ones and n−m zeros.

5.3 Balls and Bins, and Balls and Bins

Consider the standard balls and bins process. The process consists of m balls and n bins, with each ball
b placed in bin i with probability pb,i, independently of other ball placements. Let Bi be the number of
balls placed in bin i. This is often called the occupancy number of bin i. These variables are clearly not
independent, as in particular

∑
iBi = m always. They are, however, NA.

Theorem 10. The occupancy numbers, B1, B2, . . . , Bn, in a balls and bin process are NA.

Proof. Let Xb,i be an indicator random variable for ball b being placed in bin i. By the Zero-One Lemma
the set of variables {Xb,i | i ∈ [n]} is NA. By closure of NA sets under union of independent NA sets
(Property i), as each ball is placed in dependently of all other balls, the set {Xb,i | b ∈ [m], i ∈ [n]} is NA.
Finally, by closure of NA under monotone increasing functions on disjoint subsets (Property ii), noting that
Bi =

∑
bXb,i, we find that the Bi are indeed NA.

A consequence of the above, together with the fact that indicator r.v.s for a bin i being empty are
monotone decreasing functions in ~B determined by disjoint subsets of indices, is the following.

Corollary 11. Consider a balls and bins process with m balls and n bins. Then, if pb,i = 1
n for all b, i, then

w.h.p the number of empty bins, N satisfies N = E[N ]±O(
√
n log n) = n ·e−m/n±O(

√
n log n). In addition,

provided n · e−m/n = Ω(log n), then w.h.p N = Θ(E[N ]) = Θ(n · e−m/n).

These consequences are disturbingly simple to prove when contrasted with the work needed to prove these
results without NA (see [9, 12]).

5.4 Sampling Graphs

In this section, we will consider a few properties of graphs and the results of randomly subsampling the
edges/vertices of a graph to these properties.

For the first example, recall that the chromatic number of a graph, χ(G), is the minimum number of
colors with which you can color the vertices of G such that no two adjacent vertices share the same color.

Lemma 12. Let G be a graph and H be obtained from G by sampling every edge of G with probability 1
2

independently of all other edges. Then, E[χ(H)] ≥
√
χ(G).
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We will use the following simple fact, implied by the cartesian product of two subgraphs’ colorings.

Fact 13. For any two graphs on the same vertex set H1, H2, it holds

χ(H1 ∪H2) ≤ χ(H1) · χ(H2) (1)

Now, consider H1 = H (the sampled subgraph) and H2 = G \H (the subgraph of non-sampled edges).
Clearly H1 and H2 have the same distribution. As H1∪H2 = G we might hope that applying the expectation
operator to both sides of Equation 1 would give χ(G) ≤ E[χ(H1) ·χ(H2)]

?
= E[χ(H1)] ·E[χ(H2)] = E[χ(H)]2,

yielding our desired result. Unfortunately, the equality with a question mark over it is sketchy, at best, as
χ(H1) and χ(H2) are clearly not independent. They are, however, negatively associated, which will give us
the desired inequality.4

Lemma 14. [[1]] The random variables χ(H) and χ(G \H) are negatively associated.

Proof. Let H1 = H and H2 = G \H. Consider the pairs of indicator random variables Xe,1, Xe,2 defined by
Xe,i = 1 if e ∈ Hi and 0 else. By the Zero-One Principle every such pair is NA. But, as every edge e ∈ G is put
in H1 or in H2 independently of all other edges, by Property i the set of variables {Xe,i | e ∈ E[G], i = 1, 2}
are NA. Finally, we note that χ(H1) and χ(H2) are increasing functions determined by {Xe,1 | e ∈ E[G]}
and {Xe,2 | e ∈ E[G]} respectively. Thus, by Property ii, χ(H1) = χ(H) and χ(H2) = χ(G \H) are NA.

Proof of Lemma 12. As H1, H2 ∼ H, we have

χ(G) ≤ E[χ(H1) · χ(H2)] ≤ E[χ(H1)] · E[χ(H2)] = E[χ(H)]2

Where the second inequality follows by NA of χ(H1) and χ(H2). Consequently,
√
χ(G) ≤ E[χ(H)].

The following is a generalization of Lemma 14 to multiple sub-sampled sub-graphs and general monotone
increasing graph functions.

Theorem 15. [[1]] Let G be some graph, and H1, H2, . . . ,Hk be k subgraphs of G, with each edge e of G
randomly and independently placed in graph Hi with probability pe,i, where

∑
i pe,i = 1. Let f : {0, 1}(

n
2) → R

be a monotone increasing function on graphs. Then, f(H1), f(H2), . . . , f(Hk) are NA.

Proof. The proof is identical to the proof for the chromatic number in Lemma 14 (nothing magical about
the number 2, the uniform distribution (pe,i = 1

k ), or chromatic number in this context).

This NA property for a sampled and non-sampled subgraph implies many natural consequences. Consider
for example the following process: a graph’s edges are randomly partitioned into blue and red edges, each
edge e colored blue with probability pe and red with probability 1− pe. Let GR and GB be the red and blue
subgraphs. Let pR and pB be the probability that GR and GB are connected, respectively. Let pRB be the
probability that both subgraphs are connected. Then, as we would expect, we have

pRB ≤ pR · pB
4As it so happens, for this particular problem application of NA is overkill, as the AM-GM inequality applied to 1 yields√
χ(H1 ∪H2) ≤

√
χ(H1) · χ(H2) ≤ χ(H1)+χ(H2)

2
, following which linearity of expectation, together with E[χ(H1)] = E[χ(H2)]

yield the desired result. This example is instructive, however, so we present it nonetheless.
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6 Other Useful Properties of NA

Theorem 16 (Coupling with Independent Variables [13]). Let X1, X2, . . . , Xn be NA r.v.s and X∗1 , X
∗
2 , . . . , X

∗
n

be independent r.v.s such that Xi and X∗i have the same distribution for each i = 1, 2 . . . , n. Then for all
convex functions f ,

E[f(
n∑
i=1

Xi)] ≤ E[f(
n∑
i=1

X∗i )]

If f is further a non-decreasing function then

E[f(max
k

k∑
i=1

Xi)] ≤ E[f(max
k

k∑
i=1

X∗i )]

Corollary 17 (Variance is sub-additive for NA variables). Let X1, X2, . . . , Xn be NA r.v.s. Then,

V ar(
∑
i

Xi) ≤
∑
i

V ar(Xi)

Proof. Recall that V ar(
∑

iXi) = E[(
∑

iXi)
2]− E[

∑
iXi]

2. By Theorem 16, if X∗1 , X∗2 , . . . , X∗n are indepen-
dent r.v.s with each X∗i and Xi having the same individual distribution, then E[(

∑
iXi)

2] ≤ E[(
∑

iX
∗
i )2]

(and clearly E[
∑

iXi]
2 = E[

∑
iX
∗
i ]2.) In particular, we have

V ar(
∑
i

Xi) ≤ V ar(
∑
i

X∗i ) =
∑
i

V ar(X∗i ) =
∑
i

V ar(Xi)

The above corollary facilitates the use of the second moment method (Chebyshev’s more famous inequality,
namely Pr[|X − E[X]| ≥ k] ≤ V ar(X)

k2
) for sums of NA variables.5 More interestingly, the above theorem

implies that Kolmogorov’s Inequality, a strengthening of Chebyshev’s Inequality which holds for independent
random variables, also holds for NA variables. This inequality, stated below, is nice in that it allows us to
bound the probability of a partial sum deviating from the mean (zero) by some λ for any k by the same
bound we obtain using Chebyshev for the probability of the last partial sum deviating from the mean.

Corollary 18 (Kolmogorov’s Inequality holds for NA variables [13, 11]). Let X1, X2, . . . , Xn be NA r.v.s
with expected value E[Xk] = 0 and finite variance V ar(Xk) <∞ for all k. Then, if Sk =

∑k
i=1Xi, we have

Pr[ max
1≤k≤n

Sk ≥ λ] ≤ 1

λ2
·
n∑
i=1

V ar(Xi)

Proof. Kolmogorov’s inequality states that the above bound holds if we replace the X1, X2, . . . , Xn by inde-
pendent X∗1 , X∗2 , . . . , X∗n with each X∗i having the same individual distribution as Xi. That is, if we denote
by S∗k =

∑k
i=1X

∗
i the partial sums of X∗i ’s, then

Pr[ max
1≤k≤n

S∗k ≥ λ] ≤ 1

λ
·
∑
i

V ar(X∗i )

The rhs of this inequality, is exactly
∑

i V ar(Xi), as X∗i and Xi are identically distributed. The lhs, by
Theorem 16, can be lower bounded by the equivalent term with Sk =

∑k
i=1Xi replacing S∗k .

5Though why you would do so, given that you could rely on Chernoff bounds and use all moments, is a mystery.
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Uses for Optimization. Two ideas come to mind:
First, any one-dimensional random walk with NA steps of mean zero and bounded variance, is unlikely

to deviate by more than O(
√
n) from zero. Note that Azuma’s Inequality gives us concentration w.h.p in

a range of size Õ(
√
n), but if we’re worried about polylog terms, this is good enough to give us constant

probability for staying within a similar-sized range, without “paying” for union bound.
The second use of Theorem 16 (and corollaries) is the following. Suppose we want to minimize a convex

function of the form g(x) = f(
∑

i xi) (f convex) over some subdomain of Rn. Suppose furthermore that
we can output a NA sequence X1, X2, . . . , Xn which is a feasible solution (or perhaps only feasible with
high probability, provable using Chernoff-Hoeffding bounds). Then the expected value of this solution ~X

is upper bounded by the expected cost of the “same” solution with ~X replaced by independent variables
X∗1 , X

∗
2 , . . . , X

∗
n following the same individual distributions as X1, X2, . . . , Xn, an expectation which is likely

to be easier to compute, due to independence of these variables.

7 FKG Inequality

Finally, we discuss the FKG inequality, a powerful theorem which can be used to prove NA of distributions.
To state it, we need the following definitions.

Definition 3 (Distributive Lattice). We say a set and order (Γ, <) constitute a lattice if they form a partially-
ordered set in which each two elements x, y ∈ Γ have a unique least common upper bound, denoted by x ∨ y,
and a unique greatest upper bound, denoted by x ∧ y.

A lattice is called distributive if for each x, y, z ∈ Γ the functions ∨ and ∧ satisfy the following:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

As an example, consider the distributive lattice (Γ, <) with Γ a collection of subsets of some ground set
S, with the partial order of set inclusion (i.e., x < y corresponds to x ⊂ y). In that case, for x, y ∈ Γ, we
have x ∧ y = x ∪ y and x ∨ y = x ∩ y, and the distributive laws are the standard distributive laws for set
union and intersection. In fact, this example is a complete characterization (up to isomorphism) of all
distributive lattices, so thinking of this kind of distributive lattice is without any major loss of generality.
Nonetheless, we will consider yet another example, which will prove useful shortly.

As a second example, consider the set Γ of k-element ordered subsets of some ground set of n reals, where
we denote by xi the i-th largest element of x, and let x ≤ y iff xi ≤ yi. In this case, (x ∨ y)i = max{xi, yi}
and (x ∧ y)i = min{xi, yi} for all i ∈ [k]. This is a distributive lattice due to the distributive properties of
min and max.

Theorem 19 (FKG Inequality [7]). Let (Γ, <) be a finite distributive lattice, and let µ : Γ → R+ be a log
super-modular function on (Γ, <); i.e.,

µ(x ∧ y) · µ(x ∨ y) ≥ µ(x) · µ(y).

Then, for any two monotonically increasing functions f and g on (Γ, <), (that is, x ≤ y implies f(x) ≤ f(y))
the following holds:(∑

x∈Γ

f(x)g(x)µ(x)

)
·

(∑
x∈Γ

µ(x)

)
≥

(∑
x∈Γ

f(x)µ(x)

)
·

(∑
x∈Γ

g(x)µ(x)

)
.

Reading the above with µ as a probability function over sets, the above gives us a condition under which
monotone increasing functions f and g on a randomly sampled set X from some distribution satisfy

E[f(X) · g(X)] ≥ E[f(X)] · E[g(X)].
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7.1 Application: Alternative Proof of NA for Permutation Distributions

This example is taken from [5]. Let X1, . . . , Xn have the permutation distribution over [n] with each permu-
tation appearing with probability 1

n! . We re-prove this distribution is NA using the FKG inequality.

Lemma 20 (Permutation Distributions are NA ([5])). Let X1, X2, . . . , Xn be random variables such that
{X1, X2, . . . , Xn} = [n] always, with all n! possible assignments equally likely. Then X1, X2, . . . , Xn are NA.

Proof. Consider the finite distributive lattice (Γ, <) of k-element ordered sets of [n] with the component-wise
order, discussed above. In order to apply the FKG inequality, we need to define some µ. Take µ(S) =

(
n
k

)−1

for all S ⊆ [n]. This function is trivially log super-modular, satisfying the log super-modular inequality with
equality. Now, in order to leverage FKG to prove NA of X1, . . . , Xn, let f and g be two monotone increasing
functions over ~X which depend on disjoint subsets of the indices. Fix some k ∈ [n]. For any k-element ordered
subset S ⊆ [n], S = (S1, S2, . . . , Sk) and permutation on k elements, σ, we let σ(S) = (σ(S1), . . . , σ(Sk)).
Using this notation, define the functions f ′(S) = 1

k!

∑
τ f(τ(S)) and g′(S) = 1

(n−k)!

∑
σ f(σ([n] \S)). In that

case, f ′ and g′ are easily verified to be monotone increasing and decreasing respectively (i.e., S ≤ T satisfies
f ′(S) ≤ f ′(T ) and satisfies g′(S) ≥ g′(T )), by considering the sums in these functions’ definition term-wise.
Consequently, by the FKG inequality, we have that∑

S∈Γ

f ′(S)g′(S)µ(S) ·
∑
S∈Γ

µ(S) ≤
∑
S∈Γ

f ′(S)µ(S) ·
∑
S∈Γ

g′(S)µ(S)

Now, by our choice of µ =
(
n
k

)−1, the left hand side of the above is precisely E[f(S)g(S)] =
∑

S∈Γ f(S)g(S)· 1
n! ,

whereas the right hand side is precisely equal E[f(S)] ·E[g([n]\S)] =
∑

S∈Γ f(S) · (n−k)!
n! ·

∑
S∈Γ g([n]\S) · k!

n! .
We conclude that X1, . . . , Xn are NA (as g need not depend on all its n− k inputs.)

Proving that for any n (not necessarily distinct) numbers x1 ≤ x2 ≤ · · · ≤ xn, a permutation distribution
over the xi is also NA follows easily from the above and closure properties of NA.

8 Summary

We discussed a strong notion of negative dependence, called negative association. This notion has several
appealing properties. The first and foremost one is that it allows us to apply several strong theorems which
are normally reserved for independent random variables to variables which are clearly not independent. These
include Chernoff-Hoeffding bounds, NOD, Kolmogorov’s Inequality, and many more we didn’t cover (see, e.g.
[14] for an extension of the law of the iterated logarithm to NA variables6) Another appealing property of
negative association is its closure properties, allowing for “calculation-free” proofs that distributions are NA,
by plugging in known NA distributions and applying closure properties to obtain the relevant distribution.
We have discussed a few simple NA distributions which can be used to build more elaborate NA distributions
by means of these closure properties.

We note that we have omitted some more elaborate and general NA distributions, such as regular matroids
and strong Ralyeigh distributions (see Feder and Mihail [6] and Borcea et al. [2]), as well as some interesting
distributions for algorithmic applications, for example the output of Srinivissan’s dependent rounding pro-
cedure for level sets (see [15, 3]). Generally, the Feder-Mihail Theorem (see [6]) gives conditions by which a
distribution is NA, and in fact is NA even conditioned on setting any subsets of the variables to fixed values
(see [3], pg. 5 for a simple exposition of this theorem.)

6The law of the iterated logarithm states that for any sequence {Xi} of i.i.d r.v.s with mean zero and unit variance, if
Sn =

∑n
i=1Xi, then lim sup

n→∞

Sn√
n ln lnn

=
√
2 almost surely.
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