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Bob has reached the conclusion that his weight is
becoming an issue,
as he keeps arriving
late to classes he
has o run across
campus to get to.

He would like to put
himself on a diet
which will help him
lose weight while sill
ge'I"hng h|$ RDA Of © Ron Leishman * www.ClipartOf.com/1047098
important nutritional elements.




Bob wonders how few calories he can
eat a day, in order to get at least the
recommended dietary allowance (RDA),
part of which is given below:

RDA 50

The foods Bob is willing to eat and their nutritional
values per serving are given below. Bob is unwilling to
have more than 2 servings of milk a day.

Soup Bowl
Milk

Cereals ™
Shawarma

Apple



Extra consiraint:
Milk/day < 2 RDA 50 800

Soup Bowl 245 g
Milk 237 ml
Cereals ™ 40 g

Shawarma 300 g
Apple 142 g

Unsatisfactory menu:
x = (1,5,3,0,2) - too much milk.
x = (1,2,3,0,2) - does not provide enough protein.

Satisfactory menus:
x = (1,2,3,1,2), total energy intake: 1400 kcal.
x = (3,2,0,0,2.5), total energy intake: 827.5 kcal. &
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Find an n-dimensional vector x minimizing
subject to constraints of the form:

The above is an LP in . It can be
written succinctly as:



Find an n-dimensional vector, x,
which minimizes (or maximizes) a linear function,

subject to linear equality/inequality constrainfs.

Minimize/maximize

subject to:



Extra constraint:
Milk/day < 2 RDA 50 800

Soup Bowl 245 g
Milk 237 ml
Cereals ™ 40 g

Shawarma 300 g
Apple 142 g




Terms from last lesson:
. Objective function.

. Feasible Solution.

. Optimal Solution/Value.

Terms we haven't yet encountered:
. A problem is infeasible if it has no feasible solution.

. A problem is unbounded if it has feasible solutions,
but no optimal solution.
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2-D Geometric Example

Consider the LP:

: Constraint
Subject to: #1
Feasible
Region

4



* Find a point in n-dimensional space, x, within some
convex polytope, which is furthest away from some
half-plane.

* Each constraint defines a INn n-dimensional
space. This is a face

of the polytope, or

Feasible Region.



A W NN

xX+2z—2y

y=0
z=0
x = —5/4
y<1
z<1
x<-—-1/4
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SSSP_(reminder): Given a weighted directed graph
G = (V,E) and vertexs e V, find, foreachv eV,
dist(s,v) . the minimal weight of a path from s to v.




SSSP_(reminder): Given a weighted directed graph
G = (V,E) and vertexs e V, find, foreachv eV,
dist(s,v) . the minimal weight of a path from s to v.




Proof of correctness:
Foreveryvand pathp:s=v; 2 v, 5 -+ 2 U1 2V, =V
we have d, < w(p) = 5w, vigq). (%)

In particular, d, < dist(s,v).
Therefore 2,d,, < Z,(dist(s,v)).

Finally, if d: d, = dist(s,v) Is a feasible solution, it is
therefore the only optimal solution.



Max Flow(reminder): Given a directed capacitated
graph ¢ = (V,E) and vertices s, t, find the maximum
outgoing flow from s to t, subject to edge capacities
and flow preservation in vertices v # s, t.




Define f(u,v) for every edge (u,v). The LP:

max Y f(s,v)
veadj(s)
subject to f(u,v) <c(u,v) v(uv)eE
f(u,v) >0 v(u,v) e E

S fuv)=Y f(wu) VstzueV

veV weV
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Best feasible solution found so far had value 827.5.
Could we have done bettere Can we give lower
bounds on the objective function?



Can we get better boundse
Sure. Consider lower bounds given by linear
combinations of the constraints:



Our final bound:



Recall, we're searching for a vector x, minimizing

We call the above the Primal LP.
Next, define a non-negative variable y; for each

constraint of the Primal LP.

The Dual LP: Find y Maximizing




Primal LP (P) Dual LP (D)

Weak Dudlity Theorem: Let x and y be feasible solutions of (P) and (D),
respectively. Then




Primal LP (P) Dual LP (D)

Strong Dudlity Theorem: Let x* and y* be optimal solutions of (P) and (D),
respectively. Then

We won't show a proof of this theorem here, but mention that we've
seen examples of this fact:
1. The Diet Problem.

2. Maximum-Flow Vs. Minimum Cut.
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LP with all coordinates in x restricted to be intfegers.

Hard. Even determining whether a feasible solution
exists is NP-hard.

We can use Integer LPs and their LP-Relaxation (the
equivalent Fractional Linear Program) to devise
efficient approximation algorithms.



Definition: Let ¢ = (V,E) be an undirected graph,

with cost function c:V — R™.
We say that U €V, is a Vertex Cover if every edge

INn E has an endpoint in U.

Easy: Take U =V.

(NP-)Hard: Find a smallest cost Vertex Cover.



Definition: Let §4, ..., S,, € U =U §; be sets of elements,
with cost function c: {S;}}; = R™.

We say that §’ € {§5,,5,, ...,5,}1s a Set Cover if every
element of U is contained in a sefin S'.

Easy: Take §' = {S;, ..., S;;}

(NP-)Hard: Find a smallest cost Set Cover.



SC={S,,S,,....S,,¢c,k|S;,S,,..., S, has a Set Cover of cost <k}

Define x; for each set i. The LP is:

min > c(S;)- X, D> e(S)-x, <k
ic[n]

ic[n]

subjectto » x, >1, VieU
Jies;

X; €10,1}, V] e[n]



Infeger LP Fractional LP

Denote: = Optimal value of Integer LP.
= Optimal value of Fractional LP.

Question: IOPT vs. OPT?

ANswer: , as the fractional LP’s feasible
points contain all the feasible points of the integer LP.
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SEI Cover

Define: f(i) =[{jli €S }I.

f=max{f(i)|i € U}.
We'll show a simple f-approximation to the
minimum Set Cover:



Define: f(@) =1{li €S;}.
f =max{f(i)]|i € U}.

Since every element i appears in at most f sets,
one of the sets § that contain it must have x¢ = 1/f.
Therefore the algorithm returns a feasible solution.



Detine: f(i) = | |i €S}
f =max{f(i)|i € U}.

As OPT < IOPT, and we have at most multiplied every
coordinate of x* by f, we have obtained a solution of
cost< f-OPT < f - IOPT.



We define the following hypergraph ¢ = (V, H).
V=V,uV,u--uUV,, with the V;'s disjoint. |V;| = n.

H is all n* hyper-edges containing exactly one
vertex from each V.

As in Vertex Cover, vertices are sets, elements
are hyperedges and inclusion corresponds to
Incidence. Each element (hyperedge) appears
INn f = k sets. Each set (vertex) has cost 1.

N
o
o
000 =

n < S R LR ILIEE




Notice that a fractional solution costs at least n.
Therefore, a possible optimal solution can pick
every set (vertex) to the extent of 1/k, giving an
optimal fractional solution of cost n.

Using this optimal fractional solution, the above
algorithm refurns a cover of cost kn (all the
vertices), whereas a feasible integral solution of
Ccost n exists; for example, all vertices in V;.

000 =

n < S R LR ILIEE
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Definition: We say a polynomial time algorithm, A, is a
¢ —factor randomized approximation algorithm for @
problem m if for every problem instance i, A returns a

solution x such that
Pr|x is a feasible solution with cost < c-IOPT(i)] = %




Let X be some random variable and u = E[X]. Then
PriIX>c-ul<1/c

E[X] =Z,Pr[X =x] - x = Pr[X = c-E[X]| c- E[X]

Let A, A,, ..., Ay De events. Then

Prl[A{ VA, V-V A,] < Z Pr[A;]
[

Induction &
Pr[A, VvV A,] = Pr[A;] + Pr[A,] — Pr[A; A A,] < Pr|A;] + Pr[A;]



1. Find an optimal solution to the LP-relaxation, x*, and
consider its entries as probabilities.

2. Use these probabillities to build an integer solution, x.
3. Show Pr[x infeasible] < 1/,.

4. Show Pr[cost of x > c-IOPT] < 1/,.

5. By Union Bound, we find that

Pr|x infeasible or cost of x > c - IOPT] < %, and therefore
Pr|x is feasible,with cost < c - IOPT] = %.



1. Pr[C infeasible] < 1/,.
2. Pr[Cost C = Q(logn) - IOPT] < 1/,.

Putting both results together, we find that

Pr|[C is a feasible cover of cost < O(logn) - IOPT] = %
and thus the above is an 0(logn) —factor randomized
approximation algorithm.



Let e be some uncovered element, appearing in k
sets. Denote these sets’ probabillities by py, vy, ..., P

Prle not picked in this iteration of 3]=H£<=1(1 — pi)

Since e Is fractionally covered in x*, we have Xp; = 1.

Therefore, for any element e
Pr|e not covered by C in one iteration]| =

k
1
me,(1-p) < (1-5) <1/e.



Consider p = (py, P2, -, P ) Which maximizes f(p), subject
to the above constraints.
1. As 1 = p; Vi, every term in the product, f(p), is positive.

2.1f Zp; > 1, we can decrease some p; > 0 and still have
Xp; = 1,1 =p; = 0Vi, butincreased f(p). Therefore
Zpi = 1.

3. Finally, if p # k,k, %) there exist some p; > 1/k and

p; < 1/k. Replacing these by (p;+p;)/2 increases f(p),
a contradiction.
Therefore max(f(p)) = (1 — E) :
QED.



Picking up where we left off, we recall that for every

element e
Pr|e not covered by C in one iteration] < 1/e

If we repeat this In(4n) = 0(logn) iterations, we find
that for every element e:

_1
 4n

Therefore, by taking a Union Bound over all elements,
we find that
Pr|C infeasible] =
Prlone of the n elements in uncovered by C] <
n-1/4n=1/4
Thus finishing our proof of claim 1.

1

In(4n)
Pr[e not covered by C in all iterations] < (E)



2. Pr[Cost C = 41In(4n) - IOPT] < 1/,.

Putting both results together, we find that

Pr|[C is a feasible cover of cost < 4In(4n) - IOPT]| = Y%
and thus the above is an 0(logn) —factor randomized
approximation algorithm.



The expected cost of the addition to € in one
iteration is at most cost(x*) = OPT:
Eladded cost] < Esx¢ - c(s) = cost(x*) = OPT

Repeating the process In(4n) times gives us a € of
expected cost at most

In(4n) - cost(x) = In(4n) - OPT < In(4n) - IOPT.

Now, by Markov's inequality,
Prcost(C) = 4In(4n) - I0PT] < 1/,
and claim 2 follows.



Algorithm:

1. Find x*, an optimal solution to the LP-relaxation.
2. Initialize an empty covering, C.
3. Repeat In(4n) times:

1. For every set § not yet in €, add it to C with
probability xg.

We will now wish to show:
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Questions?e




Thank.You.




