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or taking into account that sim(s, ¢) is the largest possible alignment score between s and
L

M
sim(s, ¢) + dist(s, t) z?(m +n),

proving the theorem. [

Combining Theorems 3.2 and 3.3, we can write

M
sim(s, t) + dist(s, ¢t) = ?(m +n), ' (3.23)

which shows us how to compute the distance given the similarity. Thus, distance com-
putations can be reduced to similarity computations. To compute a distance, all we need
to do is select a suitable M, define scoring parameters p and g as in (3.16) and (3.17),
and apply one of the algorithms for global comparison we have seen so far. The resulting
similarity is converted to distance by the above formula.

For instance, in the case of the edit distance, we may choose M = 0 and run a simi-
larity algorithm with match = 0, mismatch = —1, and space = —1. Or we may take
M = 2 and have match = 2, mismatch = | and space = 0. Both scoring systems
yield the same optimal alignments, although with different scores. But after applying
formula (3.23) the distance is the same.

Before we close, a comment on the constant M is in order. It may seem suspicious
that any value of M will do for Theorem 3.2. If M is a large, positive number, the scoring
system may result in negative values of the space penalties w’(k) for many, and possibly
all, values of k. This contradicts our intuition, given that spaces should be penalized in-
stead of rewarded. The same goes for a negative, but very large in absolute value, M. The
function p this time would be negative, again contradicting our intuition. The reason for
this apparent anomaly lies in the fact that we consider global comparisons only. When
we change the value of M. all alignments increase or decrease on their score in a uniform
manner, so that the optimal ones always remain the same. For local alignments, Equa-

tion (3.20) is not valid. and by varying M we can give preference to longer or shorter
local alignments.

3.6.2 PARAMETER CHOICE IN
SEQUENCE COMPARISON

[n this section we present considerations concerning the choice of parameters in a scoring
system and the choice of algorithm given the particular sequence comparison that must
be made.

Many issues must be taken into consideration when choosing the scoring system for
a particular application. This includes, in its simplest form, the scores for a match (M),
for a mismatch (m), and for a space (g < 0).

In any scoring system it is important to assure that a match is worth more than a
mismatch, so that we encourage alignments of identical characters. Another rule that is
normally used is to assure that a mismatch is preferred over a pair of spaces. For instance,
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the following leftmost alignment should score higher than the rightmost one:

A -A
c C-.

The rules above translate at once into inequalities involving the scoring parameters:
26 <m < M.

Notice that if we multiply all weights by a positive constant, the optimal alignments re-
main the same. This property can be used to transform all weights to integers, which are
generally processed with much greater speed than floating point numbers in the majority
of modern computers.

Consider now the transpositions. If we have, for instance, sequences AT and TA,
there are essentially two alignments that compete for the best score:

AT -AT
TA TA-.

(There is still a third alignment with the same score as the second one above aligning the
T's.) The corresponding scores are 2m and M + 2g, respectively. Thus, if m is equal to
the arithmetic mean between M and 2g, the two preceding alignments are equivalent in
terms of score. To give preference to one of them, we must choose m closer to one of the
extremes of the interval [2g, M].

In the same vein, it is possible to imagine other instances of pairs of short sequences
and postulate which is the most desirable alignment in each case. This gives us more
inequalities involving m. M, and g. For instance, when comparing ATCG to TCGA, we
may prefer the first of the two following alignments:

ATCG- ATCG
-TCGA TCGA.

This will be reflected in the score if 4m < 3M + 2g. The values used in Section 3.2.1
were chosen based on such criteria, among other reasons.

In practice, scoring systems more sophisticated than the simple M, m, g method
are often needed. The subadditive space penalty functions mentioned in Section 3.3.3
are usually preferred. Among these, affine functions are very popular because of the
quadratic running time algorithm, as opposed to cubic for general functions. Another
important property, especially in comparisons of protein sequences, is the ability to dis-
tinguish among the various matchings of amino acids. A match involving amino acids
with similar chemical or physical characteristics, such as size, charge, hydrophobicity,
and so on, receives more points than a matching between not so similar ones. In this
context, scoring systems based on identity only are in general insufficient. For protein
comparison, the use of PAM matrices is commonplace.

Nevertheless, the simple identity/nonidentity method is versatile enough to include
as particular cases several well-known problems in sequence comparison. One of these
problems is to find the longest common subsequence (LCS) of a pair of sequences. This
is equivalent to using M = 1, m = g = 0 in the basic algorithm. Thus, we can solve this
problem in O(mn) time and O(min(m, n)) space for sequences of sizes m and n. This
problem has received a great deal of attention, and several faster algorithms have been
described for particular cases.
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We now discuss the choice of algorithms. The decision whether to charge for end
spaces and the choice of local or global methods depends heavily on the kind of applica-
tion we are interested in and the results sought. If we want to compare sequences that are
approximately the same length and relatively alike, a global comparison charging for all
spaces is likely to be more appropriate. For instance, here we could include the case of
two tRNAs of different organisms, or else two tRNAs of the same organism but carrying
different amino acids.

If, on the other hand, one of the sequences is short and the other much longer, it is
more advisable to charge for end spaces in the shorter sequence only. This will allow us
to find all approximate occurrences of the short sequence in the long one. Such a search
is useful when trying to locate relatively well-conserved structures in recently sequenced
DNA.

Local comparison should be used when we have two relatively long sequences that
may contain regions of high similarity. A typical case is protein sequences with similar
functionality from reasonably well-separated organisms in terms of evolution. Because
the proteins perform similar functions, it is probable that some high-similarity regions
(active sites, motifs, functionally equivalent structures, etc.) exist, separated by unrelated
regions that accumulated mutations and that do not have much influence on the protein’s
functionality.

If sequence comparison is done to test the hypothesis of common origin, care must
be used when interpreting results. In general, optimal alignments are the most unlikely
to have occurred by chance in some probabilistic sense. However, it is always advisable
to compare the score obtained to what would be expected on average from completely
unrelated sequences with the same characteristics as the two sequences compared. If the
optimal score is well above average, this is a good indication that the similarity between
the sequences is not due to chance. Even then, this result per se does not imply homology
or any kind of evidence of common origin. Further experiments, based on the informa-
tion the alignment gives, are in general carried out to strengthen or refute the hypothe-
sis of common ancestry. On the other hand, if the similarity is nearly equal to what is
expected by chance, it is likely that the sequences are unrelated. However, in biology
there are no rules without exceptions, and cases of homologous proteins with no traces
of similarity at the sequence level are known. Other pieces of evidence, such as three-
dimensional structure, were used in these cases to ascertain homology.

3.6.3 STRING MATCHING AND EXACT
SEQUENCE COMPARISON

Two other important problems that have relevance in computational molecular biology
are the string matching problem and exact Sequence comparison. In string matching we
are given a string s, |s| = n, and a string ¢, |t[ = m, and we want to find all occurrences
of t in s. In other words, is ¢ a substring of s? If it is, what are all the positions in s where
we can find #? This is a classic computer science problem, and can be solved efficiently.
In fact, there are algorithms that can solve this problem in time O (n+m), which is much
faster than the quadratic complexity of the basic algorithm for two-sequence compari-
son. We will not describe such algorithms here: they can be found on any good textbook




