


Bob has reached the conclusion that his weight is 

becoming an issue,  

as he keeps arriving 

late to classes he 

has to run across  

campus to get to. 

 

He would like to put 

himself on a diet  

which will help him 

lose weight while still 

getting his RDA of 

important nutritional elements. 

 



Bob wonders how few calories he can  

eat a day, in order to get at least the  

recommended dietary allowance (RDA), 

part of which is given below: 

Calcium (mg) Protein (g) 

800 50 RDA 

Calcium (mg) Protein (g) Energy(kcal) Serving size Food 

20 10 150 245 g Soup Bowl 

360 10 120 237 ml Milk 

0 3 127 40 g Cereals ™  

50 75 519 300 g Shawarma 

8 0 55 142 g Apple 

The foods Bob is willing to eat and their nutritional 

values per serving are given below. Bob is unwilling to 

have more than 2 servings of milk a day. 



Calcium (mg) Protein (g) 

800 50 RDA 

Calcium (mg) Protein (g) Energy(kcal) Serving size Food 

20 10 150 245 g Soup Bowl 𝒙𝟏 

360 10 120 237 ml Milk 𝒙𝟐 

0 3 127 40 g Cereals ™  𝒙𝟑 

50 75 519 300 g Shawarma 𝒙𝟒 

8 0 55 142 g Apple 𝒙𝟓 

Unsatisfactory menu: 

𝑥 = 1,5,3,0,2  - too much milk. 

𝑥 = 1,2,3,0,2  - does not provide enough protein. 

 

Satisfactory menus: 

𝑥 = (1,2,3,1,2), total energy intake: 1400 kcal. 

𝑥 = (3,2,0,0,2.5), total energy intake: 827.5 kcal. 

Extra constraint: 

Milk/day ≤ 2 
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Find an 𝑛-dimensional vector 𝑥 minimizing 
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subject to constraints of the form: 

The above is an LP in . It can be 
written succinctly as: 
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Find an 𝑛-dimensional vector, 𝑥, 
which minimizes (or maximizes) a linear function, 

subject to linear equality/inequality constraints.

Minimize/maximize                 
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Calcium (mg) Protein (g) 

800 50 RDA 

Calcium (mg) Protein (g) Energy(kcal) Serving size Food 

20 10 150 245 g Soup Bowl 𝒙𝟏 

360 10 120 237 ml Milk 𝒙𝟐 

0 3 127 40 g Cereals ™  𝒙𝟑 

50 75 519 300 g Shawarma 𝒙𝟒 

8 0 55 142 g Apple 𝒙𝟓 

Our problem as an LP: 

Minimize  150𝑥1 + 120𝑥2 + 127𝑥3 + 519𝑥4 + 55𝑥5 
 
Subject to  10𝑥1 + 10𝑥2 + 3𝑥3 + 75𝑥4 ≥ 50 
  20𝑥1 + 360𝑥2 + 50𝑥4 + 8𝑥5 ≥ 800 
  𝑥2 ≤ 2 
  𝑥1𝑥2, 𝑥3, 𝑥4, 𝑥5 ≥ 0 
 

Extra constraint: 

Milk/day ≤ 2 



     Terms from last lesson: 

1. Objective function.  

 

2. Feasible Solution. 

 

3. Optimal Solution/Value. 

  

      Terms we haven’t yet encountered: 

4.  A problem is infeasible if it has no feasible solution. 

 

5.  A problem is unbounded if it has feasible solutions,  

     but no optimal solution. 



• Introduction to Linear Programming 

1. Problem Definition and Terminology 

2. Geometric Interpretation 

3. More Motivating Examples 

4. Duality 

 

• Integer Linear Programming 

 

• Rounding Fractional LP in Approximation Algorithms : 

1. Rounding to approximate Set Cover 
2. Randomized Rounding to approximate Set Cover  



Feasible  
Region 

Constraint  
#1 

Constraint  #2 

Consider the LP: 
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• Find a point in 𝑛-dimensional space, 𝑥, within some 

convex polytope, which is furthest away from some 

half-plane. 

 

• Each constraint defines a half-space in 𝑛-dimensional 

space. This is a face 

of the polytope, or  

Feasible Region. 
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1. 

Consider the LP: 

 

Maximize 𝑥 + 𝑧 − 2𝑦 
 

Subject to: 

1. 𝑦 ≥ 0 
2. 𝑧 ≥ 0 
3. 𝑥 ≥ −5/4 
4. 𝑦 ≤ 1 
5. 𝑧 ≤ 1 
6. 𝑥 ≤ −1/4 
 

The plane denoted 

by 𝑓(𝑥, 𝑦, 𝑧) is an 

isosurface. 

𝑧 

𝑦 

𝑥 

2. 

4. 

5. 
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SSSP (reminder): Given a weighted directed graph 

𝐺 = (𝑉, 𝐸) and vertex 𝑠 ∈ 𝑉, find, for each 𝑣 ∈ 𝑉, 
𝑑𝑖𝑠𝑡(𝑠, 𝑣) : the minimal weight of a path from 𝑠 to 𝑣. 

𝒚 

𝒔 

𝒛 

𝒘 𝒙 

𝒕 

16 

14 

12 



SSSP (reminder): Given a weighted directed graph 

𝐺 = (𝑉, 𝐸) and vertex 𝑠 ∈ 𝑉, find, for each 𝑣 ∈ 𝑉, 
𝑑𝑖𝑠𝑡(𝑠, 𝑣) : the minimal weight of a path from 𝑠 to 𝑣. 

Define 𝑑𝑣 for each vertex 𝑣. The LP is: 


Vv

vdmax

E(u,v)vuwdd uv      ),(

0 subject to sd



Define 𝑑𝑣 for each vertex 𝑣. The LP is: 

 
Vv

vdmax

E(u,v)vuwdd uv      ),(

0 subject to sd

Proof of correctness:  
For every 𝑣 and path 𝑝: 𝑠 = 𝑣1 → 𝑣2 → ⋯ → 𝑣𝑘−1 → 𝑣𝑘 = 𝑣 
we have 𝑑𝑣 ≤ 𝑤 𝑝 = Σ𝑖=1

𝑘−1𝑤(𝑣𝑖 , 𝑣𝑖+1).   (⋆) 

In particular, 𝑑𝑣 ≤ 𝑑𝑖𝑠𝑡 𝑠, 𝑣 . 

Therefore Σ𝑣𝑑𝑣 ≤ Σ𝑣(𝑑𝑖𝑠𝑡(𝑠, 𝑣)). 

Finally, if 𝑑: 𝑑𝑣 = 𝑑𝑖𝑠𝑡(𝑠, 𝑣) is a feasible solution, it is 

therefore the only optimal solution. 



Max Flow(reminder): Given a directed capacitated 

graph 𝐺 = (𝑉, 𝐸) and vertices 𝑠, 𝑡, find the maximum 

outgoing flow from 𝑠 to 𝑡, subject to edge capacities 
and flow preservation in vertices 𝑣 ≠ 𝑠, 𝑡. 

𝒚 

𝒔 

𝒛 

𝒘 𝒙 

𝒕 

16 

14 

12 



Define 𝑓(𝑢, 𝑣) for every edge (𝑢, 𝑣). The LP:  
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Back to Our Diet Problem’s LP: 

Minimize  150𝑥1 + 120𝑥2 + 127𝑥3 + 519𝑥4 + 55𝑥5 
 
Subject to  10𝑥1 + 10𝑥2 + 3𝑥3 + 75𝑥4 ≥ 50 
  20𝑥1 + 360𝑥2 + 50𝑥4 + 8𝑥5 ≥ 800 
  𝑥2 ≤ 2 
  𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≥ 0 
 

Best feasible solution found so far had value 827.5. 

Could we have done better? Can we give lower 

bounds on the objective function? 

 

Since 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≥ 0, we find that : 

𝑓 𝑥 = 150𝑥1 + 120𝑥2 + 127𝑥3 + 519𝑥4 + 55𝑥5 ≥ 
             10𝑥1 + 10𝑥2   + 3𝑥3      + 75𝑥4 ≥ 50 
 
 



Bob’s Diet Problem – the  LP: 

Minimize  150𝑥1 + 120𝑥2 + 127𝑥3 + 519𝑥4 + 55𝑥5 
 
Subject to  10𝑥1 + 10𝑥2 + 3𝑥3 + 75𝑥4 ≥ 50 
  20𝑥1 + 360𝑥2 + 50𝑥4 + 8𝑥5 ≥ 800 
  𝑥2 ≤ 2 
  𝑥1, 𝑥2 , 𝑥3, 𝑥4, 𝑥5 ≥ 0 
 

Can we get better bounds? 

Sure. Consider lower bounds given by linear 

combinations of the constraints: 

𝑓 𝑥 = 150𝑥1 + 120𝑥2 + 127𝑥3 + 519𝑥4 + 55𝑥5 ≥ 

           
1

3
20𝑥1 + 360𝑥2 + 0𝑥3      + 50𝑥4   +  8𝑥5 ≥

800

3
 

 
𝑓 𝑥 = 150𝑥1 + 120𝑥2 + 127𝑥3 + 519𝑥4 + 55𝑥5 ≥ 

        1 ⋅ 20𝑥1 + 360𝑥2 + 0𝑥3      + 50𝑥4   + 8𝑥5 + 

        240 ⋅ 0𝑥1   − 1𝑥2 + 0𝑥3      +  0𝑥4     + 0𝑥5 ≥ 320 



Bob’s Diet Problem – the  LP: 

Minimize  150𝑥1 + 120𝑥2 + 127𝑥3 + 519𝑥4 + 55𝑥5 
 
Subject to  10𝑥1 + 10𝑥2 + 3𝑥3 + 75𝑥4 ≥ 50 
  20𝑥1 + 360𝑥2 + 50𝑥4 + 8𝑥5 ≥ 800 
  𝑥2 ≤ 2 
  𝑥1, 𝑥2 , 𝑥3, 𝑥4, 𝑥5 ≥ 0 
 

Our final bound: 

𝑓 𝑥 = 150𝑥1 + 120𝑥2 + 127𝑥3 + 519𝑥4 + 55𝑥5 ≥ 

           
5

4
10𝑥1 + 10𝑥2   + 3𝑥3      + 75𝑥4     +   0𝑥5 + 

         
55

8
20𝑥1 + 360𝑥2 + 0𝑥3      + 50𝑥4   +    8𝑥5 + 

         2367.5         −1𝑥2 + 0𝑥3      +   0𝑥4   +    0𝑥5 ≥ 827.5 
 

 



Recall, we’re searching for a vector 𝑥, minimizing 
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We call the above the Primal LP.  
Next, define a non-negative variable 𝑦𝑗 for each 

constraint of the Primal LP. 



Primal LP (P) Dual LP (D) 
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Weak Duality Theorem: Let 𝑥 and 𝑦 be feasible solutions of (P) and (D), 
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Q.E.D. 



Primal LP (P) Dual LP (D) 
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We won’t show a proof of this theorem here, but mention that we’ve 

seen examples of this fact: 

1. The Diet Problem. 

2. Maximum-Flow Vs. Minimum Cut. 

Strong Duality Theorem: Let 𝑥∗ and 𝑦∗ be optimal solutions of (P) and (D), 

respectively. Then 

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While half a serving of shawarma might mean something, 

what do we if the optimal diet requires we eat 0.5 apples 

a day? What do we do with the remaining 0.5 apple? 

 

 



Definition:  

LP with all coordinates in 𝑥 restricted to be integers. 

 

The Bad News:  

Hard. Even determining whether a feasible solution 

exists is NP-hard. 

The Good News:  

We can use Integer LPs and their LP-Relaxation (the 

equivalent Fractional Linear Program) to devise 
efficient approximation algorithms.  



Definition: Let 𝐺 = (𝑉, 𝐸) be an undirected graph, 

with cost function 𝑐: 𝑉 → 𝑅+.  
We say that 𝑈 ⊆ 𝑉, is a Vertex Cover if every edge 

in 𝐸 has an endpoint in 𝑈. 

 

Evuxx vu  },{   ,1 subject to

Vvxv      },1,0{

Easy: Take 𝑈 = 𝑉. 

(NP-)Hard: Find a smallest cost Vertex Cover. 

Define 𝑥𝑣 for each vertex 𝑣. The LP is: 


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
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Definition: Let 𝑆1, … , 𝑆𝑛 ⊆ 𝑈 =∪ 𝑆𝑖 be sets of elements, 
with cost function 𝑐: 𝑆𝑖 𝑖=1

𝑛 → 𝑅+. 
We say that 𝑆’ ⊆ *𝑆1, 𝑆2, … , 𝑆𝑛+ is a Set Cover if every  

element of 𝑈 is contained in a set in 𝑆′. 
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jSij

j 


    ,1 subject to
:

][    },1,0{ njx j 

Easy: Take 𝑆’ = *𝑆1, … , 𝑆𝑛+ 

(NP-)Hard: Find a smallest cost Set Cover. 

Define 𝑥𝑖 for each set 𝑆𝑖. The LP is: 
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Unnecessary 

Let us consider the (NP-hard) decision problem of 

Set Cover, SC. 

Define 𝑥𝑖 for each set 𝑖. The LP is: 



Integer LP Fractional LP 

 

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Question: IOPT vs. OPT? 

(Unnecessary) 

Answer: 𝐼𝑂𝑃𝑇 ≥ 𝑂𝑃𝑇, as the fractional LP’s feasible 
points contain all the feasible points of the integer LP. 
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Denote: 𝐼𝑂𝑃𝑇 = Optimal value of Integer LP.  
     𝑂𝑃𝑇  = Optimal value of Fractional LP. 
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Define:   𝑓(𝑖) = | 𝑗 𝑖 ∈ 𝑆𝑗  +|.  
      𝑓 = max 𝑓 𝑖 𝑖 ∈ ∪+. 

We’ll show a simple 𝑓 -approximation to the 

minimum Set Cover: 

 Algorithm: 

1. Find 𝑥∗, an optimal solution to the LP-relaxation. 
2. Pick all sets 𝑆 for which xS

∗ ≥ 1/𝑓 in the solution. 



Define:   𝑓(𝑖) = | 𝑗 𝑖 ∈ 𝑆𝑗  +|.  
      𝑓 = max 𝑓 𝑖 𝑖 ∈ ∪+. 

 Algorithm: 

1. Find 𝑥∗, an optimal solution to the LP-relaxation. 
2. Pick all sets 𝑆 for which xS

∗ ≥ 1/𝑓 in the solution. 

       Feasible Solution: 

 Since every element 𝑖 appears in at most 𝑓 sets, 
one of the sets 𝑆 that contain it must have 𝑥𝑆

∗ ≥ 1/𝑓. 
Therefore the algorithm returns a feasible solution. 



Define:   𝑓(𝑖) = | 𝑗 𝑖 ∈ 𝑆𝑗  +|.  
      𝑓 = max 𝑓 𝑖 𝑖 ∈ ∪+. 

 Algorithm: 

1. Find 𝑥∗, an optimal solution to the LP-relaxation. 
2. Pick all sets 𝑆 for which 𝑥𝑆

∗ ≥ 1/𝑓 in the solution. 

       Approximation Guarantee 

 As 𝑂𝑃𝑇 ≤ 𝐼𝑂𝑃𝑇,  and we have at most multiplied every 

coordinate of 𝑥∗ by 𝑓, we have obtained a solution of 

cost≤ 𝑓 ⋅ 𝑂𝑃𝑇 ≤ 𝑓 ⋅ 𝐼𝑂𝑃𝑇. 



       Tightness of Analysis: 

 We define the following hypergraph 𝐺 = (𝑉,𝐻). 
 𝑉 = 𝑉1 ∪ 𝑉2 ∪⋯∪ 𝑉𝑘, with the 𝑉𝑖’s disjoint. 𝑉𝑖 = 𝑛. 

𝑉1 𝑉2 𝑉3 𝑉𝑘 ….......... 

….......... 

 𝐻 is all 𝑛𝑘 hyper-edges containing exactly one 

vertex from each 𝑉𝑖.  
 As in Vertex Cover, vertices are sets, elements 

are hyperedges and inclusion corresponds to 

incidence. Each element (hyperedge) appears 

in 𝑓 = 𝑘 sets. Each set (vertex) has cost 1. 

𝑛

 
 
 
 
 
 
 

 



         Tightness of Analysis (cont.): 

𝑉1 𝑉2 𝑉3 𝑉𝑘 ….......... 

….......... 

 Notice that a fractional solution costs at least 𝑛. 
 Therefore, a possible optimal solution can pick 

every set (vertex) to the extent of 1/𝑘, giving an 

optimal fractional solution of cost 𝑛.  

 Using this optimal fractional solution, the above 

algorithm returns a cover of cost 𝑘𝑛  (all the 

vertices), whereas a feasible integral solution of 
cost 𝑛 exists; for example, all vertices in 𝑉1. 

 

𝑛
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Definition: We say a polynomial time algorithm, 𝐴, is a 

𝑐 −factor randomized approximation algorithm for a 

problem 𝜋 if for every problem instance 𝑖, 𝐴 returns a 

solution 𝑥 such that 

Pr 𝑥 𝑖𝑠 𝑎 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑐𝑜𝑠𝑡 ≤  𝑐 ⋅ 𝐼𝑂𝑃𝑇(𝑖) ≥ ½ 



 Markov’s Inequality 

Let 𝑋 be some random variable and 𝜇 = 𝐸 𝑋 . Then 

Pr 𝑋 ≥ 𝑐 ⋅ 𝜇 ≤ 1/𝑐 
 

One line proof: 

𝐸 𝑋 = Σ𝑥 Pr 𝑋 = 𝑥 ⋅ 𝑥 ≥ Pr 𝑋 ≥ 𝑐 ⋅ 𝐸 𝑋 ⋅ 𝑐 ⋅ 𝐸,𝑋- 

 Union Bound (Boole’s Inequality) 

Let 𝐴1, 𝐴2, … , 𝐴𝑘 be events. Then 

Pr 𝐴1 ∨ 𝐴2 ∨ ⋯∨ 𝐴𝑘 ≤ Pr 𝐴𝑖
𝑖

 

 

One line proof: 

Induction &  

Pr 𝐴1 ∨ 𝐴2 = Pr 𝐴1- + Pr ,𝐴2 − Pr 𝐴1 ∧ 𝐴2 ≤ Pr 𝐴1- + Pr ,𝐴2  



 Randomized Approximation: a Recipe: 

1. Find an optimal solution to the LP-relaxation, 𝑥∗, and 

consider its entries as probabilities. 

 

2. Use these probabilities to build an integer solution, 𝑥. 
 

3. Show Pr 𝑥 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ≤ 1 4 . 

 

4. Show Pr 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑥 > 𝑐 ⋅ 𝐼𝑂𝑃𝑇 ≤ 1 4 . 

 

5. By Union Bound, we find  that 

Pr 𝑥 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑜𝑟 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑥 > 𝑐 ⋅ 𝐼𝑂𝑃𝑇 ≤  ½, and therefore 

Pr 𝑥 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒, 𝑤𝑖𝑡ℎ 𝑐𝑜𝑠𝑡 ≤  𝑐 ⋅ 𝐼𝑂𝑃𝑇 ≥ ½. 



 Algorithm: 

1. Find 𝑥∗, an optimal solution to the LP-relaxation. 

2. Initialize an empty covering, 𝐶. 
3. Repeat 𝑂(log 𝑛) times: 

1. For every set 𝑆 not yet in 𝐶, add it to 𝐶 with 
probability 𝑥𝑆

∗. 

We will now wish to show: 

1. Pr 𝐶 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ≤ 1 4 . 

2. Pr 𝐶𝑜𝑠𝑡 𝐶 ≥ Ω log 𝑛 ⋅ 𝐼𝑂𝑃𝑇 ≤ 1 4 . 

 

Putting both results together, we find that 

Pr 𝐶 𝑖𝑠 𝑎 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝑐𝑜𝑠𝑡 < 𝑂 log 𝑛 ⋅ 𝐼𝑂𝑃𝑇  ≥ ½  

and thus the above is an 𝑂(log 𝑛) −factor randomized 

approximation algorithm. 



Claim 1: Pr 𝑪 𝒊𝒏𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆 ≤ 𝟏 𝟒 : 

Let 𝑒 be some uncovered element, appearing in 𝑘  
sets. Denote these sets’ probabilities by 𝑝1, 𝑝2, … , 𝑝𝑘. 
 

Pr[𝑒 𝑛𝑜𝑡 𝑝𝑖𝑐𝑘𝑒𝑑 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 3]=Π𝑖=1
𝑘 (1 − 𝑝𝑖) 

 

Since 𝑒 is fractionally covered in 𝑥∗, we have Σ𝑝𝑖 ≥ 1. 
 Lemma: Let 𝑝1 + 𝑝2 +⋯+ 𝑝𝑘 ≥ 1 and 1 ≥ 𝑝𝑖 ≥ 0 ∀𝑖, then 

 Π𝑖=1
𝑘 1 − 𝑝𝑖 ≤ 1 −

1

𝑘

𝑘
. 

Therefore, for any element 𝑒 
Pr 𝑒 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶 𝑖𝑛 𝑜𝑛𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 

 Π𝑖=1
𝑘 1 − 𝑝𝑖 ≤ 1 −

1

𝑘

𝑘
≤ 1/𝑒. 



Proof of (⋆): Let 𝑝1 + 𝑝2 +⋯+ 𝑝𝑘 ≥ 1 and 1 ≥ 𝑝𝑖 ≥ 0 ∀𝑖, 

       then 𝑓 𝑝 = Π𝑖=1
𝑘 1 − 𝑝𝑖 ≤ 1 −

1

𝑘

𝑘
. 

 

Consider 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑘) which maximizes 𝑓 𝑝 , subject  

to the above constraints. 

1. As 1 ≥ 𝑝𝑖 ∀𝑖, every term in the product, 𝑓(𝑝), is positive. 

 

2. If Σ𝑝𝑖 > 1, we can decrease some 𝑝𝑖 > 0 and still have 

Σ𝑝𝑖 ≥ 1, 1 ≥ 𝑝𝑖 ≥ 0 ∀𝑖, but increased 𝑓(𝑝). Therefore 

Σ𝑝𝑖 = 1. 
 

3. Finally, if 𝑝 ≠ (
1

𝑘
,
1

𝑘
, … ,
1

𝑘
), there exist some 𝑝𝑖 > 1/𝑘 and 

𝑝𝑗 < 1/𝑘. Replacing these by (𝑝𝑖+𝑝𝑗)/2 increases 𝑓(𝑝), 

a contradiction. 

Therefore max 𝑓 𝑝 = 1 −
1

𝑘

𝑘
.     

        QED. 



Claim 1: Pr 𝑪 𝒊𝒏𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆 ≤ 𝟏 𝟒    (continued): 

Picking up where we left off, we recall that for every 

element 𝑒 
Pr 𝑒 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶 𝑖𝑛 𝑜𝑛𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≤ 1/𝑒 

If we repeat this ln (4𝑛) = 𝑂(log 𝑛) iterations, we find 

that for every element 𝑒: 

Pr 𝑒 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶 𝑖𝑛 𝑎𝑙𝑙 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≤
1

𝑒

ln 4𝑛

=
1

4𝑛
 

Therefore, by taking a Union Bound over all elements,  

we find that 
    Pr ,𝐶 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒- = 

Pr 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝐶 ≤ 
𝑛 ⋅ 1/4𝑛 = 1/4 

Thus finishing our proof of claim 1. 



We will now wish to show: 

1. Pr 𝐶 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ≤ 1 4 . 

2. Pr 𝐶𝑜𝑠𝑡 𝐶 ≥ 4 ln(4𝑛) ⋅ 𝐼𝑂𝑃𝑇 ≤ 1 4 . 

 

Putting both results together, we find that 

Pr 𝐶 𝑖𝑠 𝑎 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝑐𝑜𝑠𝑡 < 4 ln(4𝑛) ⋅ 𝐼𝑂𝑃𝑇  ≥ ½  

and thus the above is an  𝑂(log 𝑛) −factor randomized 

approximation algorithm. 

 Algorithm: 

1. Find 𝑥∗, an optimal solution to the LP-relaxation. 

2. Initialize an empty covering, 𝐶. 
3. Repeat ln(4𝑛) = 𝑂(log 𝑛) times: 

1. For every set 𝑆 not yet in 𝐶, add it to 𝐶 with 
probability 𝑥𝑆

∗. 



Claim 2: Pr 𝒄𝒐𝒔𝒕(𝑪) ≥ 𝟒 𝒍𝒏(𝟒𝒏) ⋅ 𝑰𝑶𝑷𝑻 ≤ 𝟏 𝟒 : 

The expected cost of the addition to 𝐶 in one  

iteration is at most cost(𝑥∗) = 𝑂𝑃𝑇: 
𝐸 𝑎𝑑𝑑𝑒𝑑 𝑐𝑜𝑠𝑡 ≤ Σ𝑆𝑥𝑆

∗ ⋅ 𝑐 𝑠 = 𝑐𝑜𝑠𝑡 𝑥∗ = 𝑂𝑃𝑇 

Now, by Markov’s inequality,  

Pr 𝑐𝑜𝑠𝑡 𝐶 ≥ 4 ln(4𝑛) ⋅ 𝐼𝑂𝑃𝑇 ≤ 1 4  

and claim 2 follows. 

Repeating the process ln(4𝑛) times gives us a 𝐶 of  

expected cost at most  

ln(4𝑛) ⋅ 𝑐𝑜𝑠𝑡 𝑥 = ln(4𝑛) ⋅ 𝑂𝑃𝑇 ≤ ln(4𝑛) ⋅ 𝐼𝑂𝑃𝑇. 



We will now wish to show: 

1. Pr 𝐶 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ≤ 1 4 . 

2. Pr 𝐶𝑜𝑠𝑡 𝐶 ≥ 4 ln(4𝑛) ⋅ 𝐼𝑂𝑃𝑇 ≤ 1 4 . 

 

Putting both results together, we find that 

Pr 𝐶 𝑖𝑠 𝑎 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝑐𝑜𝑠𝑡 ≤ 4 ln(4𝑛) ⋅ 𝐼𝑂𝑃𝑇  ≥ ½  

and thus the above is an 𝑂(log 𝑛) −factor randomized 

approximation algorithm. 

 Algorithm: 

1. Find 𝑥∗, an optimal solution to the LP-relaxation. 

2. Initialize an empty covering, 𝐶. 
3. Repeat ln(4𝑛) times: 

1. For every set 𝑆 not yet in 𝐶, add it to 𝐶 with 
probability 𝑥𝑆

∗. 
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