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TABLE 6.7. The BLOSUM62 substitution matrix

6.5.2 BLOSUM Substitution Matrices

The BLOSUM approach was introduced by Henikoff and Henikoff (1992).
Henikoff and Henikoff started with a set of protein sequences from pub-
lic databases that had been grouped into related families. From these se-
quences they obtained “blocks” of aligned sequences. A block is the un-
gapped alignment of a relatively highly conserved region of a family of
proteins. Methods for producing such alignments are given in Section 6.6.
These alignments provide the basic data for the BLOSUM approach to con-
structing substitution matrices. An example of such an alignment leading
to four blocks is given in Table 6.8.

Since the algorithms used to construct the aligned blocks employ sub-
stitution matrices, there is a circularity involved in the procedure if the
aligned blocks are subsequently used to find substitution matrices. Henikoff
and Henikoff broke this circularity as follows. They started by using a sim-
ple “unitary” substitution matrix where the score is 1 for a match, 0 for
a mismatch. Then, using data from suitable groups of proteins, they con-
structed only those blocks that they could obtain with this simple matrix.
This procedure has the effect of generating a conservative set of blocks; that
s, it tends to omit blocks with low sequence identity. While this restricted
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WWYIR CASILRKIYIYGPV GVSRLRTAYGGRK NRG
WFYVR CASILRHLYHRSPA GVGSITKIYGGRK RNG
WYYVR AAAVARHIYLRKTV GVGRLRKVHGSTK NRG
WYFIR AASICRHLYIRSPA GIGSFEKIYGGRR RRG
WYYTR AASIARKIYLRQGI GVGGFQKIYGGRQ RNG
WFYKR AASVARHIYMRKQV GVGKLNKLYGGAK SRG
WFYKR AASVARHIYMRKQV GVGKLNKLYGGAK SRG
WYYVR TASIARRLYVRSPT GVDALRLVYGGSK RRG
WYYVR TASVARRLYIRSPT GVGALRRVYGGNK RRG
WFYTR AASTARHLYLRGGA GVGSMTKIYGGRQ RNG
WFYTR AASTARHLYLRGGA GVGSMTKIYGGRQ RNG
WWYVR AAALLRRVYIDGPV GVNSLRTHYGGKK DRG

TABLE 6.8. A set of four blocks from the Blocks database

the number of blocks derived, the blocks obtained were trustworthy and
were not biased toward any specific scoring scheme.

Using the blocks so constructed, Henikoff and Henikoff then counted the
number of occurrences of each amino acid and the number of occurrences
of each pair of amino acids aligned in the same column. Consider a very
simplified example, with only three amino acids, A, B, and C, and only
one block:

R N SRS
B S N N S N
QWA= tw
Qarx=Qax

In this block there are 24 amino acids observed, of which 14 are A, 4 are
B, and 6 are C. Thus the observed proportions are

amino acid proportion of times observed

A 14/24
e 4/24 (6.14)
C 6,/24

There are 4 - (g) = 60 aligned pairs of amino acids in the block. These 60
pairs occur with proportions as given in the following table:

aligned pair proportion of times observed

Ato A 26,/60
Ato B 8/60

AtoC 10/60 (6.15)
Bto B 3/60

BtoC 6,/60

Cto C 7/60
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We now compare these observed proportions to the ezpected proportion
of times that each amino acid pair is aligned under a random assortment
of the amino acids observed, given the observed amino acid frequencies
(6.14). In other words, if we choose two sequences of the same length at
random with these frequencies (6.14), and put them into alignment, then
the expected proportion of pairs in which A is aligned with 4 is % . l—i, the
expected proportion of pairs in which A is aligned with B is 2. 54 " 34, and
so on. (The factor of 2 in the second calculation allows for the two cases
where A is in the first sequence and B in the second, and that where B is
in the first sequence and A4 in the second.)

These fractions are now used to calculate “estimated likelihood ratios”
(see Section 3.4.4) as shown in the following table:

proportion | proportion _
aligned pair | observed expected | 2log, ( ;%gg:::g: ::;:;’:3)
Ato A 26/60 196/576 0.70
Ato B 8/60 112/576 -1.09
AtoC 10/60 168/576 -1.61
Bto B 3/60 16/576 1.70
BtoC 6/60 48/576 0.53
CtoC 7/60 36/576 1.80

(6.16)

For each row in this table the ratio of the entries in the second and third
columns is an estimate, from the data, of the ratio of the proportion of
times that each amino acid combination occurs in any column to the pro-
portion expected under random allocation of amino acids into columns.
With one important qualification, described later, the respective elements
in the BLOSUM substitution matrix are now found by calculating twice
the logarithm (to the base 2) of this ratio (as shown in the final column
of the above table), and then rounding the result to the nearest integer. In
this simplified example, the substitution matrix would thus be

A B C
A 1 -1 -2
B -1 2 1-
c -2 1 2

In general, the procedure is as follows. For each pair of amino acids z
and y, first count the number of times we see z and Y in the same column
of an aligned block. We denote this number by Nzy. We then put

Py = =2
Ty = )
ZuSU Nuy

where we take 4 < v to mean that the letter denoting u precedes the letter
denoting v in the alphabet. This number Dzy is the estimate of the prob-
ability of a randomly chosen pair of amino acids chosen from one column
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of a block to be the pair z and y. Now, for each amino acid z, let pz be
the proportion of times z occurs somewhere in any block. Consider the
quantity

Pzy

PePy  jf =
Pzy y.

P fzty,
oy = {

This quantity is the ratio of the likelihood that z and y are aligned by
chance, given their frequencies of occurrence in the blocks, to the proportion
of times we actually observe zr and y aligned in the same column in the
blocks. We convert this into a score by taking —2 times its logarithm to
the base 2, and rounding to the nearest integer. In this way pairs that are
more likely than chance will have positive scores, and those less likely will
have negative scores.

While this approach is still rudimentary, it does yield a more useful
scoring scheme than the original one that merely scores 1 for a match and
0 for a mismatch. Its main shortcoming is that it overlooks an important
factor that can bias the results. The substitution matrix derived will depend
significantly on which sequences of each family happen to be in the database
used to create the blocks. In particular, if there are many very closely
related proteins in one block, and only a few others that are less closely
related, then the contribution of that block will be biased toward closely
related proteins. For example, suppose the data in one block are as follows:

(o s N N N N NN
Q- boww
VROV s B N N N
S I N N NN

The first four sequences possibly derive from closely related species and
the last three from three more distant species. Since A occurs with high
frequency in the first four sequences, the observed number of pairings of
A with A will be higher than is appropriate if we are comparing more dis-
tantly related sequences. Ultimately, we would prefer in each block to have
sequences such that any pair have roughly the same amount of “evolution-
ary distance” between them. The solution to this problem used by Henikoff
and Henikoff is to group, or cluster, those sequences in each block that are
“sufficiently close” to each other and, in effect, use the resulting cluster as
a single sequence. This step requires a definition of “sufficiently close,” and
this is done by specifying a cut-off proportion, say 85%, and then grouping
the sequences in each block into clusters in such g, way that each sequence
in any cluster has 85% or higher sequence identity to at least one other
sequence in the cluster in that block.
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)

then in that block no counts are taken between amino acids in those two
sequences. For any aligned amino acids in sequences in two different clusters
in the same block, the count for any amino acid pair is divided by nm, where
n and m are the sizes of the two clusters from which the amino acids are
taken.

These weighted counts are then used in the same way as before. Consider
a simple example with two blocks ’

B A B 4
B A B C
A A C C

and

> QQ
W w
Qo

A C

Suppose the identity for clustering is taken to be .75, Thus we cluster the
first two sequences in each block together. The A’s are counted as follows.
The first column of the first block has one A, the second column contributes
two A’s, since the first two sequences are clustered it has 1 + % + % =2 A’s.
The fourth column contributes % A. In the second block there are three
A’s, since each occurrence occurs in a cluster of size one. So in total there
are 13/2 A’s. Now to get the proportion of A’s we must divide by 17, since

proportion of 4’s is (13/2) /17 = 13/34. We record the proportions for all
symbols in the following table:

amino acid proportion of times observed

13/34
5 . /17 (6.17)
C 11/34

To count the A-RB pairs, each occurrence in the first column of the first
block contributes %, and in the second column of the second block the
contribution is % + % + 1. So the total A-B count is 3. There are a total
of 13 pairs in the blocks, four in the first block (each column contributes
one pair, or more precisely, two half pairs) and nine in the second block.
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Thus the proportion of A-B pairs is 3/13. We record the proportions for
all pairs of symbols in the following table:

aligned pair proportion of times observed

Ato A 2/13
AtoB 3/13

AtoC 5/26 (6.18)
BtoB 1/13

Bto C 3/13

Cto C 3/26

The procedure is then carried out as before.

A further refinement was taken by Henikoff and Henikoff (1992). After
obtaining a BLOSUM substitution matrix as just described, the matrix
obtained is then used instead of the conservative “unitary” matrix to con-
struct a second, less conservative, set of blocks. A new substitution matrix
is then obtained from these blocks. Then the process is repeated a third
time. From this third set of blocks Henikoff and Henikoff derive the final
family of BLOSUM matrices, and it is these whose use is suggested.

If the .85 similarity score criterion is adopted, the final matrix is called
a BLOSUMS85 matrix. In general if clusters with X% identity are used,
then the resulting matrix is called BLOSUMX. The BLOSUM matrices
currently available on the BLAST web page at NCBI are BLOSUM45,
BLOSUMS62, and BLOSUMS0. Note that the larger-numbered matrices
correspond to more recent divergence, and the smaller-numbered matrices
correspond to more distantly related sequences.

One often has prior knowledge about the evolutionary distance between
the sequences of interest that helps one choose which BLOSUM matrix
to use. With no information, BLOSUMS62 is often used. We explore the
implications of the choice of various matrices in Section 9.2.4.

A central feature of the BLOSUM substitution matrix calculation is the
use of (estimated) likelihood ratios. We see in the next section that the
same is true of PAM matrices. In Section 8.3.1 it is shown that use of
likelihood ratios has a statistical optimality property, and this optimality
property explains in part their use in the construction of both BLOSUM
and PAM matrices.

6.5.5 PAM Substitution Matrices

In this section we outline the Dayhoff et al. (1978) approach to deriving
the so-called PAM substitution matrices. Two essential ingredients in the
construction of these matrices, as with construction of BLOSUM matrices,
are the calculation of an (estimated) likelihood ratio and the use of Markov
chain theory as introduced in Section 4.7. We now describe this construction
in more detail.



