7 2 TR |

[S

6.1 What a multiple alignment means 135

by different multiple alignment programs. We conclude by describing full proba-
bilistic multiple alignment approaches based on the profile HMMs we introduced
in Chapter 5 and comparing the strengths and weaknesses of profile HMM align-
ment to other methods. We will focus primarily on protein alignments, though
most of the discussion applies to DNA alignments as well. (Alignment of RNA
is complicated by long-range correlations due to base pairing and is not treated
until Chapter 10.)

6.1 What a multiple alignment means

In a multiple sequence alignment, homologous residues among a set of sequences
are aligned together in columns. ‘Homologous’ is meant in both the structural
and evolutionary sense. Ideally, a column of aligned residues occupy similar
three-dimensional structural positions and all diverge from a common ancestral
residue. For example, in Figure 6.1, a manually generated multiple alignment
of ten immunoglobulin superfamily sequences is shown. A crystal structure of
one of the sequences (1tlk, telokin) is known. The telokin structure and align-
ments to other related sequences reveal conserved characteristics of the I-set im-
munoglobulin superfamily fold, including eight conserved B-strands and certain
key residues in the sequences, such as two completely conserved cysteines in the
b and f strands which form a disulfide bond in the core of the folded structure.
The other nine sequences, from various neural cell adhesion molecules, have been
manually aligned to Itlk based on this expert structural knowledge.

Except for trivial cases of highly identical sequences, it is not possible to unam-
biguously identify structurally or evolutionarily homologous positions and create
a single ‘correct’ multiple alignment. Since protein structures also evolve (though
more slowly than protein sequences), we do not expect two protein structures
with different sequences to be entirely superposable. Chothia & Lesk [1986] ex-
amined pairwise structural alignments in several different protein families and
found that for a given pair of divergent but clearly homologous (30% identical)
protein sequences, usually only about 50% of the individual residues were su-
perposable in the two structures (Figure 6.2). The globin family, often used as
a ‘typical’ protein family in computational work, is in fact exceptional: almost
the entire structure is conserved among divergent sequences. Even the definition
of ‘structurally superposable’ is subjective and can be expected to vary among
experts.

In principle, there is always an unambiguously correct evolutionary alignment
even if the structures diverge. In practice, however, an evolutionarily correct
alignment can be even more difficult to infer than a structural alignment. While
structural alignment has an independent point of reference (superposition of crys-
tal or NMR structures), the evolutionary history of the residues of a sequence

136 6 Multiple sequence alignment methods

Structure: ...aaaaa...bbbbbbbbbb..... ccceeceeCCC. .C.. ..., . ddd
1tlk ILDMDVVEGSAARFDCKVEGY——PDPEVMWFKDDNP-—VKESR---—HFQ
AXO1_RAT RDPVKTHEGWGVMLPCNPPAHY—PGLSYRWLLNEFPNFIPTDGR-—-HFV
AXOl1l_RAT ISDTEADIGSNLRWGCAAAGK-—PRPMVRWLRNGEP——LASQN-—--RVE
AXO1_RAT RRLIPAARGGEISILCQPRAA--PKATILWSKGTEI-—LGNST—-——RVT
AXO1_RAT -—-—DINVGDNLTLQCHASHDPTMDLTFTWTLDDFPIDFDKPGGHYRRAS
NCA2_HUMAN PTPQEFREGEDAVIYCDVVSS—-LPPTIIWKHKGRD—-VILKKDV—-RFI
NCA2__HUMAN PSQGEISVGESKFFLCQVAGDA—KDKDISWFSPNGEK-LTPNQQ--—RIS
NCA2_HUMAN IVNATANLGQSVTLVCDAEGF-—PEPTMSWTKDGEQ—-IEQEEDDE-KYI
NRG_DROME RRQSLALRGKRMELFCIYGGT—-PLPQTVWSKDGQR—-IQWSD-—--RIT
NRG_DROME PQNYEVAAGQSATFRCNEAHDDTLEIEIDWWKDGQS--IDFEAQP-—RFV

consensus: L,....... G..+.+.C+.vni.. ... +. Woe.o.o.... Foriiannn ++

structure: ddd..... eeeeee....... EfEFfEfFfE. gg999999999gg .
1tlk IDYDEEGNCSLTISEVCGDDDAKYTCKAVNSL - -~~~ GEATCTAELLVET
AXO1_RAT SQTT---—GNLYIARTNASDLGNYSCLATSHMDFSTKSVFSKFAQLNLAA
AXO1_RAT VLA----- GDLRFSKLSLEDSGMYQCVAENKH- - - - - GTIYASAELAVQA
AXO1_RAT VTSD----GTLIIRNISRSDEGKYTCFAENFM---—— GKANSTGILSVRD
AXO1_RAT AKETI-—-GDLTILNAHVRHGGKYTCMAQTVV ————— DGTSKEATVLVRG

NCA2_HUMAN VLSN----NYLQIRGIKKTDEGTYRCEGRILARG--—EINFKDIQVIVNV
NCA2_HUMAN VVWNDDSSSTLTIYNANIDDAGIYKCVVTGEDG--——SESEATVNVKIFQ

NCA2_HUMAN FSDDSS---QLTIKKVDKNDEAEYICIAENKA ----- GEQDATIHLKVFA
NRG_DROME QGHYG---KSLVIRQTNFDDAGTYTCDVSNGVG-—-—NAQSFSIILNVNS
NRG_DROME KTND---—NSLTIAKTMELDSGEYTCVARTRL ----- DEATARANLIVQD
consensus: L., L+ v v v Y Co L A

Figure 6.1 A multiple alignment of ten I-set immunoglobulin superfamily
domains, adapted from Harpaz & Chothia [1994]. To the left are sequence
identifiers from the PDB or SWISS-PROT databases. The eight B-strands of
the telokin structure, 1tlk, are annotated at the top (a-g; C represents the
¢’ strand). Aligned columns are annotated at the bottom if all residues are
identical (letter) or highly conservative (+).

family is not independently known from any source; it must itself be inferred
from sequence alignment. Since sequence tends to diverge more rapidly than
structure, parts of proteins which are structurally unalignable are typically not
alignable by sequence either.

Thus, our ability to define a single ‘correct’ alignment will vary with the rela-
tedness of the sequences being aligned. An alignment of very similar sequences
will generally be unambiguous, but these alignments are not of great interest to
us; a simple program can get the alignment right. For cases of interest (e.g.
for a family of proteins sharing perhaps only 30% average pairwise sequence
identity), we must keep in mind that there is no objective way to define an un-
ambiguously correct alignment. Usually, a small subset of key residues will be
identifiable which can be aligned unambiguously for all the sequences in a family
almost regardless of sequence divergence [Harpaz & Chothia 1994]; core struc-
tural elements will also tend to be conserved and meaningfully alignable; but
other regions may not be meaningfully alignable because of structural evolution
and sequence divergence.

Assessments of multiple alignment quality must keep these considerations in
mind. Asking a sequence alignment program to produce exactly the same align-

T BN A S g MK s
< ;"'{"gg»v. T ITE. b, BT o

mer

Ou
mu

6.2 Scoring a multiple alignment 137

1.0

[A]
i o *5 * O 5 0O - i
L > O = |

e O

S 08 | A

§

£ A

8

c 0-6 r D @ O

‘@ o0 A

E o NN

® | o

204 -

k] O globin

s O cytochrome ¢

t © serine protease

§ 0.2 + 4 immunoglobulin domain

a * other

0.0 - ‘ '
100 80 60 40 20 0

Sequence identity (%)

Figure 6.2 Proportion of structurally superposable residues in pairwise
alignments as a function of sequence identity; redrawn from data in Chothia
& Lesk [1986]. ‘Other’ structural alignments include pairwise alignments
of two dihydrofolate reductases, two lysozymes, plastocyanin/azurin, and
papain/actinidin.

ment as a manual structural alignment, for instance, means building in the same
meaningless biases about how to ‘align’ structurally unalignable regions. Instead,
we should focus attention on the subset of columns corresponding to key residues
and core structural elements that can be aligned with confidence [McClure, Vasi
& Fitch 1994].

6.2 Scoring a multiple alignment

Our scoring system should take into account at least two important features of
multiple alignments: (1) the fact that some positions are more conserved than
others, e.g. position-specific scoring; and (2) the fact that the sequences are not
independent, but instead are related by a phylogenetic tree. An idealised way to
score a multiple alignment would therefore be to specify a complete probabilistic
model of molecular sequence evolution. Given the correct phylogenetic tree for
the sequences, the probability of a multiple alignment is the product of the prob-
abilities of all the evolutionary events necessary to produce that alignment via
ancestral intermediate sequences times the prior probability of the root ancestral

138 6 Multiple sequence alignment methods

sequence. The desired evolutionary model would be very complex. The prob-
abilities of evolutionary change would depend on the evolutionary times along
each branch of the tree, as well as position-specific structural and functional con-
straints imposed by natural selection, so that key residues and structural elements
would be conserved. High-probability alignments would then be good structural
and evolutionary alignments under this model.

Unfortunately, we do not have enough data to parameterise such a complex
evolutionary model. Simplifying assumptions must be made. In this chapter, we
concentrate mostly on workable approximations that partly or entirely ignore the
phylogenetic tree while doing some sort of position-specific scoring of aligning
structurally compatible residues. In Chapters 7 and 8 we will look at more ex-
plicit models of phylogenetic trees and molecular evolution, most of which make
an approximation of a position-independent rather than position-specific evolu-
tionary model.

Almost all alignment methods assume that the individual columns of an align-
ment are statistically independent. Such a scoring function can be written as

S(m) = G+ZS(m,~) 6.1)

where m; is column i of the multiple alignment m, S(m;) is the score for column
i, and G is a function for scoring the gaps that occur in the alignment.

We write G as an unspecified function because methods of scoring gaps in
multiple alignments differ greatly. The simplest method is to treat a gap symbol
as an extra residue type, which then just gives S(m) = ¥, S(m;). However, most
multiple alignment methods use affine scoring functions that pay a higher cost
for opening the gap than extending it, so successive gap residues are not treated
independently. For simplicity, we will focus in the next several paragraphs on
definitions of S(m;) for scoring a column of aligned residues with no gaps.

Minimum entropy

We now define some notation. As above, m is a multiple alignment. Let m,’
be the symbol in column i for sequence j. Let ¢;, be the observed counts for
residue a in column i; ¢;, = Zj 8(mij = a), where 8(mij =a)is 1if m{ =a and
0 otherwise. Let m; be the column m},... .m} of aligned symbols in column i,
and let ¢; be the count vector Cils--.,Cikx Of observed symbols in column i for an
alphabet of X different residues.

If the phylogenetic tree for the sequences has many intermediate ancestors,
then the statistical dependence between sequences is complex (see Chapter 7).
The scoring problem is greatly simplified if we assume that sequences have all
been generated independently. If we assume that residues within the column are

independent, as well as being independent berween columns, then the probability

of acc

where
score

obser
highe
defin
ment

coun

Inpr
cour

gof
call
betv
spec
tion

res¢
cas:
far
we:
cor
ter

rob-
ong
>on-
2nts

lex
we
the
ing
ex-
ke
lu-

m-

1)

ol
St
st

ke mg e

-

[

5T v
Fi

|

3

i
P2
.‘kl
%
R
i
g
&

6.2 Scoring a multiple alignment 139

of a column m; is

P(m) =[] pie, (6.2)

where pj, is the probability of residue @ in column i. We can define a column
score as the negative logarithm of this probability:

S(mi) =~ " cialog pia. (6.3)

This is an entropy measure directly related to the equation for Shannon entropy
in information theory (Chapter 11). It is a convenient measure of the variability
observed in an aligned column of residues. The more variable the column is, the
higher the entropy. A completely conserved column would score 0. We could
define a good alignment to be one which minimises the total entropy of the align-
ment (e.g. Y, S(m;)).

As we have seen before (Chapter 5), the parameters p;, can be estimated from
counts c;g; for instance, the maximum likelihood estimate is just

Cia
Dia = .
Za' Cia’

In practice we would normally regularise this probability estimate with pseudo-
counts or Dirichlet priors.

This is obviously near to the HMM formulation of the problem. Profile HMMs
go further and also model insertions and deletions in the alignment probabilisti-
cally. In return for giving up the evolutionary tree and assuming independence
between sequences, we gain the ability to straightforwardly estimate a position-
specific model of both residue probabilities in columns and insertions and dele-
tions. Standard profiles make a similar assumption.

The assumption that the sequences are independent can be reasonable if rep-
resentative sequences of a sequence family are carefully chosen. It is often the
case, though, that the sample of sequences is biased and certain evolutionary sub-
families are under- or over-represented relative to others. A variety of tree-based
weighting schemes have been proposed to deal with this problem to partially
compensate for the defects of the sequence independence assumption (see Chap-
ter 5).

6.4)

Sum of pairs: SP scores

The standard method of scoring multiple alignments is not the HMM formulation,
but is similar in that it does not use a phylogenetic tree and it assumes statistical
independence for the columns. Columns are scored by a ‘sum of pairs’ (SP)
function using a substitution scoring matrix. The SP score for a column is defined

140 6 Multiple sequence alignment methods
as: ;
Stmi) =) " s(m¥,m}), 6.5)
k<l

where scores s(a,b) come from a substitution scoring matrix such as a PAM or
BLOSUM matrix. For simple linear gap costs, gaps are handled by defining s(a, —)
and s(—,a) to be the gap cost, and s(—, —) to be zero. Otherwise gaps are scored
separately (e.g. for affine gap costs).

Summing all the pairwise substitution scores in the column might seem to be
a natural thing to do. However, substitution Scores are usually derived as log-
odds scores for pairwise comparisons. The correct extension to multiple align-
ments would be, for instance, log(pase/ qaqvq.) for a three-way alignment, rather
than the SP score log(pas/q.qs) +108(Poc/qs9:) + 108(Pac/qaq.). There is no
probabilistic justification of the SP score; each sequence is scored as if it de-
scended from the N — 1 other sequences instead of a single ancestor. Evolutionary
events are over-counted, a problem which increases as the number of sequences
increases. Altschul, Carroll & Lipman [1989] recognised the problem and pro-
posed a weighting scheme designed to partially compensate for this defect in SP
scores (Chapter 5).

Example: A problem with SP scores

As an intuitive, concrete example of a problem with the standard SP multiple
alignment scoring system, consider an alignment of N sequences which all have
leucine (L) at a certain position for some important functional reason. The score
of an L aligned to L according to the BLOSUMS50 substitution matrix (Figure 2.2)
is 5, so the SP score of the column is 5 x N(N — 1)/2, where N(N — 1)/2 is the
number of symbol pairs in the column. If instead there were one glycine (G) in
the column and N — 1| Ls, the score for the column would be 9 x (N — |) less,
because a G-L pair scores —4 instead of +5, and N — 1 pairs are affected. That
is, the SP score for a column with one G is worse than the score for a column of
all Ls by a fraction of

IN-1) 18
SN(N-1)/2 5N

Notice the inverse dependence on N ; the relative difference in score between the
correct alignment and the incorrect alignment decreases with the number of se-
quences in the alignment. This is clearly counter-intuitive. The relative difference
ought to increase with the more evidence we have for a conserved leucine. See
p. 105 for another example. O

With
struct
It
ter 2)
form
an al
are s
cost
of th

Mul
tes i
tedic

end:

N

i or

red

be
)g-
m-
1er

[

i

7]

i

|

i 3
I
it
i
3
¢
iz
i
i¥
ES
2

6.3 Multidimensional dynamic programming 141

6.3 , Multidimensional dynamic programming

With some appreciation of scoring issues in mind, we turn to algorithms for con-
structing multiple alignments.

It is possible to generalise pairwise dynamic programming alignment (Chap-
ter 2) to the alignment of N sequences. However, this turns out to be impractical
for more than a few sequences, as we will see shortly. We assume the columns of
an alignment are statistically independent, and for now we also assume that gaps
are scored with a linear gap cost y(g) = gd for a gap of length g and some gap
cost d. Thus we can calculate the overall score S(m) for an alignment as a sum
of the scores S(m;) for each column i:

S(m) = Z S(m;). (6.6)

Multidimensional dynamic programming with affine gap costs and multiple sta-
tes is possible, using methods like those in Chapter 2, but the formalism becomes
tedious in many dimensions.

Define a;, ;,, . ;, as the maximum score of an alignment up to the subsequences
ending with x;,x2,...,x. The dynamic programming algorithm is

17"

1,2 N
(Qi —1,i5-1,..., in-—1 + S(xil’xiz""’xiN)’
2 N
iy ig—1....in—1 T S=xg, e xy),
1 N
ail—l,iz,i:;—l in—1 + S(x,'la_""vxiN)’

1.2

iy g,y =MAX 3 @iy~ Liy—1...ix +S0,x5,), 6.7)
N
i igz—1,.iy—1 + S(-’—'""’xiN)’
Qpiy—1,iy_~Liv + S(—x2,..., =)
2=l iy ~Liy ’xiza"" ’

where all combinations of gaps appear except the one where all residues are re-
placed by gaps. There are 2¥ — [such combinations. Initialisation, termination,
and traceback steps for the algorithm are not shown here, but also follow analo-
gously from the pairwise dynamic programming algorithm.

It is possible to simplify the notation by introducing A; which is 0 or 1 and
define the ‘product’

X 1fA,= 1,

— if A; =0, (6.8)

A,--x:{

Now the recursion can be written as follows [Sankoff & Cedergren 1983; Water-

142 6 Multiple sequence alignment methods

man 1995]:

Uiy ig,. iy = A1+.I.I.13§N>0 {a,-l_Al,,-z_Az in—Ay + S(A;- x,-ll ,As -xizz, LAy 'Xiivv)} .
e 6.9)
. The algorithm requires the computation of the whole dynamic programming
matrix with L,L,--. Ly entries. To calculate each entry we need to maximise
over all 2¥ — 1 combinations of gaps in a column, excluding the case where all
the A are zero. Assuming the sequences are of roughly the same length L, the
memory complexity of the multidimensional dynamic programming algorithm is
O(L™) and the time complexity is O(2¥ L M),

Note that we did not specify the functional form of the column score S(m;).
The only assumption necessary to make multidimensional dynamic programming
work is that column scores are independent. In principle, S(m;) could be calcu-
lated using an evolutionary model [Sankoff 1975].

Exercise

6.1 Assume we have a number of sequences that are 50 residues long, and
that a pairwise comparison of two such sequences takes one second of
CPU time on our computer. An alignment of four sequences takes
(RL)YN=2 = 10?274 = 104 seconds (a few hours). If we had unlimited
memory and we were willing to wait for the answer until just before the

sun burns out in five billion years, how many sequences could our com-
puter align?

MSA

A clever algorithm for reducing the volume of the multidimensional dynamic
programming matrix that needs to be examined was described by Carrillo & Lip-
man [1988]. This algorithm was implemented in the multiple alignment program
MSA [Lipman, Altschul & Kececioglu 1989]. MsA can optimally align up to five
to seven protein sequences of reasonable length (200-300 residues).

Carrillo & Lipman assume an SP scoring system for both residues and gaps.
We assume here that the score of a multiple alignment is the sum of the scores of
all pairwise alignments defined by the multiple alignment; a somewhat broader
definition of the score is possible [Altschul 1989]. Let a* denote the pairwise

alignment between sequences k and /. Then the score of the complete alignment
is given by

S(a) =" S(a"). (6.10)
k<l
Let a* be the optimal pairwise alignment of k,!, which we can calculate in O(L?)
time by standard dynamic programming. Obviously S(a*') < S(a*').
Combining this simple observation and the definition of the SP scoring system,

and tk

! that
obtai
(for «
N(N
by st
volui
the a
and :

N
(ig, i

war
tabl
dyn:
the :
for

Guy

rith
ste:

EEZ T

9)
ng
se
all
he
is

1g

o Qa own

6.4 Progressive alignment methods 143

we can obtain a lower bound on the score of any pairwise alignment that can occur
in the optimal multiple alignment. Assume for the moment that we have a lower
bound o (a) on the score of the optimal multiple alignment, so o (a) < S(a). From
the above and the SP score definition it must be true that, for the optimal multiple
alignment a,

o@ = S@H-s@H+Y s@")

k'<l!
and thus
S@) = g
where gY = o(@)+S8@") -y s@t").
k'<l’

Therefore, we know we only need to consider pairwise alignments of k and
I that score better than g¥. This lower bound g* is easily calculated. We can
obtain a good bound o(a) by any fast heuristic multiple alignment algorithm
(for example one of the progressive alignment algorithms given below). The
N(N —1)/2 optimum pairwise alignments 4 are each calculated and scored
by standard pairwise alignment. The higher these bounds are, the smaller the
volume of dynamic programming matrix that must be calculated and the faster
the algorithm will run. (Indeed, by default MSA heuristically picks a higher g*
and so does not guarantee an optimal multiple alignment.)

Now, for each pair &,/ we can find the complete set B¥ of coordinate pairs
(ik,ir) such that the best alignment of x* to x! through (i, i;) scores more than
B*. This set is calculated in O(L?) time by summing the forward and back-
ward Viterbi scores for each cell of the complete pairwise dynamic programming
table, and testing if the result is greater than g*. The costly multidimensional
dynamic programming algorithm can then be restricted to evaluate only cells in
the intersection of all these sets: i.e. cells (i, i, ..., ix) for which (ix,i;) is in BX
for all k,! (see Figure 6.3). It is tricky to manage the intersection matrix and
perform the dynamic programming calculation efficiently. Details are given in
Gupta, Kececioglu & Schaffer [1995].

Altschul & Lipman [1989] extended the theory of the Carrillo-Lipman algo-
rithm to more realistic scoring systems based on evolutionary stars and trees in-
stead of SP scores, but we are not aware of any implementations of those ideas.

6.4 Progressive alignment methods

Probably the most commonly used approach to multiple sequence alignment
is progressive alignment. This works by constructing a succession of pairwise
alignments. Initially, two sequences are chosen and aligned by standard pairwise
alignment; this alignment is fixed. Then, a third sequence is chosen and aligned

144 6 Multiple sequence alignment methods

4.
|

Figure 6.3 Carrillo & Lipman’s algorithm allows the search Jfor optimal
alignments to be restricted to a subset of the multidimensional programming
matrix, shown here as three-dimensional. The sets B* are shown in dark

8rey, and the cells in the matrix to which the search can be confined are
outlined in black.

to the first alignment, and this process is iterated until all sequences have been
aligned.

Progressive alignment strategies were introduced by a number of authors [Ho-
geweg & Hesper 1984; Waterman & Perlwitz 1984; Feng & Doolittle 1987;
Taylor 1987; Barton & Sternberg 1987; Higgins & Sharp 1989). The algorithms
differ in several ways: (1) in the way that they choose the order to do the align-
ment; (2) in whether the progression involves only alignment of sequences to a
single growing alignment or whether subfamilies are built up on a tree structure
and, at certain points, alignments are aligned to alignments; and (3) in the proce-
dure used to align and score sequences or alignments against existing alignments.

Progressive alignment is heuristic: it does not separate the process of scoring
an alignment from the optimisation algorithm. It does not directly optimise any
global scoring function of alignment correctness. The advantage of progressive
alignment is that it is fast and efficient, and in many cases the resulting alignments
are reasonable.

The most important heuristic of progressive alignment algorithms is to align
the most similar pairs of sequences first. These are the most reliable alignments.
Most algorithms build a * guide tree’. This is a binary tree whose leaves represent
sequences and whose interior nodes represent alignments. The root node repre-
sents a complete multiple alignment. The nodes furthest from the root represent

thg mc
the me

typica

The F
rithm:
Algor

@

(it

espe
ane

whe
the

con
of t
[19
age
inc
pI¢
mc

bu
sCl

W < yy

6.4 Progressive alignment methods 145

the most similar pairs. The methods used to construct guide trees are similar to
the methods used to construct phylogenetic trees (Chapter 7), but guide trees are
typically ‘quick and dirty’ trees unsuitable for serious phylogenetic inference.

Feng-Doolittle progressive multiple alignment

The Feng-Doolittle algorithm was one of the first progressive alignment algo-
rithms [Feng & Doolittle 1987]. In overview, it is as follows:

Algorithm: Feng-Doolittle progressive alignment
(i) Calculate a diagonal matrix of N (N - 1)/2 distances between all pairs of
N sequences by standard pairwise alignment, converting raw alignment
scores to approximate pairwise ‘distances’.
(i) Construct a guide tree from the distance matrix using the clustering algo-
rithm by Fitch & Margoliash [1967a].

(iii) Starting from the first node added to the tree, align the child nodes (which
may be two sequences, a sequence and an alignment, or two alignments).
Repeat for all other nodes in the order that they were added to the tree
(i.e. from most similar pairs to least similar pairs) until all sequences have
been aligned. <

The method for converting alignment scores to distances does not need to be
especially accurate, as the goal is only to create an approximate guide tree, not
an evolutionary tree. Feng & Doolittle calculate the distance D as

Sobs — S
D= —logSeﬂrz—logM

Smax - Srand ’ (6'11)
where Sgps is the observed pairwise alignment score; Spax is the maximum score,
the average of the score of aligning either sequence to itself; and Stand 1s the ex-
pected score for aligning two random sequences of the same length and residue
composition. The last one, S5, may either be calculated by random shuffling
of the two sequences, or by an approximate calculation given in Feng & Doolittle
[1996]. The effective score Seff can thus be viewed as a normalised percent-
age similarity; it is expected to roughly decay exponentially towards zero with
increasing evolutionary distance, hence the —log to make the measure more ap-
proximately linear with evolutionary distance. In phylogenetic tree construction,
more care must be taken in calculating distances from alignments.

The Fitch-Margoliash algorithm is one of the fast clustering algorithms that
build evolutionary trees from distance matrices. Clustering algorithms are de-
scribed in Chapter 7.

Sequence-sequence alignments are done with the usual pairwise dynamic pro-
gramming algorithm. A sequence is added to an existing group by aligning it

146 6 Multiple sequence alignment methods

pairwise to each sequence in the group in turn. The highest scoring pairwise
alignment determines how the sequence will be aligned to the group. For align-
ing a group to a group, all sequence pairs between the two groups are tried; the
best pairwise sequence alignment determines the alignment of the two groups.
Thus, the scoring system is essentially the standard pairwise PAM score with an
affine gap penalty. After an alignment is completed, gap symbols are replaced
with a neutral X character. Feng & Doolittle call this the rule of ‘once a gap,
always a gap’. The rule allows pairwise sequence alignments to be used to guide
the alignment of sequences to £Toups or groups to groups; otherwise, any given
pairwise sequence alignment would not necessarily be consistent with the pre-
existing alignment of a group. Since there is no cost for aligning an X with
anything (including a gap symbol), the rule has a desirable side effect of encour-
aging gaps to occur in the same columns in subsequent pairwise alignments. The

X rewriting is not needed in profile-based progressive alignment algorithms (see
below).

Profile alignment

A problem with the Feng-Doolittle approach is that all alignments are deter-
mined by pairwise sequence alignments. Once an aligned group has been built
up, it is advantageous to use position-specific information from the group’s multi-
ple alignment to align a new sequence to it. The degree of sequence conservation
at each position should be taken into account and mismatches at highly conserved
positions penalised more stringently than mismatches at variable positions. Gap
penalties in positions might be reduced where lots of gaps occur in the cluster
alignment, and increased where no gaps occur. This is the same argument that
motivated the development of sequence profiles for database searching (Chap-
ter 5). It also makes sense to apply profiles in progressive multiple sequence
alignment.

Many progressive alignment methods use pairwise alignment of sequences to
profiles [Thompson, Higgins & Gibson 1994a; Gribskov, McLachlan & Eisen-
berg 1987] or of profiles to profiles (see e. g- Gotoh [1993]) as a subroutine which
is used many times in the process. The exact definition of the scoring function
used in profile-sequence or profile-profile alignment varies. Aligned residues
are usually scored by some form of a sum-of-pairs score, but the handling of
gaps varies substantially between different methods.

As discussed previously, for linear gap scoring, profile alignment is simple,
because the gap scores can be included in the SP score (6.5) by setting s(—,aq) =
s(a,—) = —g and s(—,—) = 0. Assume we have two multiple alignments (or
‘profiles’), one containing sequence 1 to n, and the other containing sequence
n+1to N. An alignment of these two profiles means that gaps are inserted in
whole columns, so the alignment within one of the profiles is not changed. The

score (

>

i

All we
and o
by the
adds -
profil
This ¢
score:
can ¢

seque

One
is the
ceed:
CLU:
its c:
algo

Algc

G

sta;
var

ise

6.4 Progressive alignment methods 147

score (6.5) of the global alignment is then

Zs(mi) = Z Z s(m¥,m})

i k<l<N

=Z Z s(mf,mﬁ)+z Z s(mf,mf)+z Z s(mf-‘,mf.).

i k<l<n i n<k<l<N i k<nn<I<N
All we did was to split up the sum into two sums only concerning the two profiles
and one sum containing all the cross terms. The first two sums are unaffected
by the global alignment, because adding columns of gap characters to a profile
adds zero to the score (s(—, —) = 0). Therefore the optimal alignment of the two
profiles can be obtained by only optimising the last sum with the cross terms.
This can be done exactly like a standard pairwise alignment, where columns are
scored against columns by adding the pair scores. Obviously one of the profiles
can consist of a single sequence only, which corresponds to aligning a single
sequence to a profile.

CLUSTALW

One widely used implementation of profile-based progressive multiple alignment
is the CLUSTALW program [Thompson, Higgins & Gibson 1994a], which suc-
ceeded an earlier popular program, CLUSTALV [Higgins, Bleasby & Fuchs 1992].
CLUSTALW works in much the same way as the Feng-Doolittle method except for
its carefully tuned use of profile alignment methods. In overview, the CLUSTALW
algorithm is as follows:

Algorithm: cLUSTALW progressive alignment
(i) Construct a distance matrix of all N (N —1)/2 pairs by pairwise dynamic
programming alignment followed by approximate conversion of similar-
ity scores to evolutionary distances using the model of Kimura [1983].
(ii) Construct a guide tree by a neighbour-joining clustering algorithm by
Saitou & Nei [1987].
(iii) Progressively align at nodes in order of decreasing similarity, using se-
quence-sequence, sequence—profile, and profile—profile alignment. <

CLUSTALW is unabashedly ad hoc in its alignment construction and scoring
stage. In addition to the usual methods of profile construction and alignment,
various additional heuristics of CLUSTALW contribute to its accuracy:

e Sequences are weighted to compensate for biased representation in large sub-
families. The profile scoring function in CLUSTALW is fundamentally sum-of-
pairs. As with Carrillo-Lipman, sequence weighting is important to compen-
sate for the defects of the sum-of-pairs.

148 6 Multiple sequence alignment methods

o The substitution matrix used to score an alignment is chosen on the basis of
the similarity expected of the alignment; closely related sequences are aligned
with ‘hard’ matrices (e. 8- BLOSUMB0), and distant sequences are aligned with
‘soft’ matrices (e.g. BLOSUMS0).

e Position-specific gap-open profile penalties are multiplied by a modifier that
is a function of the residues observed at the position. These penalties were
obtained from gap frequencies observed in a large number of structurally based
alignments. In general, hydrophobic residues (which are more likely to be
buried) give higher gap penalties than hydrophilic or flexible residues (which
are more likely to be surface-accessible).

e Gap-open penalties are also decreased if the position is spanned by a consecu-
tive stretch of five or more hydrophilic residues.

e Both gap-open and gap-extend penalties are increased if there are no gapsin a
column but gaps occur nearby in the alignment. This rule tries to force all the
gaps to occur in the same places in an alignment.

e In the progressive alignment stage, if the score of an alignment is low, the guide
tree may be adjusted on the fly to defer the low-scoring alignment until later

in the progressive alignment phase when more profile information has been
accumulated.

From the standpoint of probabilistic modelling, it is of interest to study such
carefully crafted heuristics. It might be good to co-opt the heuristics into more
formal probabilistic models, bringing to bear the ability of full probabilistic mod-
els to optimise large sets of free parameters.

Iterative refinement methods

One problem with progressive alignment algorithms is that the subalignments are
‘frozen’. That is, once a group of sequences has been aligned, their alignment
to each other cannot be changed at a later stage as more data arrive. Iterative
refinement algorithms attempt to circumvent this problem [Barton & Sternberg
1987; Berger & Munson 1991: Gotoh 1993].

In iterative refinement, an initial alignment is generated, for instance as out-
lined above; then one sequence (or a set of sequences) is taken out and realigned
to a profile of the remaining aligned sequences. If a meaningful score is being
optimised, this either increases the overall score or results in the same score.
Another sequence is chosen and realigned, and so on, until the alignment does
not change. The procedure is guaranteed to converge to a local maximum of
the score provided that all the sequences are tried and a maximum score exists,
simply because the sequence space is finite.

The method of Barton & Sternberg [1987] is an example of how some of the
methods mentioned so far can be combined. It works as follows:

Algori
@)

(ii)

(iid)

(v

form
align’

In C!
form
stanc
HM!
ad h
assu
prot

Bau
of a;
mul
fina
mul

Bet
mu
ple
len
me
wis

, of
1ed
ith

hat
re
ed
be
ch

1a
he

de
er
2n

re

1t

U

6.5 Multiple alignment by profile HMM training 149

Algorithm: Barton-Sternberg multiple alignment

(1) Find the two sequences with the highest pairwise similarity and align
them using standard pairwise dynamic programming alignment.

(ii) Find the sequence that is most similar to a profile of the alignment of
the first two, and align it to the first two by profile-sequence alignment.
Repeat until all sequences have been included in the multiple alignment.

(iii) Remove sequence x! and realign it to a profile of the other aligned se-
quences x2,... x¥ by profile-sequence alignment. Repeat for sequences

x2,...,xN.
(iv) Repeat the previous realignment step a fixed number of times, or until the
alignment score converges. <

The ideas of profile alignment and iterative refinement come quite close to the
formulation of probabilistic hidden Markov model approaches for the multiple
alignment problem. We turn to HMM methods now.

6.5 Multiple alignment by profile HMM training

In Chapter 5 it was shown that sequence profiles could be recast in probabilistic
form as profile HMMs. Thus, profile HMMs could simply be used in place of
standard profiles in progressive or iterative alignment methods. The use of profile
HMM formalisms may have certain advantages. In particular, the essentially
ad hoc SP scoring scheme can be replaced by the more explicit profile HMM
assumption that the sequences are generated independently from a single ‘root’
probability distribution.

Profile HMMs can also be trained from initially unaligned sequences using the
Baum-Welch expectation maximisation algorithm from Chapter 3. These sorts
of approaches, drawn from the HMM literature, were in fact the first HMM-based
multiple alignment approaches to be applied. If the trained model is used for a
final step of Viterbi alignment of each individual sequence, training generates a
multiple alignment in addition to a model [Krogh er al. 1994].

Multiple alignment with a known profile HMM

Before tackling the problem of estimating a model and a multiple alignment si-
multaneously from initially unaligned training sequences, we consider the sim-
pler problem of obtaining a multiple alignment from a known model. This prob-
lem often arises in sequence analysis, for instance when we have a multiple align-
ment and a model of a small representative set of sequences in a family, and we
wish to use that model to align a large number of other family members together.

